

International Journal of Intelligent Engineering & Systems

http://www.inass.org/

Optimized One-Dimension Convolutional Neural Network for Seizure Classification from EEG Signal based on Whale Optimization Algorithm

Dwi Sunaryono¹Joko Siswantoro^{2*}Agus Budi Raharjo¹Rafif Ridho¹Riyanarto Sarno¹Shoffi Izza Sabilla³Rahadian Indarto Susilo⁴

¹Department of Informatics Engineering, Institute Technology of Sepuluh Nopember, Surabaya, Indonesia
 ²Department of Informatics Engineering, University of Surabaya, Surabaya, Indonesia
 ³Department of Medical Technology, Institute Technology of Sepuluh Nopember, Surabaya, Indonesia
 ⁴Department of Neurosurgery, dr. Soetomo Academic General Hospital, Surabaya, Indonesia
 *Corresponding author's Email: joko_siswantoro@staff.ubaya.ac.id

Abstract: Epilepsy is a chronic disorder that causes sudden, recurring seizures and early detection of seizures is needed for prompt treatment to reduce the higher risk. An electroencephalogram (EEG) can detect epilepsy based on traces of electrical activity and wave patterns in the brain. However, analyzing EEG signals takes a long time and is operated by neuroscientists. In this paper, we propose automatic seizure detection using a one-dimension convolutional neural network (1D CNN) and the approach of whale optimization algorithm (WOA). The EEG signal is trimmed every three seconds, and features are extracted using discrete wavelet transform (DWT). The WOA approach was used to optimize the number of layers and neurons in 1D CNN. The experimental results show that the proposed model can improve CNN's performance in detecting seizures with an accuracy of 99.76%, respectively. The proposed method is suitable for the children's hospital boston – massachusetts institute of technology (CHB-MIT) dataset.

Keywords: Epilepsy, Electroencephalography (EEG), Discrete wavelet transform (DWT), Convolutional neural network (CNN), Whale optimization algorithm (WOA).

1. Introduction

Epilepsy is a neurological disorder that affects approximately 50 million people worldwide, of which 80% reside in developing nations [1, 2] epilepsy is a failure of the brain in which patients typically experience seizures that are accompanied by no outward signs or symptoms. In addition, epilepsy is dangerous since it can raise the risk of other diseases such as dementia, cardiovascular disorders, depression [2]. An electroencephalogram (EEG) is typically used in clinical diagnostics because of its ability to record brain wave patterns and identify even minute traces of electrical activity in the brain. The diagnosis of epilepsy is performed manually by examining EEG patterns, which is a method that is both time-consuming and prone to inaccuracy [3]. Therefore, the process of evaluating recorded EEG brain signals causes a significant strain

on neuroscientists and affects the effectiveness of their work. These restrictions have prompted efforts to create and develop automated systems to assist neurologists in identifying seizure and non-seizure EEG brain signals. These automated systems will help neurologists distinguish between the two types of EEG brain signals [1].

There have been several research done in the past that used EEG data to carry out automatic detection of epilepsy. These studies classified EEG data into two class as well as three categories. A onedimensional pyramidal CNN, an Adam optimizer, and a dataset obtained from BONN University were used in the method that Ullah I, presented for diagnosing epilepsy. After the convolution layer, the suggested model includes one more layer, which is referred to as the batch normalization (BN) layer. This layer helps give fast convergence while eliminating special initialization of a parameter. In

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023

DOI: 10.22266/ijies2023.0630.25

their particular example, they carried out two experiments, the first of which divided participants into two categories (seizure and non-seizure), while the second of which divided participants into three categories (normal, ictal, and interictal). The overall accuracy for the 2 class classification is found to be 96.1%, while the overall accuracy for the 3 class classification is found to be 98.1%. In neither instance was any application of classification hyperparameter optimization discovered by the classifier [1]. Xiaoyan Wei suggested using a threedimensional CNN and compared it to a twodimensional CNN in a situation where the classification that was carried out was a three-class classification. These three classes include pre-ictal, interictal, and ictal. When a 3-dimensional CNN is utilized, the accuracy that is achieved is 92.37%, however when a 2-dimensional CNN is utilized, the accuracy that is achieved is 89.91%. Xiaoyan Wei's classification work also does not make advantage of CNN's hyperparameter tuning feature [3]. Wei Z proposed the identification of epilepsy coming from CHB-MIT, which was then processed into a timedomain waveform. Additionally, Wei Z introduced the use of merger of the increasing and decreasing sequences (MIDS) and data augmentation to improve classification performance using CNN. The accuracy that was acquired for the experiment that used MIDS was 82.37%, whereas the accuracy that was gained for the experiment that used augmentation data was 84.00 %. The classification that was done by Wei did not make use of parameter optimization, which is the reason why the accuracy that was reached is still less than 90% [4]. To classify two different datasets, namely the BONN university and CHB-MIT datasets, Li and Chen made use of the fast fourier transform (FFT) to get matrix generation, the principal component analysis network (PCANet) to get hidden features in the matrix generation generated by FFT, and the super vector machine (SVM) to label each feature generated by PCANET. The BONN dataset has an accuracy of at least 99%, but the CHB-MIT dataset has an accuracy of 98.47%. Within the scope of this study, the classification model does not incorporate optimization [5]. Using the CHB-MIT dataset, which has an average accuracy of 99.44%, Nath Bairagi diagnoses epilepsy using discrete wavelet transform (DWT), and then distinguishes two types, namely seizures and non-seizures, using artificial neural network (ANN). The sequential window algorithm (SWA), which is used to increase the false detection rate, is one of the things that makes Nath Bairagi's method better (FDR) [6]. In order to diagnose epilepsy in the datasets from CHB-MIT and national university hospital Seoul (SNUH),

Chulkyun Park utilized 1D and 2D CNNs. On the CHB-MIT dataset, accuracy was measured at 86.60%, whereas on the SNUH dataset, accuracy was measured at 90.50%. Within the scope of this investigation, they do not make use of classification hyperparameter optimization [7]. The accuracy of Jana G's research, which involved identifying epilepsy by employing CNN 1D with input information in the form of a spectrogram, came out to be 77.56%. There was no evidence identified of the employment of a classification hyperparameter optimization technique [8]. The CHB-MIT dataset was used to test Aayesha's method for identifying epilepsy, which uses a classification that is divided into two groups, namely fuzzy and traditional. Aayesha's method was carried out with CHB-MIT dataset. Utilized DWT in order to extract features. Both the standard method of k-nearest neighbor (KNN) classification (with an accuracy of 91.09%) and the fuzzy method of fuzzy rough nearest neighbor (FRNN) classification (with an accuracy of 92.76%) yielded the best results in terms of accuracy. In this particular investigation, classification hyperparameter tuning was not utilized in any way [9]. Mengni Zhou proposed the use of the fast fourier transform (FFT) for feature extraction and the convolutional neural network (CNN) for the classification model on the CHB-MIT and Freiburg datasets for the classification of three classes: interictal, ictal, and preictal. On the Freiburg dataset, the resulting accuracy is 92.30% and on the CHB-MIT dataset, it is 93.00%. The classification makes no use of hyperparameter optimization [10]. Rajendra Acharya U. proposed using 13-Layer CNN to detect epilepsy in the Bonn dataset. Achieved an accuracy rate of 88.67%. Neither was hyperparameter optimization discovered in this investigation [11]. In the absence of hyperparameter optimization study, researchers achieve a level of accuracy in the region of up to 80%.

The optimal classification accuracy can be obtained by tuning the hyperparameters of the classifier. Several researchers have employed metaheuristic optimization techniques to adjust these several hyperparameters. In addition, new metaheuristic optimization techniques have been developed, such as stochastic komodo algorithm (SKA) [12], fixed-step average and subtraction-based optimizer (FS-ASBO) [13], multi leader optimizer (MLO) [14], mixed leader based optimizer (MLBO) [15], three influential members based optimizer (TIMBO) [16], random selected leader based optimizer (RSLBO) [17], squirrel search optimizer [18], puzzle optimization algorithm (POA) [19], and ring toss game-based optimization algorithm [20].

However, those algorithms have not yet been applied to optimize the hyperparameters of the classification model. On the other hand, the whale optimization algorithm (WOA) [21] has been applied in some studies to optimize the hyperparameters of the CNN model, as reported in [22, 23]. Both of the aforementioned studies demonstrate how WOA can significantly improve CNN's classification performance. In this study, we proposed a CNN optimization strategy using the whale optimization algorithm (WOA) to detect epilepsy. The proposed method is utilized to select the number of filters, number of neurons in the hidden layer, and dropout employed in the hidden layer of CNN. Discrete wavelet transform (DWT) is employed for feature extraction. This research seeks to detect EEG signals by distinguishing between seizure and non-seizure signals.

The following is the order in which each section of this paper is presented: Section 2 presented work related to this study. The materials and methods that were utilized in this research are discussed in section 3. Section 4 provides an analysis of the findings of the research as well as the discussion. In the final section, the conclusions are discussed.

2. Materials and method

2.1 EEG dataset

This study makes use of a dataset from children's hospital boston – massachusetts institute of

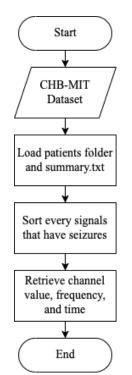


Figure. 1 Data information extraction flow chart

technology (CHB-MIT), which is accessible online. This data comprises of 24 recordings of EEG signals originating from 22 patients, with the 23rd recording being the recording of the first patient and a time interval of approximately 1.5 years between records. The twenty-fourth record was added in 2010. Each case (chb01, chb02, etc.) consists of nine to forty-two continuous edf files from a single patient. In most situations, these signal recordings capture EEG signals with a duration of one hour; however, in chb10, they are captured with a duration of two hours, whereas in chb04, chb06, chb07, chb09, and chb23, they are captured with a duration of four hours. All signals are sampled at a rate of 256 samples per second with a resolution of 16 bits. Positioning and naming of electrodes for signal recording also adhere to the international 10-20 system. The file record contains 664 lists of edf files, and the list of files with one or more seizures is stored in a file named **RECORDS-WITH-SEIZURE**. Describe the recorded file pertaining to the presence or absence of seizures.

2.2 Preprocessing

The raw data from the CHB-MIT dataset is processed first, with the information contained in each patient extracted via a file ending in summary.txt in each patient's folder. The data collected includes which signal a seizure occurred at, when it happened, and which channel was used.

Some patients were recorded with 24 or 26 channels, however the majority of patients were captured with 23 channels. Because the number of channels used by each patient varies, the selected channels in this research are 18 channels, and these channels are used to classify each patient. F8-T8, F3-C3, T8-P8, P8-O2, T7-P7, FP1-F7, F7-T7, FP2-F4, CZ-PZ, C3, P3, C4-P4, FZ-CZ, P7-O1, P3-O1, P4-O2, FP2-F8, F4-C4, and FP1-F3 are the channels utilized [24]. The flow of the data information extraction procedure is depicted in Fig. 1.

Each file that showed seizures in each patient was then chopped every 3 seconds with a stride of 1 and labeled with seizure and non-seizure locations depending on the time received from the summary.txt. Fig. 2 (a) illustrates an EEG signal recording from one subject for one hour. Fig. 2 (b) shows an EEG signal recording that was cropped for 3 seconds and labeled in red for the seizure region. A stride is the number of seconds between signal cuts. In this scenario, a one-second stride is employed, with the first cut beginning from the 0th second to the 2nd second and the second. Fig. 2 (c) and (d) show a signal cut with one stride.

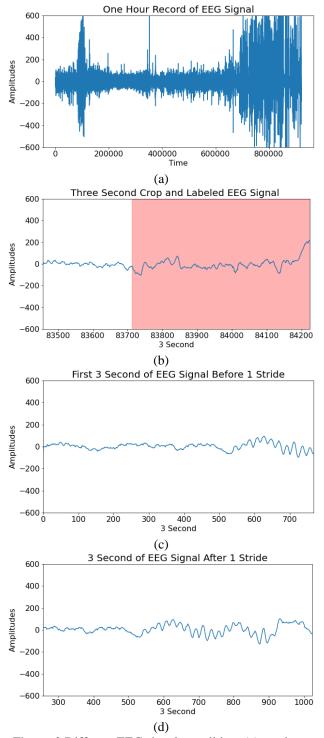


Figure. 2 Different EEG signals condition: (a) one hour EEG signal record, (b) three seconds crop and labelled EEG signal, (c) crop before first stride, and (d) crop after first stride

2.3 Feature extraction

A wavelet is an oscillation with a wave-like amplitude that starts at zero, can rise or decrease, and can return to zero several times. The EEG signal dataset may be represented using wavelets in this work, but utilizing raw wavelets that are directly categorized without feature extraction results in unacceptable accuracy. Jana G previously suggested a 1-dimensional CNN model with a spectrogram foundation for identifying epilepsy, with an average accuracy of less than 80% without the use of feature extraction [8]. A wavelet is an oscillation with a wave-like amplitude that starts at zero, can rise or decrease, and can return to zero several times. The EEG signal dataset in this research may be represented using wavelets, but utilizing raw wavelets, which are categorized directly without feature extraction, can result in inadequate accuracy. Jana G previously suggested a 1-dimensional CNN model with a spectrogram foundation for identifying epilepsy, with an average accuracy of less than 80% without the use of feature extraction [24]. DWT can partition the signal into many sets, each of which is a time series coefficient describing the evolution of the time signal in the proper frequency range. The use of DWT in obtaining EEG signal characteristics is proposed in this study.

The wavelet transform's capacity is highly dependent on the mother wavelet (t), which is used to generate a time-frequency representation (TFR) that matches the original waveform. The following Eq. (1) depicts the mother wavelet. The scale employed here is s, and the translation parameter is u. DWT employs two distinct functions, namely the scaling and wavelet functions. Because these two functions output two filters and two down-samplers in each phase, low and high pass filters are employed. Using the down-sample output, the high and low pass filters may examine details and approximations for the former.

$$\Psi(t) = \frac{1}{\sqrt{S}} \Psi\left(\frac{t-u}{s}\right) \tag{1}$$

The DWT can capture small changes in the EEG signal by expressing it in the multi-scale timefrequency domain with the approximation (A_i) and detailed $(D_i, i = 0, 1, ..., l - 1)$ coefficients, where l is the decomposition level [25]. There are various extant wavelet families, including Haar, Daubechies, Biorthogonal, Symlets, Coiflets. Reverse Biorthogonal, and Discrete Meyer, however only the Daubechies family will be tested in this work because EEG signals are commonly dissected using this wavelet family [25]. It was also tried varying the decomposition level between levels 1 and 6. For feature extraction, the coefficients A_i and D_i were employed to represent sub-band EEG signals in the frequency range 0-32 Hz. This wavelet coefficient correlates to multiple sub-bands in the EEG signal, including delta (1 - 4 Hz), theta (4 - 8 Hz), alpha (8 -

15 Hz), beta (15 - 30 Hz), and gamma (30 Hz), 60 Hz).

We can use the wavelet transform to describe the EEG signal with discrete wavelet coefficients. The significance of these signals increases when they are described by statistical information. This statistical property minimizes signal dimensionality [26]. The coefficients generated by DWT are extracted for statistical characteristics and crossing frequency features in this study. Five statistical features are extracted: the 5th percentile, the 25th percentile, the 50th percentile, the 75th percentile, and the 95th percentile. The total number of features recovered from the DWT coefficients is 5(l + 1), where l is the decomposition level. In addition to statistical characteristics, crossovers in extracted coefficients result in zero crossing frequency (ZCF). When the two coefficient vectors shift from positive to negative or vice versa, the ZCF is the frequency at which this occurs. In some cases, the signal is just above or below the horizontal axis, indicating that there is no ZCF. As a result, in addition to ZCF, the mean crossing frequency (MCF) is calculated, which is the frequency of the two elements of the mean cross of the coefficient vector (m). The extraction of the crossover frequency characteristics yields 2(l + 1), where l is the decomposition level. The total number of features acquired from feature extraction is 5(1 +1) + 2 (l + 1). The Numpy library is utilized in the implementation of percentiles, ZCF extraction, and MCF extraction in this study [27].

Section 2.2 of this study describes the application of DWT on preprocessed EEG recordings. Only the Daubechies wavelet family was used. The decomposition level is selected heuristically and ranges from 1 to 6. In order to achieve the optimum classification performance, the wavelet family and decomposition level are combined. The DWT coefficients are then extracted again for statistical and intersection frequency characteristics.

2.4 One-dimensional convolutional neural network (1D-CNN)

A convolutional neural network (CNN) is a biologically inspired classification algorithm for image classification and pattern detection. [22]. Several research used CNN with varying dimensions to detect epilepsy, with promising results [1, 3, 4]. This study proposes using CNN 1D to classify two class of EEG signals.

The architecture of a simple CNN is typically described using the diagram in Fig. 3. The convolution layer processes data from the input layer with the help of a kernel/filter to build a feature map,

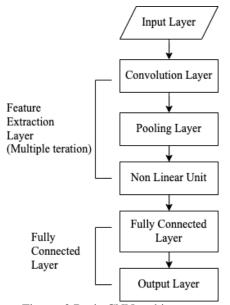


Figure. 3 Basic CNN architecture

where this map feature reflects the raw features. Down sampling is performed at the pooling layer to minimize the size of the map features. The features analyzed by the rectified linear unit (ReLU) unit will be fed into a fully connected layer, which will perform the classification process on the data. In general, the output layer has a soft-max estimate, which aids in multiclass classification but is not usually employed when the classification is simply ternary.

The convolution layer is made up of numerous convolution filters that, during the convolution step, will convolute the input and stride data [4]. The CNN utilized in this study is a 1D CNN since the input data is in the time domain, and 1D convolution works very well with data in this domain. This is due to the kernel shifting in one dimension in 1D convolution. This layer is created by convoluting the preceding layer with the kernel K receptive field Rf and into c, which is equal to the previous layer's number of channels or map features. In the convolution process, $X = \{x_{ij} : 1 \le i \le c, 1 \le j \le z\}$ the layer is transformed to layer $Y = \{y_{lm} : 1 \le l \le K, 1 \le m \le k\}$ K} using Eq. (2), where c is the number of channels in the layer X, and z is the number of neurons in each channel.

$$y_{lm} = \sum_{d=1}^{c} \sum_{e=1}^{Rf} k'_{d,e} \ x_{d,e+m}, \qquad (2)$$

Each channel has m neurons, and the total number of channels in the layer is K. The convolution layer generates the same number of channels as the number of kernels. Various kernels extract various types of discriminatory features from the input data [1]. This layer down samples the map feature, and the

1D kernel is utilized in this research to determine the maximum value based on the pool size of the map feature. The FC layer converts the representation of features studied in the preceding layer to label space.

An activation function that maps the outcome value between 0 and 1 or -1 and 1 is used to obtain the output of a neural network, such as "yes" or "no." The activation function itself is classified into two types: linear and non-linear. The linear produces a linear graph by using the formula f(x) = x, however the non-linear can help the graph to seem like a parabolic shape, which can assist the model adapt to varied data and differentiate the output. The -linear activation function is a common activation function in neural networks. There are several types of activation functions, including the sigmoid or logistic, the tanh or hyperbolic tangent, the rectified linear unit (ReLU), and the leaky ReLU. The sigmoid has a graph that looks like a s and the formula $\phi(z) =$ $\frac{1}{1+e^{-z}}$. Because the sigmoid function has a value between 0 and 1, it is widely employed in models to predict output as a probability, with the likelihood of anything being between 0 and 1. Tanh has a graph similar to a sigmoid, although it works best when the range of tanh is between -1 and 1. Tanh has the benefit over sigmoid in that it can map negative inputs as negative and zero inputs as near zero on the tanh graph. Because it is utilized in practically all CNNs and deep learning, ReLU is the most widely used activation function in the data world. As in Eq. (3), ReLU is 0 when x < 0 and x when $x \ge 0$. Because a threshold can supply a ReLU activation value, ReLU has a lower computational and faster convergence speed. The difficulty with utilizing ReLU alone is that any negative values are turned to zero, reducing the model's capacity to effectively train the data.

$$f(x) = \max(x, 0) \tag{3}$$

Finally, leaky ReLU is a solution to the ReLU issue. In leaky ReLU, f(x) = ax produces a graph that can overcome negative values, resulting in a leaky graph. This leak contributes to the expansion of the ReLU function set.

2.5 Whale optimization algorithm (WOA)

WOA is a herd intelligence-based optimization algorithm that simulates the predation behavior of humpback whales when hunting for food. Fig. 4 depicts the simulation of the unique behavior of humpback whales in building a bubble network when foraging. The humpback whale's foraging strategy is as follows: once the whales have located their prey,

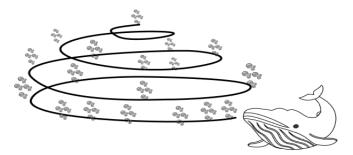


Figure. 4 Humpback whale bubble-net foraging

they begin to form a network of bubbles along a spiral path and migrate upstream to prey. WOA activity can be classified into three stages: swarming prey, bubble network attack, and hunting prey [28].

The first stage is swarming the prey; because the whales do not know the specific location of the prey at first, they swarm around it. If the current optimal position is the target prey, each individual whale in the group advances to it. The following Eqs. (4) and (5) expresses this behaviour:

$$X(t+1) = X^{*}(t) - A \cdot D$$

$$D = |C \cdot X^{*}(t) - X(t)|$$
(4)

The current iteration count is t, $X^*(t)$ is the prey's position vector or the current optimal solution, X(t) is the current ideal position, and $A \cdot D$ is the surrounding step size. In Eq. (5), *rand* is a random number between 0 and 1, and *a* is the control parameter, which decreases linearly from 2 to 0 with increasing iterations.

$$A = 2a \cdot rand - a$$

$$C = 2 \cdot rand \qquad (5)$$

The mathematical formula is stated at Eq. (6).

$$a = 2 - \frac{2t}{T_{max}},\tag{6}$$

 T_{max} represents the maximum number of iterations. In the second stage, the whale begins to form a network of bubbles by swimming in a limited encirclement along a spiral path towards prey. WOA divides this behavior into two categories: shrinking and crowding processes, and spiral update positions. The convergence factor *a* in Eqs. (5) and (6) yields the shrinkage and crowding mechanism. The spiral update position is derived by computing the distance between individual whales and their current best location, and then simulating the whale catching its prey in a spiral. This can be stated mathematically as Eq. (7).

Received: February 21, 2023. Revised: March 23, 2023.

$$X(t+1) = D' \cdot e^{bl} \cdot \cos(2\pi l) + X^*(t),$$

$$D' = |X^*(t) - X(t)|,$$
(7)

Where D', b, l denotes the distance between the ith whale and the current ideal position, a constant coefficient defining the spiral's logarithm, and a random number between -1 and 1. The spiral envelope and contraction envelope done with the same probability to produce this synchronization model. If $|A| \ge 1$ in the third stage of hunting for prey, the whale is randomly selected to replace the current optimal solution, which can boost the algorithm's global exploration capability, shift the whale away from the current reference target, and necessitate the search for a better prey to replace it. The following is the mathematical model :

$$X(t+1) = X_{rand} - A \cdot D$$

$$D = |C \cdot X_{rand} - X(t)|$$
(8)

In Eq. (8), X_{rand} is the location vector of a whale chosen at random.

WOA will be utilized in this study to establish the number of filters, neurons for each hidden layer, and use of dropout hidden layers on CNN that produces the best accuracy. The steps for applying WOA in CNN hyperparameter optimization are as follows.

- 1. To get $A_0, D_0, D_1, ..., D_{(l-1)}$, the EEG signal is feature extracted using DWT with l level of decomposition.
- 2. To obtain the feature set *F*, extract 5(l + 1) statistical features and 2(l + 1) crossing frequency features from the coefficients $A_0, D_0, D_1, \dots, D_{(l-1)}$.
- 3. The following WOA in CNN classification:
 - a. Loop as much as maximum iteration *T_{max}*.
 b. Generate random hyperparameter *X* in the Oth iteration as many as the number of whales.
 - c. Train 2-class CNN (C_i) with hyperparameter *X*.
 - d. Calculate fitness value obtained from CNN
 - e. If $t = T_{max}$ then the optimal position is now $X^*(t)$.
 - f. Using the formula 4,7,and 8 to generate a new hyperparameter *X*.
 - g. Back to 3.c. until $t = T_{max}$.

Fig. 5 depicts the flow of the preceding steps. First, using DWT, the F feature set is extracted from each class of EEG signals. Then, set the number of whales and the maximum number of iterations. WOA chooses hyperparameter X at random. CNN

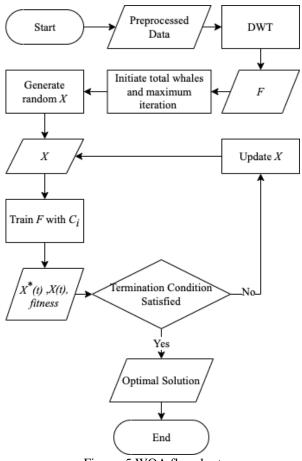


Figure. 5 WOA flowchart

classification uses hyperparameter X to calculate fitness value. The hyperparameter X is then updated using Eqs. (4), (7), and (8) based on the condition the iteration currently on. The loop will run until $t = T_{max}$, at which point the current optimal position $X^*(t)$ will be obtained.

2.6 Experimental setup

Many laboratory experiments have been conducted to validate the proposed EEG signal classification method for detecting epilepsy. The first experiment involved classification without the use of feature extraction, oversampling, as well as CNN parameter optimization with WOA. In the second experiment, classicization was performed using feature extraction without oversampling and CNN parameter optimization with WOA. In the third experiment, classification was performed through feature extraction with DWT and oversampling without CNN parameter optimization with WOA. The final experiment involved classifying the proposed model. All experiments divide the EEG signal into two classes: class 0 and class 1. In scenario 2, an experiment is performed to determine the best combination of wavelet families and decomposition

levels for classification performance.

This experiment was carried out on a high-end computer equipped with an AMD Ryzen 5 3600 CPU, an Nvidia GTX 1650 graphics card, and 16 GB of RAM. Some python libraries are also on the method used, namely Numpy [27], PyWavelets [29], and Tensorflow [30]. Stratified shuffle split is also utilized, which combines kfold and split with 1 iteration for each optimization achieved by WOA. The amount of training and test data is divided into 70% and 30%, respectively, with 90.543 training data and 38.805 test data.

3. Result and discussion

3.1 Classification with CNN

In the first scenario, an experiment was carried out to categorize EEG signals into two classes, seizures and non-seizures, with the raw data of the EEG signal being directly entered into the CNN model. However, as mentioned in the Preprocessing step, the EEG input is cut every 3 seconds initially. The accuracy ranged from 10% to 30% in detecting seizure signals, and it was 99% in both classes. Table 1 displays the classification experiment results. The accuracy of the resulting seizures is relatively low based on the findings of the categorization only with CNN. However, the classification accuracy for both classes gets high results.

3.2 Classification with feature extraction

The accuracy of the application of DWT and the combination of levels and wavelets utilized in the decomposition of the EEG signal is shown in Table 2. Only the Daubechies family was employed in the studies, with a combination of levels ranging from 1 to 6. The best seizure accuracy was 87.59%, while the accuracy of seizure and non-seizure identification was 99.06% during which the db2 family and a decomposition level of 5 were used. There were 36 features extracted from the best seizure accuracy produced by feature extraction with the db2 family and decomposition level 5. The accuracy of the seizure generated by Table 2 rose significantly after feature extraction, however the classification accuracy of both classes was similar to the accuracy generated by the classification without feature extraction.

3.3 Classification with feature extraction and oversampling

As a result, in the third experiment, the number of

Table 1. Classification result only with CNN

Experiment	Accuracy (%)		
number	Seizure	All	
1	20.44	0.994694	
2	25.33	0.994816	
3	16.94	0.994725	
4	37.64	0.994037	
5	15.75	0.994663	

Table 2. Accuracy results for classification using wavelet

Mother	Decomposition	Accuracy (%)		
wavelet	level	Seizure	All	
Db1	1	81.44	99.33	
Db1	2	84.12	99.38	
Db1	3	81.64	99.52	
Db1	4	86.51	99.43	
Db1	5	75.35	99.56	
Db1	6	86.90	99.59	
Db2	1	85.27	99.46	
Db1	2	81.12	99.31	
Db1	3	82.29	99.57	
Db1	4	81.96	99.49	
Db1	5	87.59	99.06	
Db1	6	85.56	99.67	
Db3	1	81.87	99.50	
Db3	2	69.33	99.32	
Db3	3	79.47	99.56	
Db3	4	78.97	99.60	
Db3	5	84.24	99.49	
Db3	6	57.39	99.31	

whales and maximum iteration were increased, and the resulting accuracy increased by 15.24%. The parameter search reached convergence in the 25th iteration in the fourth experiment with a maximum iteration were increased, and the resulting accuracy increased by 15.24%.

The parameter search reached convergence in the 25th iteration in the fourth experiment with a maximum iteration of 35 times where the parameters produced were always the same, namely only the number of the first filter with the number 2.0 but the resulting accuracy was only 88.20% the same as the previous experiment. This suggests that a large number of iterations does not always improve seizure accuracy. The seizure accuracy in the last two experiments was greater than 90%, namely 91.28% and 91.84% when the number of WOA iterations was

Whales	Iteration	Best	numb filters	er of		t numbe neurons		Best Dropout		Accurac	ey (%)	
		1	2	3	1	2	3	1	2	3	Seizure	All
4	4	228	464	441	231	1493	458	0	0	0	72.95	99.12
10	5	852	553	775	704	1654	419	0	0	0	73.13	99.14
9	10	113	2	657	389	1352	0	0	0	0	88.20	99.02
7	35	2	0	0	0	0	0	0	0	0	88.20	98.61
10	15	5	46	231	236	70	135	0	0	0	89.29	98.50
7	25	0	64	23	0	0	208	0	0	0	91.28	98.96
7	10	882	975	385	2048	2048	1511	0	0	0	91.84	99.76

Table 3. Classification experiment results with WOA

Table 1	A againe are	0.0000000000000000000000000000000000000	on hatrican	annonio
Table 4. A	Accuracy	compariso	on between	scenario

	Accuracy (%)		
Methods	Seizure	All	
CNN	36.18	99.42	
CNN + DWT	87.59	99.06	
CNN + DWT + Oversampling	90.53	99.47	
CNN + DWT + Oversampling + WOA	91.84	99.76	

25 and 10, respectively, with a total of 7 whales.

Because of the imbalanced amount of data between the seizure signal data and the non-seizure signal data, an over sampler was utilized in the third scenario to equalize the seizure signal data. The seizure data is oversampled using a balanced data generator. When compared to the classification without oversampling, the resulting accuracy increased noticeably. With the db2 wavelet family, 5 layers of decomposition, and oversampling, seizure accuracy is 90.53% and total accuracy is 99.47%. Based on these findings, it is fair to conclude that using oversampling improves CNN classification accuracy.

3.4 Classification with feature extraction, oversampling, and hyperparameter optimization

There were seven experiments and iterations to determine the number of whales shows in Table 3. The seizure detection accuracy was 72.95% in the first experiment with the same number of whales and iterations, i.e. 4. Accuracy The seizures obtained in the first trial were small. It can be concluded that the number of whales and maximum iterations are both small, resulting in a small seizure accuracy.

Table 4 shows a comparison of the accuracy of each scenario. According to table 4, the accuracy generated by WOA optimization indicates that WOA can improve classification performance without optimization. However, the number of whales and the maximum iteration should be considered when using WOA.

3.5 Comparison with existing method

There have been numerous methods for classifying epilepsy using the CHB-MIT dataset with various classes. Table 5 compares our method to methods developed by other authors using only the CHB-MIT proposed dataset. The method outperforms several state-of-the-art methods for detecting epilepsy from EEG signals, specifically for the study in [4, 6-10, 31-39]. It can be seen that the accuracy of the method that only uses CNN without feature extraction is lower than the accuracy of the method we propose, whereas the accuracy of the method that uses feature extraction such as DWT and FFT is higher than 90%. Our method outperforms the classification method based on FRNN and DWT by 7%. Nath Bairagi's method for detecting epilepsy uses ANN and DWT as feature extraction and SWA to improve the performance of ANN classification, yielding an accuracy of 99.44%, 0.32% less than our proposed method. As can be seen in Table 5, the proposed method outperforms both CNN and non CNN classifiers in epilepsy detection from EEG signals. However, the proposed method was only evaluated using EEG signals from CHB-MIT dataset with two classes.

4. Conclusion

In this study, an epilepsy detection system is proposed, which classifies epilepsy into two classes: seizures and non-seizures. The proposed method employs the CNN model with WOA parameter optimization. This model is intended to improve seizure detection accuracy. The classification results of this study, on the other hand, are highly dependent on the wavelet family used in the feature extraction process using DWT. As a result, several experiments were conducted to determine the combination of the wavelet family and the level of decomposition that resulted in seizure accuracy and accuracy of both classifications of 87.59% and 99.06%, respectively,

Author	Methods	Class	Acc (%)
[4]	CNN + WGANs	Interictal vs. Ictal vs. Preictal	84.00
[6]	ANN + DWT + SWA	Seizure vs. Non-Seizure	99.44
[7]	1D and 2D CNN	Seizure vs. Non-Seizure	85.60
[8]	1D CNN + Spectrogram	Seizure vs. Non-Seizure	77.56
[9]	FRNN + DWT	Seizure vs. Non-Seizure	92.76
[10]	CNN + FFT	Interictal vs. Ictal vs. Preictal	93.00
[31]	Hybrid Transformer	Seizure vs. Non-Seizure	91.80
[32]	Gradient Boosting Decision Tree (GBDT)	Seizure vs. Non-Seizure	92.50
[33]	CNN 2D	Interictal vs. Ictal vs. Preictal	94.00
[34]	Slow Component Analysis (SCA)	Seizure vs. Non-Seizure	94.41
[35]	LSTM	Seizure vs. Non-Seizure	96.40
[36]	DWT + RUSBoosted Tree Ensemble	health control vs. seizure free vs. seizure active	97.00
[37]	DWT + SVM	Ictal vs. Preictal	97.43
[38]	CNN + DWT + SSA	Seizure vs. Non-Seizure	99.15
[39]	CNN + SVM	Seizure vs. Non-Seizure	99.57
Proposed Method	CNN + DWT + WOA	Seizure vs. Non-Seizure	99.76

Table 5. Classification results with other existing methods

when using the db2 wavelet family with five decomposition levels. As can be seen, the seizure accuracy has not yet reached 90%. Because the number of seizure signals is less than the number of non-seizure signals, this occurs. Oversampling was used to balance the data imbalance between the two classes, and the seizure accuracy obtained was 90.53% and the classification accuracy for the two classes was 99.47%. This accuracy can be improved further by optimizing the CNN hyperparameter, which in this paper is WOA. The accuracy of detecting seizure signals was 91.84% and the accuracy of both classes was 99.76% using WOA. WOA improved seizure accuracy by 1.31%. The CNN optimization parameters using WOA are 882, 975, and 385 for the number of filters 1 to 3, 2048, 2048, 1511 for the number of neurons in hidden layers 1 to 3, and 0 for dropout 1 to 3. The findings were compared to other research methods that used the same dataset, namely CHB-MIT. Classification methods that do not use feature extraction achieve accuracy of 70-85%, whereas those that do use feature extraction achieve an average accuracy of more than 90%. The accuracy generated by the ANN classification with DWT and SWA extraction features is the closest to the accuracy of our proposed method. Overall, it can be concluded that using WOA to optimize CNN hyperparameters can improve epilepsy detection accuracy.

Conflicts of interest

The authors declare no conflict of interest.

Author contributions

Conceptualization, Dwi Sunaryono, Riyanarto Sarno, Joko siswantoro and Rahadian Indarto Susilo; methodology, Dwi Sunaryono and Joko Siswantoro; validation, Dwi Sunaryono, Joko Siswantoro, and Shoffi Izza Sabilla; formal analysis, Dwi Sunaryono, Joko Siswantoro and Shoffi Izza Sabilla: investigation, Dwi Sunaryono and Joko Siswantoro; writing-original draft preparation, Dwi Sunaryono and Rafif Ridho; writing-review and editing, Dwi Sunaryono, Joko Siswantoro, Shoffi Izza Sabilla and Rafif Ridho; Dwi Sunaryono and Rafif Ridho; supervision, Joko Siswantoro, Agus Budi Raharjo and Shoffi Izza Sabilla.

Acknowledgments

This research was funded by the Indonesian Ministry of Education and Culture under Penelitian Disertasi Doktor (PDD) Program No. 085/E5/PG.02.00.PT/2022 and 1414/PKS/ITS/2022, and under scholarship scheme No. T/927/IT2/HK.00.01/2021 managed by Institut Teknologi Sepuluh Nopember (ITS) Surabaya.

References

 I. Ullah, M. Hussain, E. Qazi, and H. Aboalsamh, "An Automated System for Epilepsy Detection using EEG Brain Signals based on Deep Learning Approach Insight Centre for Data Analytics, National University of Ireland,

Galway, Ireland Visual Computing Lab, Department of Computer Science, College of Com", *Expert Syst. Appl.*, No. 107, pp. 61–71, 2018.

- [2] S. Supriya, S. Siuly, H. Wang, and Y. Zhang, "Automated epilepsy detection techniques from electroencephalogram signals: a review study", *Heal. Inf. Sci. Syst.*, Vol. 8, No. 1, Dec. 2020, doi: 10.1007/S13755-020-00129-1.
- [3] X. Wei, L. Zhou, Z. Chen, L. Zhang, and Y. Zhou, "Automatic seizure detection using threedimensional CNN based on multi-channel EEG", *BMC Med. Inform. Decis. Mak.*, Vol. 18, No. Suppl 5, Dec. 2018, doi: 10.1186/S12911-018-0693-8.
- [4] Z. Wei, J. Zou, J. Zhang, and J. Xu, "Automatic epileptic EEG detection using convolutional neural network with improvements in timedomain", *Biomed. Signal Process. Control*, Vol. 53, p. 101551, 2019, doi: 10.1016/j.bspc.2019.04.028.
- [5] M. Li and W. Chen, "FFT-based deep feature learning method for EEG classification", *Biomed. Signal Process. Control*, Vol. 66, p. 102492, 2021, doi: 10.1016/j.bspc.2021.102492.
- [6] R. N. Bairagi, M. Maniruzzaman, S. Pervin, and A. Sarker, "Epileptic seizure identification in EEG signals using DWT, ANN and sequential window algorithm", *Soft Comput. Lett.*, Vol. 3, p. 100026, Dec. 2021, doi: 10.1016/J.SOCL.2021.100026.
- [7] C. Park, G. Choi, J. Kim, S. Kim, T. J. Kim, K. Min, K. Y. Jung, and J. Chong, "Epileptic seizure detection for multi-channel EEG with deep convolutional neural network", In: *Proc. of Int. Conf. Electron. Inf. Commun. ICEIC 2018*, Vol. 2018-Janua, pp. 1–5, 2018, doi: 10.23919/ELINFOCOM.2018.8330671.
- [8] G. C. Jana, R. Sharma, and A. Agrawal, "A 1D-CNN-Spectrogram Based Approach for Seizure Detection from EEG Signal", *Procedia Comput. Sci.*, Vol. 167, pp. 403–412, 2020, doi: 10.1016/J.PROCS.2020.03.248.
- [9] Aayesha, M. B. Qureshi, M. Afzaal, M. S. Qureshi, and M. Fayaz, "Machine learningbased EEG signals classification model for epileptic seizure detection", *Multimed. Tools Appl.*, Vol. 80, No. 12, pp. 17849–17877, May 2021, doi: 10.1007/S11042-021-10597-6/TABLES/17.
- [10] M. Zhou, C. Tian, R. Cao, B. Wang, Y. Niu, T. Hu, H. Guo, and J. Xiang, "Epileptic seizure detection based on EEG signals and CNN", *Front. Neuroinform.*, Vol. 12, No. December, pp. 1–14, 2018, doi: 10.3389/fninf.2018.00095.

- [11] U. R. Acharya, S. L. Oh, Y. Hagiwara, J. H. Tan, and H. Adeli, "Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals", *Comput. Biol. Med.*, Vol. 100, pp. 270–278, Sep. 2018, doi: 10.1016/J.COMPBIOMED.2017.09.017.
- [12] P. D. Kusuma and M. Kallista, "Stochastic Komodo Algorithm", *Int. J. Intell. Eng. Syst.*, Vol. 15, No. 4, p. 2022, doi: 10.22266/ijies2022.0831.15.
- [13] P. D. Kusuma and A. Dinimaharawati, "Fixed Step Average and Subtraction Based Optimizer", *Int. J. Intell. Eng. Syst.*, Vol. 15, No. 4, p. 2022, doi: 10.22266/ijies2022.0831.31.
- [14] M. Dehghani, Z. Montazeri, A. Dehghani, R. A. R. Mendoza, H. Samet, J. M. Guerrero, and G. Dhiman, "MLO: Multi Leader Optimizer", *Int. J. Intell. Eng. Syst.*, Vol. 13, No. 6, 2020, doi: 10.22266/ijies2020.1231.32.
- [15] F. A. Zeidabadi, S. A. Doumari, M. Dehghani, and O. P. Malik, "MLBO: Mixed Leader Based Optimizer for Solving Optimization Problems", *Int. J. Intell. Eng. Syst.*, Vol. 14, No. 4, p. 2021, doi: 10.22266/ijies2021.0831.41.
- [16] F. A. Zeidabadi, M. Dehghani, and O. P. Malik, "TIMBO: Three Influential Members Based Optimizer", *Int. J. Intell. Eng. Syst.*, Vol. 14, No. 5, 2021, doi: 10.22266/ijies2021.1031.12.
- [17] F. A. Zeidabadi, M. Dehghani, and O. P. Malik, "RSLBO: Random Selected Leader Based Optimizer", *Int. J. Intell. Eng. Syst.*, Vol. 14, No. 5, pp. 529–538, 2021, doi: 10.22266/ijies2021.1031.46.
- [18] M. Suman, V. P. Sakthivel, and P. D. Sathya, "Squirrel Search Optimizer: Nature Inspired Metaheuristic Strategy for Solving Disparate Economic Dispatch Problems", *Int. J. Intell. Eng. Syst.*, Vol. 13, No. 5, 2020, doi: 10.22266/ijies2020.1031.11.
- [19] F. A. Zeidabadi and M. Dehghani, "POA: Puzzle Optimization Algorithm", *Int. J. Intell. Eng. Syst.*, Vol. 15, No. 1, pp. 273–281, 2022, doi: 10.22266/IJIES2022.0228.25.
- [20] S. A. Doumari, H. Givi, M. Dehghani, and O. P. Malik, "Ring Toss Game-Based Optimization Algorithm for Solving Various Optimization Problems", *Int. J. Intell. Eng. Syst.*, Vol. 14, No. 3, p. 2021, doi: 10.22266/jjies2021.0630.46.
- [21] S. Mirjalili and A. Lewis, "The whale optimization algorithm", *Adv. Eng. Softw.*, Vol. 95, pp. 51–67, 2016.
- [22] U. Dixit, A. Mishra, A. Shukla, and R. Tiwari, "Texture classification using convolutional neural network optimized with whale

optimization algorithm", *SN Appl. Sci.*, Vol. 1, No. 6, Jun. 2019, doi: 10.1007/S42452-019-0678-Y.

- [23] P. Rana, P. K. Gupta, and V. Sharma, "A Novel Deep Learning-based Whale Optimization Algorithm for Prediction of Breast Cancer", *Brazilian Arch. Biol. Technol.*, Vol. 64, Apr. 2021, doi: 10.1590/1678-4324-2021200221.
- [24] D. Sunaryono, R. Sarno, and J. Siswantoro, "Gradient boosting machines fusion for automatic epilepsy detection from EEG signals based on wavelet features", J. King Saud Univ. -Comput. Inf. Sci., No. xxxx, 2021, doi: 10.1016/j.jksuci.2021.11.015.
- [25] S. Ibrahim, R. Djemal, and A. Alsuwailem, "Electroencephalography (EEG) signal processing for epilepsy and autism spectrum disorder diagnosis", *Biocybern. Biomed. Eng.*, Vol. 38, No. 1, pp. 16–26, 2018, doi: 10.1016/J.BBE.2017.08.006.
- [26] A. Subasi, A. Ahmed, E. Aličković, and A. R. Hassan, "Effect of photic stimulation for migraine detection using random forest and discrete wavelet transform", *Biomed. Signal Process. Control*, Vol. 49, pp. 231–239, 2019, doi: 10.1016/J.BSPC.2018.12.011.
- [27] C. R. Harris, K. J. Millman, S. J. V. D. Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. V. Kerkwijk, M. Brett, A. Haldane, J. F. D. Río, M. Wiebe, P. Peterson, P. G. Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, E. T. Oliphant, "Array programming with NumPy", *Nat. 2020* 5857825, Vol. 585, No. 7825, pp. 357–362, 2020, doi: 10.1038/s41586-020-2649-2.
- [28] G. Y. Ning and D. Q. Cao, "Improved whale optimization algorithm for solving constrained optimization problems", *Discret. Dyn. Nat. Soc.*, Vol. 2021, 2021, doi: 10.1155/2021/8832251.
- [29] G. R. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt, and A. O'leary, "PyWavelets: A Python package for wavelet analysis", *Journal* of Open Source Software, Vol. 4, No. 36, 1237, 2019, doi: 10.21105/joss.01237.
- [30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. Warden,

M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems", *arXiv:1603.04467*, 2016, doi: 10.48550/arxiv.1603.04467.

- [31] S. Hu, J. Liu, R. Yang, Y. Wang, A. Wang, K. Li, W. Liu, and C. Yang, "Exploring the Applicability of Transfer Learning and Feature Engineering in Epilepsy Prediction Using Hybrid Transformer Model", *IEEE Trans. Neural Syst. Rehabil. Eng.*, Vol. 31, pp. 1321– 1332, 2023, doi: 10.1109/TNSRE.2023.3244045.
- [32] X. Xu, M. Lin, and T. Xu, "Epilepsy Seizures Prediction Based on Nonlinear Features of EEG Signal and Gradient Boosting Decision Tree", *Int. J. Environ. Res. Public Heal*, Vol. 19, No. 18, p. 11326, 2022, doi: 10.3390/IJERPH191811326.
- [33] X. Wei, Y. Wang, Z. Zhang, X. Cao, and Y. Zhou, "Epileptic seizure prediction from multivariate EEG data using Multidimensional convolution network", In: *Proc. of 2022 7th Int. Conf. Commun. Image Signal Process. CCISP 2022*, pp. 361–365, 2022, doi: 10.1109/CCISP55629.2022.9974592.
- [34] Z. Dong and S. Zhou, "Slow Component Analysis Based Interictal-Preictal EEG Prediction", In: Proc. of 2022 10th E-Health Bioeng. Conf. EHB 2022, 2022, doi: 10.1109/EHB55594.2022.9991363.
- [35] A. Zeedan, K. A. Fakhroo, and A. Barakeh, "EEG-Based Seizure Detection Using Feed-Forward and LSTM Neural Networks Based on a Neonates Dataset", *TechRxiv*, 2022, doi: 10.36227/TECHRXIV.20728411.V1.
- [36] M. Shen, P. Wen, B. Song, and Y. Li, "An EEG based real-time epilepsy seizure detection approach using discrete wavelet transform and machine learning methods", *Biomed. Signal Process. Control*, Vol. 77, p. 103820, Aug. 2022, doi: 10.1016/J.BSPC.2022.103820.
- [37] M. M. Qureshi and M. Kaleem, "EEG-based seizure prediction with machine learning", *Signal, Image Video Process.*, pp. 1–12, 2022, doi: 10.1007/S11760-022-02363-4/TABLES/9.
- [38] D. Sunaryono, R. Sarno, J. Siswantoro, A. B. Raharjo, S. I. Sabilla, R. I. Susilo, and K. Rekha, "Enhanced Salp Swarm Algorithm Based on Convolutional Neural Network Optimization for Automatic Epilepsy Detection", *J. Theor. Appl. Inf. Technol.*, Vol. 15, p. 19, 2022, Accessed: Oct. 19, 2022. [Online]. Available: www.jatit.org.
- [39] R. Du, J. Huang, and S. Zhu, "EEG-Based

International Journal of Intelligent Engineering and Systems, Vol.16, No.3, 2023

DOI: 10.22266/ijies2023.0630.25

Received: February 21, 2023. Revised: March 23, 2023.

Epileptic Seizure Detection Model Using CNN Feature Optimization", In: *Proc. of 2022 15th Int. Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI 2022*, 2022, doi: 10.1109/CISP-BMEI56279.2022.9980081.

Publications

Journal Description

Publications menu

International Journal of Intelligent Engineering and Systems

indexed by,

SCOPUS

Scimago

Crossref

EBSCOhost

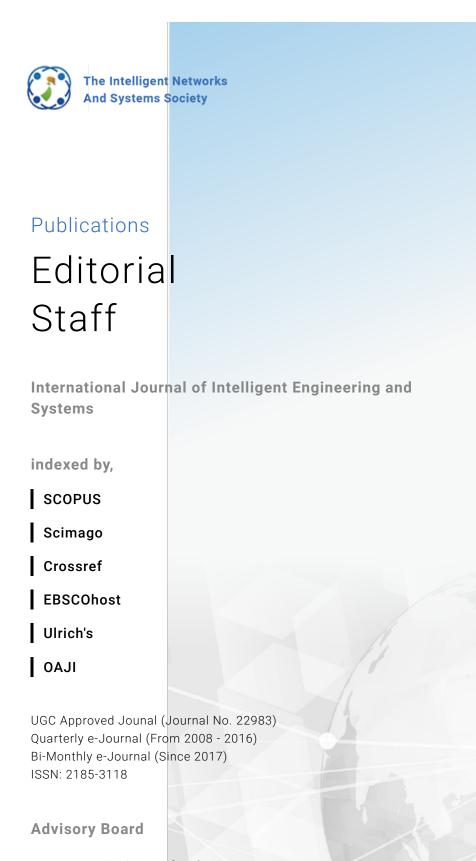
Ulrich's

OAJI

UGC Approved Jounal (Journal No. 22983) Quarterly e-Journal (From 2008 - 2016) Bi-Monthly e-Journal (Since 2017) ISSN: 2185-3118

Great News 2021 SCOPUS CiteScore: 2.0! General Engineering 53rd, General Computer Science 47th

International Journal of Intelligent Engineering and Systems is an OPEN ACCESS international journal which gains a foothold in Asia and opens to the world. It aims to promote the integration of intelligent engineering and systems. The focus is to publish papers on state-of-the-art intelligent computing, network engineering, electrical/electronics engineering, and industrial engineering and systems, with emphasis on novel technologies, theoretical work and engineering applications. The audience includes researchers, managers and operators for intelligent engineering and systems as well as designers and developers.


jokosiswantoro Password

•••••

Publications

menu

Hassan Bevrani, University of Kurdistan, Iran

Editor-in-Chief

Kei Eguchi, Fukuoka Institute of Technology, Japan

Associate Editors-in-Chief

Amphawan Julsereewong, King Mongkut's Institute of Technology Ladkrabang, Thailand

Sawai Pongswatd, King Mongkut's Institute of Technology Ladkrabang, Thailand

Editorial Board

Nor Azlan Othman, University of Teknologi MARA, Malaysia Nor Salwa Damanhuri, University of Teknologi MARA, Malaysia Rozan Boudville, University of Teknologi MARA, Malaysia Nam-Soo Kim, Cheongju University, Republic of Korea B. T. P. Madhav, K L University, India Farzin Asadi, Kocaeli University, Turkey Win Pa Pa, University Computer Studies Yangon, Myanmar Prasit Julsereewong, King Mongkut's Institute of Technology Ladkrabang, Thailand Worapong Tangsrirat, King Mongkut's Institute of Technology Ladkrabang, Thailand Prapart Ukakimaparn, King Mongkut's Institute of Technology Ladkrabang, Thailand Sawatsakorn Chaiyasoonthorn, Ramkhamhaeng University, Thailand Krit Smerpitak, King Mongkut's Institute of Technology Ladkrabang, Thailand Apinai Rerkratn, King Mongkut's Institute of Technology Ladkrabang, Thailand Pittaya Pannil, King Mongkut's Institute of Technology Ladkrabang, Thailand Anucha Kaewpoonsuk, Naresuan University, Thailand Teerawat Thepmanee, King Mongkut's Institute of Technology Ladkrabang, Thailand Chirdpong Deelertpaiboon, King Mongkut's University of Technology North Bangkok, Thailand Natee Thong-un, King Mongkut's University of Technology North Bangkok, Thailand Sart Kummool, King Mongkut's Institute of Technology Ladkrabang, Thailand Takaaki Ishibashi, National Institute of Technology Ariake College, Japan Kou Yamada, Gunma University, Japan Kuniaki Fujimoto, Tokai University, Japan Mitsutoshi Yahara, Tokai University Fukuoka Junior College, Japan Wanglok Do, Fukuoka Institute of Technology, Japan Riyanarto Sarno, Institut Teknologi Sepuluh Nopember, Indonesia Masoud Rahiminezhad Galankashi, Buein Zahra Technical University, Iran Khulood E. Dagher, University of Baghdad, Iraq

Board member responsibilities

* Editorial board members must obey the direction provided by the Editors-in-Chief of the journal.

* Editorial board members must judge every submission equally and transparently.

* Editorial board members should not reveal any information regarding the author, reviewer or the paper information to anyone.

* Editorial board members are responsible for timely publishing the accepted papers.

* Editorial board members may attend the Editorial Board meetings occasionally scheduled by the Editorial Office for taking part in the discussion for the improvement of the Journal.

* Editors should not have any conflict of interest with any assignment.

* Editors should be responsible for a fast and transparent peer review process.

* Editors should keep the policy of fast and effective peer review.

* Editors should be responsible for any query regarding reconsideration of editorial decisions and should provide the decision quickly and clearly with proper reasons.

* Editors should be responsible for selecting potential reviewers considering their expertise in particular subject areas and keeps monitoring the review process.

* Editors will be responsible to convey the expectations of the journal to the reviewers with the review scope, quality and timeliness for an effective, fair and constructive review for the assigned submission.

* Editors should keep in mind the time required for reviewing papers before sending any reminder to the reviewer so that assigned reviewer should get appropriate time he or she requires.

* Editors-in-Chief can take the final decision for any publication oriented issue.

			C
S	earch WWW		Search inass
		1.	

Copyright@2008 The Intelligent Networks and Systems Society

INASS Communication	on Login		
Username or E-mail			
jokosiswantoro			
Password			
•••••	submit		

The Intelligent Networks And Systems Society

Publications

Contents & Papers 2023

Volume 16, Issue 3 JUN 2023 (30 June, 2023)

Contents & Papers

1

Single Phase UPQC Integrated with Photovoltaic System without DC-Link Capacitor Using Fuzzy Logic Controller for Power Quality Improvement

Amirullah Amirullah, Adiananda Adiananda

ſ	4
L	19

Pose Based Multi View Sign Language Recognition through Deep Feature Embedding

Ashraf Ali SK, Prasad M.V.D, Hima Bindu G, P. Praveen Kumar P, Anil Kumar D, Kishore P.V.V

38	

Spiral Search Ant Colony Optimization Based AlexNet Model for Emotion Recognition

Pradipkumar Panchal, Hiren K. Mewada

4	
48	

A Secured Biometric Authentication with Hybrid Face Detection and Recognition Model

Md. Irshad Hussain B., Mohamed Rafi

Detection and Diagnosis of Diabetic Retinopathy Using Transfer Learning Approach

M. Vamsi Krishna, B. Srinivasa Rao

Publications menu

		_	۰.
_	-		L
_			L
_	_		L
1	5		L
	7	75	75

OptiBiNet_GRU: Robust Network Intrusion Detection System Using Optimum Bi-Directional Gated Recurrent Unit

D. Shankar, G. Victo Sudha George, N Kanya

ſ	<u>4</u>
L	
L	92

DeepFake Detection Improvement for Images Based on a Proposed Method for Local Binary Pattern of the Multiple-Channel Color Space

Mohammed Thajeel Abdullah, Nada Hussein M. Ali

=

Smart Bandwidth Prediction, Power Management and Adaptive Network Coding for WSN

Gopalsamy Vanitha, Palaniswamy Amudha, Subramaniam Pillai Sivakumari

Γ	<u>4</u>	
L	115	

Deep Convolutional Spiking Neural Network Optimized with Coyote Chimp Optimization Algorithm for Imperfect Channel Estimation in MIMOf-OFDM/FQAM Based 5G Network

G. Shyam Kishore, P. Chandra Sekhar

ſ	<u>=</u>
l	=
l	126

An Extensive Analysis and Fine-Tuning of Gmapping's Initialization Parameters

Zuhair A. Ahmed, Safanah M. Raafat

Γ	
l	
l	139

Enhancement of Spectral Efficiency in Massive MIMO System Availing Eagle-Crow Optimization-Based Scheduling Algorithm

Badr Eddine Soualah, Ali Chemsa, Riadh Ajgou

F	
151	

Aquila Based Adaptive Filtering for Hearing Aid with Optimized Performance

Ujjwala S Rawandale, Sanjay R. Ganorkar, Mahesh T. Kolte

Γ	2	
Ľ	_	
L	162	

Densenet121-DNN-Based Hybrid Approach for Advertisement Classification and User Identification

Satish Babu Thunuguntla, S Murugaanandam, R. Pitchai

Deadline and Cost Aware Dynamic Task Scheduling in Cloud Computing Based on Stackelberg Game

Ahmed R. Kadhim, Furkan Rabee

E	<u>–</u>
E	=
	189
-	_

Attention-based Sentence Extraction for Aspectbased Sentiment Analysis with Implicit Aspect Cases in Hotel Review Using Machine Learning Algorithm, Semantic Similarity, and BERT

Budi Harjo, Muljono, Rachmad Abdullah

Γ	<u> </u>
l	201

Dynamic Cost-Optimized Resources Management and Task Scheduling with Deadline Constraint for Mobile Crowd Sensing Environment

Abbas M. Ali Al-muqarm, Naseer Ali Hussien

Г	
L	
L	220
L	220

Robust Fixed Time Adaptive Terminal Sliding Mode Control of a QUAV Under Time Varying Disturbances and Payload

Yassine El Houm, Ahmed Abbou, Ali Agga

I	<u> </u>
I	
I	231

EMEMODL: Extensible Metadata Model for Big Data Lakes

Mohamed Cherradi, Anass El Haddadi

Γ	<u>=</u> 4
l	244

Attack-Leave Optimizer: A New Metaheuristic that Focuses on The Guided Search and Performs Random Search as Alternative

Purba Daru Kusuma, Faisal Candrasyah Hasibuan

Г	<u> </u>
L	
l	258

Rules Determination Based on Time-Series Data to Classify Unsupervised Cases Based on Fuzzy Expert System

Feby Artwodini Muqtadiroh, Tsuyoshi Usagawa, Riris Diana Rachmayanti, Supeno Mardi Susiki Nugroho, Eko Mulyanto Yuniarno, Mauridhi Hery Purnomo

I	1
I	
l	269

Intrusion Detection Using Pareto Optimality Based Grasshopper Optimization Algorithm with Stacked Autoencoder in Cloud and IoT Networks

Hymavathi Kanakadurga Bella, Vasundra Sanjeevulu

ſ	<u>4</u>
l	=
l	280

Compound Metric Assisted Trust Aware Routing for Internet of Things through Firefly Algorithm

Mohammad Osman, Kaleem Fatima, P. Naveen Kumar

Design of a Hybrid GWO CNN Model for Identification of Synthetic Images via Transfer Learning Process

Nupoor M. Yawale, Neeraj Sahu, Nikkoo N. Khalsa

<u>[</u> =4	
=	
302	

Aerial Images Enhancement Using Perceptual Dark Channel Prior

Nadia A. Khalaf, Hazim G. Daway, Baida M Ahmed

	_	_	_
3	1	0	
	3	31	310

Optimized One-Dimension Convolutional Neural Network for Seizure Classification from EEG Signal based on Whale Optimization Algorithm

Dwi Sunaryono, Joko Siswantoro, Agus Budi Raharjo, Rafif Ridho, Riyanarto Sarno, Shoffi Izza Sabilla, Rahadian Indarto Susilo

ſ	<u> </u>
l	
l	322
L	

Improvement of Perturb and Observe Based on Reinforcement Learning for Maximum Power Point Tracking Under Fast Changing Condition

Ernando Rizki Dalimunthe, Erwin Susanto, Kharisma Bani Adam

4	1
332	

Improved Artificial Bee Colony Based Feature Selection for Epileptic Seizure Detection

Hirald Dwaraka Praveena, Chennapalli Subhas, Kurukundu Rama Naidu

-
345

A Hybrid Sampling Approach for Improving the Classification of Imbalanced Data Using ROS and NCL Methods

Usman Ependi, Adian Fatchur Rochim, Adi Wibowo

٢	4
l	=
	362

Vehicles Communication and Connectivity Using Persistent Carrier Sensing Multiple Access Protocol

Mahmoud Zaki Iskandarani

378	

Optimal Integration of Multiple D-SVCs for Voltage Stability Enhancement in Radial Electrical Distribution System Using Adaptive Firefly Algorithm

P. Muthukumar, M. V. Ramesh, Ponnam Venkata Kishore Babu, P. Rohinikumar, S. V. Satyanarayana

Г	-2
L	<u> </u>
L	388
L	

Performance Analysis of LoRaWAN Class A and Class C in the Measurement of Nutrient Content Systems

Doan Perdana, Dini Annaiya Alfatikhah, Ibnu Alinursafa, Abdul Aziz Marwan

Hybrid Beamforming for Dual Functioning MIMO Radar Using Enhanced-Social Ski Drivers Algorithm

Vivek Kadam, Surendra Bhosale

_	_	1	1	Ì
_			1	l
1	1.	7		l
	<u>д</u> .	41	417	

Task Scheduling Based on Cost and Execution Time Using Ameliorate Grey Wolf Optimizer Algorithm in Cloud Computing

Manikandan Nanjappan, Pradeep Krishnadoss, Javid Ali, Gobalakrishnan Natesan, Balasundaram Ananthakrishnan

Г	-2
L	=
L	428

Application of Fractal Analysis based Feature Extractor for Channel Reduction of Silent Speech Interface Using Facial Electromyography

Asif Abdullah, Omkar S Powar, Krishnan Chemmangat

ſ	<u>4</u>
L	=
	440

Securing Signal Encryption Based on Reduced Round Homomorphic AES

Areej A. Ahmed, Magda M. Madboly, Shawkat K. Guirguis

ſ	
l	=
L	455

Online Financial Transactions in India: A Study of Its - Significance, Frauds and Security Models to Counter Frauds

Md. Irshad Hussain B., Mohamed Rafi

	1
470	

Enhanced Fuzzy Logic Pre-Processing Technique Using Hybridized Bat and Particle Swarm Optimization Algorithm for Feature Selection

C. Saranya Jothi, Carmel Mary Belinda

	<u> </u>
l	102
I	482

Extended Stochastic Coati Optimizer

Purba Daru Kusuma, Ashri Dinimaharawati

٢	<u>4</u>
L	
L	495

Publishing and Querying of Spatiotemporal Agriculture Production Data Warehouse on Semantic Web Using QB4MobOLAP

Irya Wisnubhadra, Safiza Suhana Kamal Baharin, Nurul A. Emran, Djoko Budiyanto SHR

=	
509	

Multi Objective Energy Based Improved Jellyfish Swarm Optimization for Effective Cluster Head Discovery in UWSN

Seema Swamy Gowda, Ambika Ramalingappa

I	<u>–</u>
I	=
I	519

Scheduling of Jobs Allocation for Apache Spark Using Kubernetes for Efficient Execution of Big Data Application

Jayanthi M, K. Ram Mohan Rao

ſ	<u>–</u>
l	=
l	532

A Secure and Energy Efficient Cluster Based Routing Using Energy and Trust Aware - Multi Objective African Vultures Optimization for MANET

Shalini Sharma, Syed Zeeshan Hussain

FΞ
542

"Guess Why I didn't rate it": A New Preference-based Model for Enhanced Top-K Recommendation

Nouhaila Idrissi, Ahmed Zellou, Zohra Bakkoury

	-4
l	—
l	552

Idiosyncratic Fuzzy Low-Energy Adaptive Clustering Hierarchy

R. Sridevi, V. Sinthu Janita Prakash

Г	=
L	=
l	565
L	

Segmentation of COVID-19 Chest CT Images Based on SwishUnet

Akhmad Irsyad, Handayani Tjandrasa, Shintami Chusnul Hidayati

	L
579	

Optimized Farming: Crop Recommendation System Using Predictive Analytics

Meeradevi, Monica R. Mundada

593	

IoT Content Cache Efficacy in Health Care Data Diagnostics Using Isotonic Regressive Adaptive Boost Classification

R. Sangeetha, T. N. Ravi

ſ	-4
l	=
l	604

Effective Feature Selection Using Multi-Objective Improved Ant Colony Optimization for Breast Cancer Classification

Nelli Sreevidya, Penamakuru Siva Jyothi, Gaddam Sumalatha, Shanthi Pannala

	=4
l	<u> </u>
I	614

A Hybrid Algorithm For Enhancement of the Data Security during Network Transmission Based on RSA and DH

Omar Salah, Ahmed El-Sawy, Mohamed Taha

	4
I	6.25
1	625

Sinusoidal Regression Modelling of Vehicular Data Communication Employing NP-CSMA

Mahmoud Zaki Iskandarani

6/1	FΞ	
	641	

Retinal Vasculature Segmentation Based on Morphology and Pixel Level Classification

Azra Fatima, E. Kiran Kumar

ſ	
I	=
l	654

Advanced Nonlinear Robust Approach for Controlling COVID-19 System Based on Vaccination Campaign

Ali H. Mhmood, Hazem I. Ali, Amer B. Rakan, Mohammed R. Subhi, Yaseen Kh. Yaseen, Hameed A. Mohammed

٢	<u>_</u>
l	
l	667

A Novel Skin and Mole Pattern Identification Using Deep Residual Pooling Network (DRPN)

Rohan Don Salins, G Ananth Prabhu, Jason Elroy Martis, Sannidhan M S

ſ	-2
l	=
l	677

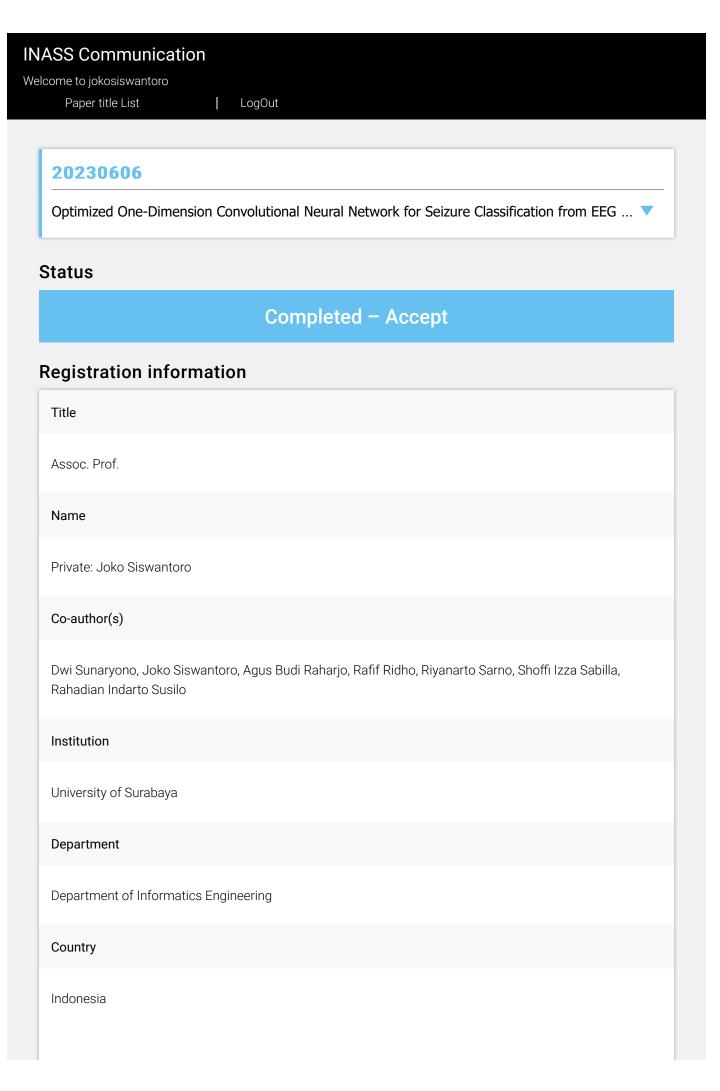
Multiple Resource Attributes and Conditional Logic Assisted Task Scheduling in Cloud Computing

Karnam Sreenu, Sreelatha Malempati

E	-2
E	
	691

Optimal Deep Learning Based Atherosclerotic Plaque Classification on Intravascular Ultrasound Images

Nisha K. Prajapati, Amit V. Patel


Γ	
L	=
L	709

Optimizing Image Rectangular Boundaries with Precision: A Genetic Algorithm-Based Approach with Deep Stitching

Muntasser A. Wahsh, Zainab M. Hussain

	X				
google serach				at 2	A T
		Search inas	Q		

ZipCode	
60293	
Address	
Jl. Kali Rungkut, Surabaya	
E-mail	
joko_siswantoro@staff.ubaya.ac.id	

Paper information

Paper No.
20230606
Paper Title
Optimized One-Dimension Convolutional Neural Network for Seizure Classification from EEG Signal based on Whale Optimization Algorithm
Submit date
n/a
Release date
2023/06/30

File

Please upload both "Manuscripts (in MS-Word)" and "Cover letter".

upload

Upload01

Comment history

INASS

Dear Author(s),

Thank you for your confirmation. You finished all processes. Appreciate your patiently wait.

Congratulations!

Best regards, IJIES Editors: ijies@inass.org ----- Please download the early access version: 2023063025

Comment Date 2023/4/22/ 12:58:40

INASS

We know.

https://inass.org/wp-content/uploads/2023/02/2023063025-1.pdf. The broken layout due to the problem of PDF converter.

https://inass.org/wp-content/uploads/2023/02/2023063025-2.pdf. This is the improved version.

Thank you.

Comment Date 2023/4/20/ 15:32:13

INASS

Dear Author(s),

We'd like to submit the final version of your paper: 2023063025 Thank you

Best regards, IJIES Editors

Comment Date 2023/4/20/ 09:02:48

INASS

Dear Author(s),

Thank you for your confirmation. You finished all processes. On 30/4/2023 (tentative), your paper will appear on the IJIES website: https://inass.org/publications/pub-contents/ Appreciate your patiently wait.

Congratulations!

Best regards, IJIES Editors: ijies@inass.org ----- Please download the early access version: 2023063025

Comment Date 2023/4/17/ 17:17:06

INASS

Dear author(s),

Thank you for your interest and support to IJIES. I'd like to send the camera-ready version of your final manuscript. (Note: To prevent illegal revision, the MS-Word file of the camera-ready version is not provided.) Please check and confirm the attached file, and send the check result within TWO days. *** Please indicate revised points clearly by coloring fonts in the attached PDF file. *** If you cannot edit the PDF file, please indicate the revised points in your MS-Word file and submit it.

Note:

The camera-ready process is only one time. To avoid illegal revision, only small revision is permitted.

If you have any question, please contact us with your paper ID.

Best regards, IJIES Editors: ijies@inass.org ----- Please download the camera-ready version: 2023063025

Comment Date 2023/4/16/ 14:56:48

INASS

Dear Author(s),

It is our great pleasure to inform you that the submitted paper, for which you are listed as the corresponding author, has been accepted for the IJIES journal. Congratulations!

The camera-ready version of your paper will be sent to you later. Appreciate your patiently wait.

Best regards,

IJIES Editors.

----- Please download the attached files: (20230606) Acceptance Letter, (20230606) Receipt

Comment Date 2023/3/23/ 09:30:02

INASS

Dear Author(s),

It is our great pleasure to inform you that the submitted paper, for which you are listed as the corresponding author, has been accepted for the 2nd review of the IJIES journal. Congratulations!

*Important:

Please send your "signed" copyright and the payment proof of your publishing fee within one month.

Otherwise, your paper will be withdrawn. The payment method will be sent from Paypal. (Please check your mailbox carefully.) Copyright form: https://inass.org/publications/pub-docusubmission/

*Publication fee USD430: Tentative 13 pages (USD280 + USD50*3)

After we received these documents, the camera-ready version of your paper will be sent to you later. After your confirmation, the acceptance letter and receipt will be sent to you.

Best regards, IJIES Editors: ijies@inass.org

Comment Date 2023/3/16/ 17:55:09

INASS

Dear author(s),

Thank you for your interest and support to IJIES. We received your revised version. It has been sent for reviewing. Rapid Publication: The notification will be feedback within two weeks. Regular Publication: The notification will be feedback within one month. Appreciate your patiently wait.

If you have any question, please contact us with your paper ID.

Best regards, IJIES Editors: ijies@inass.org

Comment Date 2023/3/12/ 17:09:24

Joko Siswantoro

March 12, 2023

Dear Editor-in-Chief of The Intelligent Network and Systems Society

Please find attached a detailed point-by-point response to Reviewer's and Editor's comments

On behalf of all authors, Best regards, Dr. Joko Siswantoro University of Surabaya Surabaya, Indonesia Email: joko_siswantoro@staff.ubaya.ac.id

Attachd File: Respond-to-reviewer-comments-Paper-ID-20230606.docx

Comment Date 2023/3/12/ 13:48:52

Joko Siswantoro

March 12, 2023

Dear Editor-in-Chief of The Intelligent Network and Systems Society

Thank you for reviewing our manuscript with paper ID 20230606 entitled "Optimized One-Dimension Convolutional Neural Network for Seizure Classification from EEG Signal Based on Whale Optimization Algorithm." We also greatly appreciate the reviewers for their complimentary comments and suggestions. Those comments are very valuable and beneficial for revising and improving the quality of our paper but are also essentially significant to our future research. We have carefully studied the comments and made the revision, which we hope will meet with your approval. All revisions are written in red font and highlighted in yellow.

Please find the revised manuscript in the attachment. We hope that you find our responses satisfactory and the manuscript is now acceptable for publication.

On behalf of all authors, Best regards,

Dr. Joko Siswantoro University of Surabaya Surabaya, Indonesia Email: joko_siswantoro@staff.ubaya.ac.id

Attachd File: WOA_IJIES_Manuscript_Revised_05022023.docx

Comment Date 2023/3/12/ 13:47:00

INASS

Dear author(s),

Congratulations!

The 1st review for your paper was accepted.

However, we are sorry to inform you that your paper cannot be recommended for publication in IJIES, in its current form.

Please revise your paper according to the attached reviewers' comments.

Please note that if your paper is still not satisfactorily revised or cannot be returned to us within TWO months from the date of this letter, your paper will not be recommended to the journal above. Thanks for your understanding and cooperation.

Kind Regards, IJIES Editors: ijies@inass.org -----Please download the review result: 20230606

Comment Date 2023/2/27/ 16:03:40

INASS

Dear author(s),

Thank you for your interest and support to IJIES. I am hereby to confirm the delivery of your paper. It has been sent for reviewing. Rapid Publication: The notification will be feedback within two weeks. Regular Publication: The notification will be feedback within one month. Appreciate your patiently wait.

If you have any question, please contact us with your paper ID.

Best regards, IJIES Editors: ijies@inass.org

Comment Date 2023/2/21/ 16:14:35

Joko Siswantoro

February 21, 2023

Dear Editor-in-Chief IJIES

We wish to resubmit an original research article entitled "Optimized One-Dimensional Convolutional Neural Network for Seizure Classification from EEG Signal Based on Whale Optimization Algorithm. The article had previously been submitted to IJIES with paper ID 20221824. At that time, the article had undergone two rounds of review, and in the second round, there were minor revisions requested by the third reviewer. However, when we were about to submit the revised version, we found out that the status had already been changed to rejected. Therefore, we intend to resubmit the article that we have revised according to the reviewer's suggestions. We also include our response to the comments from the second round of review.

Thank you.

On behalf of all authors, Best regards,

Dr. Joko Siswantoro University of Surabaya Surabaya, East Java, Indonesia Email: joko_siswantoro@staff.ubaya.ac.id

Attachd File: 20221824-2nd xx.docx

Comment Date 2023/2/21/ 13:16:44

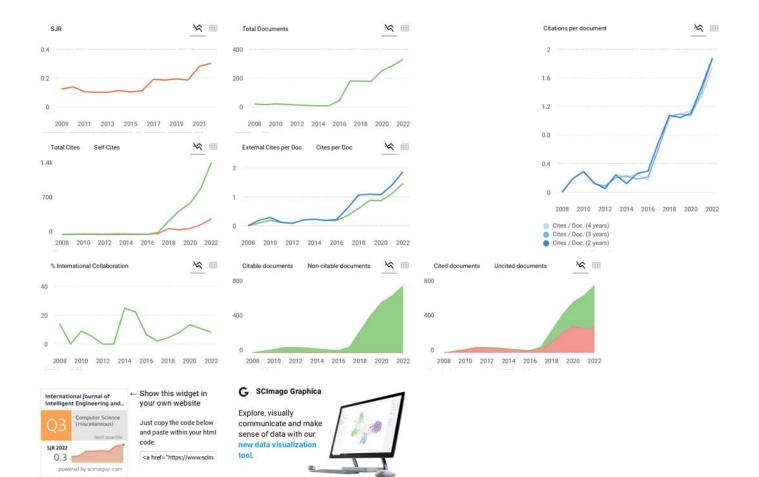
Copyright@2008 The Intelligent Networks and Systems Society

Home Journal Rankings Country Rankings Viz Tools Help About Us

Enter Journal Title, ISSN or Publisher Name

International Journal of Intelligent Engineering and Systems

COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
Japan Universities and research institutions in Japan Media Ranking in Japan	Computer Science Computer Science (miscellaneous) Engineering Engineering (miscellaneous)	Intelligent Networks and Systems Society	24
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	21853118, 2185310X	2008-2022	Homepage
			How to publish in this journal
			ijies@inass.org


SCOPE

International Journal of Intelligent Engineering and Systems is an OPEN ACCESS international journal which gains a foothold in Asia and opens to the world. It aims to promote the integration of intelligent engineering and systems. The focus is to publish papers on state-of-the-art intelligent computing, network engineering, electrical/electronics engineering, and industrial engineering and systems, with emphasis on novel technologies, theoretical work and engineering applications. The audience includes researchers, managers and operators for intelligent engineering and systems as well as designers and developers.

 $\ensuremath{\bigcirc}$ Join the conversation about this journal

₹_ Quartiles

i	FIND SIMILAR JOURNALS				options	:
<	1 Journal of King Saud University - Computer and SAU	2 Computers and Electrical Engineering GBR	3 International Journal of Computers and Applications GBR	4 Applied Computing and Informatics SAU	5 International Journal of Advanced Computer Science GBR	>
	53% similarity	50% similarity	49% similarity	46% similarity	46% similarity	

Metrics based on Scopus® data as of April 2023

S SHASHIKALA S 2 months ago

Dear Editor,

IJIES scopus coverage is till 2023 only .

And i checked in SCOPUS List also its till Dec 2023.

As i am publishing this for my Phd work

Is this journal will continue in scopus or as mentioned in the SCOPUS r they discontinue after 2023. Please guide to proceed further for publication in this journal.

reply

Melanie Ortiz 2 months ago

SCImago Team

Dear Shashikala,

Thank you very much for your comment.

We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day.

The Scopus' update list can also be consulted here:

https://www.elsevier.com/solutions/scopus/how-scopus-works/content

For further information, please contact Scopus support team here: https://

service.elsevier.com/app/answers/detail/a_id/14883/kw/scimago/supporthub/scopus/ Best Regards, SCImago Team Dear SCImagoTeam, Can you give me some information about the IF of this journal? Thanks.

reply

Y Yogesh Kirange 6 months ago

On Scopus.com, it shows coverage from 2008 to present but here on scimago it shows coverage from 2008 to 2022. Which one is correct?

Melanie Ortiz 6 months ago

SCImago Team

Dear Yogesh,

Thank you for contacting us. SCImago is updated only once a year (latest update May 2023), after receiving the Scopusiannual update.

For this reason, we always recommend to consult the Scopus database directly to see the current index status of a journal. In addition, you can check the updated Scopus journals list released regularly by

Elsevier by checking the link below:

https://www.elsevier.com/solutions/scopus/how-scopus-works/content

Best Regards, SCImago Team

J

Melanie Ortiz 7 months ago

SCImago Team

SCImago Team

Dear Truong, thank you very much for your comment. SCImago Journal and Country Rank uses Scopus data, our impact indicator is the SJR (Check it on our website). We suggest you consult the Journal Citation Report for other indicators (like Impact Factor) with a Web of Science data source. Best Regards, SCImago Team

Jack 8 months ago

Dear SCImagoTeam,

Just want to ask, is it a different way to compute the quartile between ScimagoJR.com and Scopus.com? For example, for this journal, the International Journal of Intelligent Engineering and Systems is listed as the second quartile in Scopus.com. But with the same SJR, it has a Q3 badge on Scimagojr.com.

Thank you and regards

reply

Melanie Ortiz 8 months ago

Dear Jack, Thank you for contacting us. As you probably already know, our data come from Scopus, they annually send us an update of the data. This update is sent to us around April / May every year. The calculation of the indicators is performed with the copy of the Scopus database provided to us annually. However, the methodology used concerning the distribution of Quartiles by Scopus is different from the one used by SCImago. For every journal, the annual value of the SJR is integrated into the distribution of SJR values of all the subject categories to which the journal belongs. There are more than 300 subject categories. The position of each journal is different in any category and depends

on the performance of the category, in general, and the journal, in particular. The distribution by Quartiles cannot be considered over the journals' total amount within a Category. In the case of SCImago, the distribution has to be considered with the formula Highest-SJR minus Lowest-SJR divided into four. Best Regards,

SCImago Team

S Satish 1 year ago

is this journal still (January 2023) Scopus indexed?

reply

Melanie Ortiz 1 year ago

SCImago Team

Dear Satish, Thank you very much for your comment. All the metadata have been provided by Scopus /Elsevier in their last update sent to SCImago, including the Coverage's period data. The SJR for 2021 was released on 11 May 2022. We suggest you consult the Scopus database directly to see the current index status as SJR is a static image of Scopus, which is changing every day. The Scopus' update list can also be consulted here: https://www.elsevier.com/solutions/scopus/how-scopus-works/content Best Regards, SCImago Team

```
Aws Alkhazraji 1 year ago
А
```

Dear Editor in date 2022 octuber What is the current journal Rank as it appears in Scopus 53rd percentile

Thank you

reply

Melanie Ortiz 1 year ago

SCImago Team

Dear Aws,

Thank you for contacting us. Our data come from Scopus, they annually send us an update of the data. This update is sent to us around April / May every year. The SJR for 2021 was released on 11 May 2022. Therefore, the indicators for 2022 will be available in May/June 2023 and before that date we can't know what will happen with this journal. Best Regards, SCImago Team

S Shdotcom 2 years ago

Dear Editor,

What is the percentile range of Q2, is it 50th-74th or 51st-75th?

Thank you

reply

Melanie Ortiz 2 years ago

SCImago Team

Thank you for contacting us. The distribution by Quartiles cannot be considered over the journals' total amount within a Category. In the case of SCImago, the distribution has to be considered with the formula Highest-SJR minus Lowest-SJR divided into four. Best Regards, SCImago Team

Y Yashaswini DK 2 years ago

From when journal IJIES is dropped fromQ2to Q3

Melanie Ortiz 2 years ago

reply

SCImago Team

Dear Yashaswini , thank you very much for your comment. The SJR for 2020 has been released on 17 May 2021. Each year, Scopus provides us an update of their database and, according to that information, the scientometric indicators are calculated. The annual data's update can change the journal's quartile. Best Regards, SCImago Team

Ali 2 years ago Α

Dear SCImago team,

I need to reuse some parts of the published articles by your journal in a book that I am intending to write. I need a permission of the copyright holder to do so, all parts will be cited and referred to in the book. Could you please advise or help to resolve such issue? Kindest regards Ali

reply

SCImago Team

Dear Ali, Thank you for contacting us. We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. We suggest you contact the journal's editorial staff , so they could inform you more deeply. Best Regards, SCImago Team

```
M Mohamed 2 years ago
```

Please I want to know the date that the rank of this journal was changed from Q2 to Q3

reply

Melanie Ortiz 2 years ago

SCImago Team

Dear Mohamed, Thank you for contacting us. Our data come from Scopus, they annually send us an update of the data. This update is sent to us around April / May every year. The SJR for 2020 was released on 17 May 2021. Best Regards, SCImago Team

| IJIES Editor 3 years ago

Dear Melanie Ortiz

The website of the International Journal of Intelligent Engineering and Systems (IJIES) has been updated as follows:

Homepage:	
https://inass.org/	

How to publish in this journal: https://inass.org/publications/pub-submissionguidelines/

Tł	nank	you

reply

Melanie Ortiz 3 years ago

SCImago Team

Dear Sir/Madam, thanks for your participation! Best Regards, SCImago Team

- D donya 3 years ago
 - Dear Editor .. In 2021 . 7 in which Q , International journal of intelligent Engineering and system ??

Best Regards

reply

SCImago Team

Dear Donya, thank you very much for your request. You can consult that information just above. Best Regards, SCImago Team

U umasankar 3 years ago

whether the paper may be indexed by the scopus from this journal (LJIES) what is the procedure for indexing the paper in each and every journal. why because some papers only indexed in each and every journal what is the reason can you explain please

reply

Melanie Ortiz 3 years ago

SCImago Team

Dear Umasankar,

thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you contact Scopus support: https://service.elsevier.com/app/ answers/detail/a_id/14883/kw/scimago/supporthub/scopus/ Best Regards, SCImago Team

A ahmed 3 years ago

The journal was classified as Q2 now it is Q3, Why is this drop ? what are the metrics for this classification? what is the frequany of updating the data and ranking of the journals in scimagojr website ? Thanks

reply

SCImago Team

Dear Ahmed, thank you very much for your comment. The SJR for 2020 has been released on 17 May 2021. Each year, Scopus provides us an update of their database and, according to that information, the scientometric indicators are calculated. The annual data's update can change the journal's quartile. The SJR indicator is a very sophisticated indicator. To know more about it, click here: https://www.scimagojr.com/files/SJR2.pdf

Best Regards, SCImago Team

Melanie Ortiz 3 years ago

N Neetu Manocha 3 years ago

Respected Sir

I m a Ph.D. Research scholar. I want to publish my research paper in your journal. Please tell me that how much time will take to publish my research paper. Because my presubmission is dependent on only acceptance of my research paper.

reply

SCImago Team

Dear Neetu, thank you for contacting us. We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage (See submission/author guidelines) or contact the journal's editorial staff , so they could inform you more deeply. Best Regards, SCImago Team

K kanaan A. Jalal 4 years ago

Dear Editor, I would like to ask about the accepted permissiable percentage of plagiarism in your respected journal. best regards Kanaan

22466533970

reply

SCImago Team

thank you for contacting us. We are sorry to tell you that SCImago Journal & Country Rank is not a journal. SJR is a portal with scientometric indicators of journals indexed in Elsevier/Scopus. Unfortunately, we cannot help you with your request, we suggest you visit the journal's homepage or contact the journal's editorial staff, so they could inform you more deeply. Best Regards, SCImago Team

M Maral A. Mustafa 4 years ago

Dear Editor

I hope this message finds you well.

I want to publish my research article in your respectable journal but my problem is the payment way, in my country there is no pay pal (credit card).please help me to pay the publication fee by

Rest	regards.	
Dest	n gu us,	
Mara	I A. Mustafe	
raq		
	eply	
		32 2
AND .	Melanie Ortiz 4 years ago	SCImago Tea
3	Dear Maral,	
	thank you for contacting us.	
	We are sorry to tell you that SCImago Journal & Country Rank is not a	journal. SJR is a
	portal with scientometric indicators of journals indexed in Elsevier/Sc	
	Unfortunately, we cannot help you with your request, we suggest you t	to contact the
	journal's editorial staff , so they could inform you more deeply.	
	Best Regards, SCImago Team	

good morning can i know the impact factor of this journal ? thank you

reply

D

Melanie Ortiz 4 years ago

SCImago Team

SCImago Team

Dear user, SCImago Journal and Country Rank uses Scopus data, our impact indicator is the SJR. Check our web to locate the journal. We suggest you to consult the Journal Citation Report for other indicators (like Impact Factor) with a Web of Science data source. Best Regards, SCImago Team

D Dr. A. Ragavendiran 5 years ago

Dear Editor I want to publish my research article in your respectable journal but there is no author instruction

and submission page.

reply

D Doaa Abdullah 5 years ago

Dear Editor,

I hope this message finds you well.

I want to publish my research article in your respectable journal but I have a problem of lack of time for my master thesis.

Could you please tell me how long does it usually take to be reviewed? And is there is any way to squeeze the required reviewing time?

Best regards, Doaa

reply

Elena Corera 5 years ago

Dear Doaa Abdullah,

thank you very much for your comment, unfortunately we cannot help you with your request. We suggest you check author's instructions in journal website. You can find that information in SJR website https://www.scimagojr.com

Best Regards, SCImago Team M Mostafa 6 years ago

Dear Editor I have a problem with lack of time. because I need to accept the paper for doctoral thesis defense and my time is limited to one and half month. I have a shortage of time to accept the paper. How long does your jury review an article? How long will your journal accept an article? Is it possible to review my article as soon as possible? thank you.

reply

C chan.chung.lee@gmail.com 5 years ago

I can help you contact me for publication

Leave a comment

Name

Email (will not be published)

Submit

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Source details

International Journal of Intelligent Engineering and Systems	CiteScore 2022 2.5	0
Scopus coverage years: from 2008 to Present		
Publisher: Intelligent Networks and Systems Society		
ISSN: 2185-310X E-ISSN: 2185-3118	SJR 2022 0.303	(i)
Subject area: (Engineering: General Engineering) (Computer Science: General Computer Science)	0.505	
Source type: Journal		
View all documents > Set document alert Save to source list	SNIP 2022 0.573	0

CiteScoreTracker 2023 ①

Last updated on 05 February, 2024 • Updated monthly

3.0 =

3,651 Citations to date

1,230 Documents to date

CiteScore CiteScore rank & trend Scopus content coverage

CiteScore 2022 ~

CiteScore rank 2022 ①

Category	Rank	Percentile
Engineering — General Engineering	#131/302	56th
Computer Science General Computer Science	#117/233	50th

View CiteScore methodology > CiteScore FAQ > Add CiteScore to your site &

Q

About Scopus

- What is Scopus
- Content coverage
- Scopus blog
- Scopus API
- Privacy matters

Language

日本語版を表示**する** 查看简体中文版本 查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help Tutorials Contact us

ELSEVIER

Terms and conditions iangle Privacy policy in a strength policy in the second strength policy is the second strength policy of the second strength policy is the second strengt policy is the second strengt policy is

All content on this site: Copyright © 2024 Elsevier B.V. \exists , its licensors, and contributors. All rights are reserved, including those for text and data mining, Al training, and similar technologies. For all open access content, the Creative Commons licensing terms apply. We use cookies to help provide and enhance our service and tailor content.By continuing, you agree to the use of cookies \exists .