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Abstract 

 

A honeypot is a tool or system used to record, redirect, and even lure hackers into penetrating and exploiting a system. The 

increasing development of technology causes cyber hackers to realize the existence of honeypots using various other software 

and tools. So, honeypots need a way to learn how hackers behave. The idea proposed is to combine honeypots with 

reinforcement learning algorithms so that honeypots become adaptive honeypots. This study suggests the concept by 

comparing the two Q learning-based RL algorithms, namely DQN and DDQN, to reach which algorithm is more optimal. The 

study results showed that the DDQN algorithm is more optimal in determining actions when compared to the DQN algorithm 

because using a double Q-value can help determine the action more accurately. Based on the result, the DDQN algorithm 

consumed less memory than the DQN Honeypot. The learning rate curve and the processing of DDQN algorithm commands 

can be used as an alternative algorithm that can be combined with honeypots because of the learning rate, which can make 

honeypots faster in the dynamic environment. 
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I. INTRODUCTION 

The development of technology has also led to an increase 

in the threat of cybercrime. One way to deal with cybercrime 

is to implement a honeypot as an intrusion detection system. 

A Honeypot is a tool for luring the attacker to observe and 

analyze their method [1]. Honeypots can be used as intrusion 

detection systems to monitor and respond to computer abuse. 

A Honeypot is a Network Intrusion Detection System that 

detects and writes attackers’ activity or counterattack [2]. 

Traditionally, a honeypot has been used to capture and 

study malware activities for a long time. The Server-side 

honeypots are designed to intercept assaults and gather 

malicious requests and malware by mimicking software or 

services susceptible to compromise. This facilitates the 

development of intrusion detection systems, understanding 

network and web attacks, and stopping spam emails.[3]. 

However, as technology advances and attackers become 

more sophisticated, new problems have arisen; many 

attackers know how to detect the honeypot and how to evade 

it. Many honeypots spread worldwide and are statically 

configured, which means they do not see the change in 

attacker behavior [4]. New methods are needed to combat this 

issue. One of the ideas is the making of an adaptive honeypot. 

The idea proposed by researchers is how to make a honeypot 

that can learn and interact with attacker behavior [5], which 

allows for more extended interactions between the attacker 

and the honeypot. 

Researchers combine the honeypot with a reinforcement 

learning algorithm to make a honeypot that can learn from the 

attacker’s behavior. Despite being both supervised and 

unsupervised, reinforcement learning (RL) is one area of 

machine learning. This algorithm is used to interact with the 

dynamic situation. In cyber security, RL is used to construct 

the attack mitigation scheme [6]. Sethi et al. [7] define the 

components of the RL algorithm as agent, reward, state, 

action, policy, and value.   

Many studies related to adaptive honeypots, some of 

which are as follows. Pauna and Bica [8] merged the SSH 

Honeypot Kippo and RL algorithm to create RASSH, which 

used the SARSA algorithm with the Markov decision process 

and developed it using the Pybrain library. The research 

continued by Pauna et al. [9] when they merged the Cowrie 

Honeypot with the DQN Algorithm to create QRASSH. To 

prevent attackers from using the honeypot detection tools, 

Suratkar et al. [10] joined the Cowrie honeypot with the DQN 

Algorithm so it could decoy the honeypot detection tools that 

attackers use.  

As stated above, the contribution of these papers is as 

follows: 
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- To determine the performance of the RL Algorithm used 

in adaptive honeypots, especially the learning rate, in this 

research, researchers compare DQN and DDQN 

algorithms. 

- To examine the DDQN algorithm performance when 

merged with the honeypot. 

- Add more measurement metrics for deeper analysis, like 

the impact of environment hardware specification on 

adaptive honeypot. 

The structure of the remaining papers is as follows: 

Section I will present the background of the research, section 

II explain the literature review, and Section III discuss the 

related works used in this research. Section IV will describe 

the system architecture used in the study, Section V discuss 

the experimental results, and Section VI discuss the 

conclusion and future works.  

 

 

II. LITERATURE SURVEY 

a. Honeypot 

Dowling et al. [11], in these articles, state that honeypots 

were first introduced in 1993, have evolved, and are now 

used to match the emerging threat. Touch & Colin [12] state 

that a honeypot is a system used to decoy and trap attackers 

when they enter the system. Based on the level of 

interaction, Zemene and Avadhani [13] categorized 

honeypot as follows : 

- Low-level interaction honeypot 

Honeypots that simulate a single service from a real 

server are low-level interaction honeypots. For example: 

Kippo, Cowrie. 

- High-level interaction honeypot 

Honeypots, such as Honeynet, need a complete system to 

operate as a server. 

The primary objective of honeypot deployment is to trace 

the infection process, detect malware, and inspect the entire 

picture of botnet activities from the viewpoint of infected 

hosts [14]. Honeypots play a crucial role in capturing and 

analyzing malware and malicious activity. The honeypot 

collects information, including IP addresses, commands 

entered into the system, and timestamps [5].  

Honeypots are used for many cybersecurity purposes, 

such as classifying SSH bruteforce attacks using machine 

learning [15]. This research used the Kippo honeypot to deal 

with brute force attacks and then used machine learning 

classification from the honeypot log to find the best 

classification techniques. 

Bellekens et al. [16] explain that honeypots and other 

interactive defenses are frequently built on actual or 

virtualized systems that record harmful users' inquiries and 

interactions. Although honeypots help spot and thwart 

cyberattacks, their deceitful function is commonly 

overlooked. 
 

b. Cowrie 

Cowrie is a honeypot that lies between SSH and the telnet 

band. It is specifically developed for recording brute-force 

attacks and the shell interaction performed by the adversary. 

When in high interaction mode (proxy), it acts as an SSH and 

telnet proxy to watch attacker activity on another system. In 

medium interaction mode (shell), it simulates a UNIX system 

in Python [17]. 

The development of cowrie uses the Kippo honeypot as 

the base structure and feature. The purpose of Kippo is to 

capture enemy shell interactions and brute force attacks. With 

Kippo, one can create and remove files using a fictitious file 

system that resembles Debian Linux.  

As mentioned before, there is much research conducted 

about honeypots because, with the growth of cyber-attacks, 

many attackers can detect honeypot presence using specific 

tools. In the below section, we will discuss the adaptive 

honeypot, one of the main topics in this article. 

 

c. Adaptive Honeypot 

Shi et al. [14] discuss in this research that the globally 

distributed honeypots are statically configured. Dowling et al. 

[11] also mentioned that as soon as malware developers 

learned about honeypots, they began recording and 

examining assault activities. To overcome and solve this 

problem, researchers proposed the concept of an adaptive 

honeypot, a honeypot that can learn from adversaries and 

amend their actions based on reinforcement learning [4].   

The other research about an adaptive honeypot is to make 

honeypots more aggressive when dealing with attackers. 

Djanali et al. [18] conducted the aggressive honeypot to deal 

with XSS attacks and SQL Injection. The method that they 

proposed is a honeypot that can open the identity of the 

attacker when accessing the honeypot by sending the 

malicious code using likejacking techniques.  

Pauna and Bica [8] combined the Kippo Honeypot with 

SARSA Algorithm and named it RASSH, which it developed 

using the my brain library. The study of adaptive honeypots, 

continued by Pauna et al. [9], uses the RL algorithm Q 

Learning combined with Cowrie Honeypot to decide how to 

interact with attackers.  

Using an adaptive honeypot as a cyber defense tool is one 

of the exciting areas in cyber security. The combination of the 

honeypot and the machine learning algorithm is determined 

to achieve two different goals: to engage with the attacker and 

to guard against the risk of being compromised [19]. The 

other benefit of using an adaptive honeypot is that it can 

covert against widely used survey and honeypot detection 

tools [20]. 

 

d. Reinforcement Learning 

 Reinforcement Learning (RL) is a branch of machine 

learning despite supervised and unsupervised learning [21]. 

The components of RL, as mentioned by Gupta and Katarya 

[22], are: 

a. Agent: an agent is a system that does some action to 

obtain the reward. 

b. State: The action dictates the agent's current condition and 

any modifications. 

c. Action:  A behavior from the system. 

d. Environment: a place where the agent operates or moves. 
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e. Reward: Beneficial result of the agent's action 

f. Discount factor: it is a factor of the future reward 

calculated by the agent 

g. Penalty: The rules that the agent follows until the next 

stage. The policy is based on the user's current stage. 

The mathematical models from reinforcement learning 

can be described in formula 1 as follows : 

 

𝑉(𝑠) =  ∑ 𝛾𝑡
𝑡 (𝑆𝑡)                                               (1) 

 

Note: 

V(s) represent the function future reward from future states. 

𝛾𝑡 represents the discount factor. 

St represents the state. 

 Nowadays, RL algorithms are used in many aspects; 

despite being used in artificial intelligence, they are employed 

in cyber security. Deep Reinforcement Learning (DRL) in 

cyber security can solve complex and high-dimensional cyber 

defense problems [23]. Using the RL algorithm to determine 

how many honeypots are to be deployed to protect the actual 

entities, the result is that both Q-learning and epsilon greedy 

demonstrate the efficacy of both methods [24]. 

 

e. Q-learning 

Q-learning is one of the RL algorithms that is used in 

many aspects. This algorithm aims to calculate the state 

action value [9]. Suwannalai and Porpasert [25] state the 

purpose of this algorithm is to maximize the cumulative 

discounted reward of the Bellman formula 2 as follows: 

 

Q(St, At) = E[ 𝑅𝑡+1 + 1 +  γ𝑅𝑡+2 + γ2𝑅𝑡+3 + ⋯ + 

|St, At|I              (2) 

 

Where : 

α is a learning rate variable filled with parameter values 

between 0 and 1 and determines the speed of learning ability. 

γ is a discount factor filled with parameters between 0 and 1 

and determines how the future reward is used to replace the 

value of the Q-value. 

Q-Value / state-action value is a variable used to calculate 

the value of the pair of state and action, where this value will 

later be used to find the maximum value before determining 

the magnitude of the action. 

 Tageson [26] explains Q-learning uses a table to store the 

values of all actions for all states. In each iteration, the agent 

looks up the table's highest-valued action for a given state. 

Q-learning is a model-free approach that updates the Q-

values estimation based on the experience samples on each 

time step [27]. 
 

f. DQN 

DQN is a combination of Q-learning and neural networks. 

In the DQN algorithm, states are determined through input to 

the neural network, which calculates the Q value of all 

actions. This algorithm aims to select the maximum value 

that depends on the full reward [28]. The two critical 

parameters of the DQN algorithm are the Target network and 

Experience Replay. Suwannalai and Polpasert [25] explain 

that Experience Replay in DQN is a repetition of the previous 

process. 

Much research combines the DQN algorithm with 

cybersecurity tools like honeypot and IDS because the policy 

network is simple and fast, which is suitable for online 

learning and rapid responses in modern data networks with 

evolving environments, especially in cyber security [23], 

[29]. 

 

g. DDQN 

DDQN is an RL algorithm that is formed from the 

modification of DQN. The DDQN algorithm was first 

introduced by Van Hasselt [30]. He explained that the 

weakness of Q-learning is that calculating the  Q value can 

make a biased result because the overestimation leads to a 

limited value. The result value is not the optimal value. 

Therefore, as a further adaptation from the Q-Learn 

algorithm, two Q-val calculations aim to obtain maximum 

results in formula 3 as follows: 

 

𝑄∗(𝑠𝑡 , 𝑎𝑡) ≈ 𝑟𝑡 +  𝛾𝑄𝜃  (𝑠𝑡+1  ,𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜃′(𝑠𝑡+1, 𝑎′))     (3) 

 

Where: 

Q* is the Q Value of the Model 

Q’ is the Q Value of the Target Model. 

 In cyber security, many researchers also use this 

algorithm to combine it with IDS, and the result is the 

performance of this algorithm in IDS outperforms the other 

algorithms, especially in learning and performance [27].  

This research uses the DQN and DDQN algorithms from 

the previous section because the ability to handle temporal 

space and the simple policy network can be applied to 

determine the dynamic environment, especially in a honeypot 

environment.  

 

 

III. RELATED WORKS 

Much research about adaptive honeypots has been 

conducted; this section will discuss the related works in 

adaptive honeypots and similar studies about the research. As 

mentioned before, the concept of adaptive honeypot was 

proposed by researchers because the honeypots that are 

distributed around the world are statically configured, which 

requires prior knowledge about the attacker [4]. Shi et al. [14] 

conducted the model of a mimicry honeypot, which could 

perceive and adapt to the change of the network service and 

perform better camouflage. 

Pauna and Bica [8] developed the RASSH honeypot; they 

combined it with the SARSA Algorithm and can interact with 

the attacker. In 2018, Pauna et al. introduced the QRASSH, 

which is the combination of SSH Honeypot Cowrie with RL 

Algorithm Deep Q Network; the result of the research is an 

adaptive honeypot that can decide how to interact with the 

attacker. Dowling et al. [10] use reinforcement learning to 

conceal the honeypot's ability, and from the research, 

deploying adaptive honeypots can make prolonged 
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interaction. It can cause the honeypot's presence undetected 

by the attacker. 

Deploying an adaptive honeypot can help predict future 

attack patterns because the adaptive honeypot interaction can 

create a more realistic interaction with the attacker [28]. 

Suratkar et al. [9] state that deploying adaptive honeypots, 

with some severity analysis, can help deal with honeypot 

detection tools. Marco et al. [31] discuss using the Q network 

algorithm and compare it with the unmodified honeypot; the 

result is the interaction time from the adaptive honeypot is 

longer than the nonadaptive honeypot. 

The honeypot is one of the most common approaches to 

protecting the network against attacks, such as MITM (Man 

in the Middle) and DDOS attacks [32]. Their work suggests a 

Markov Decision Process (MDP) known as the state-action-

reward-state-action (SARSA) for honeypot design. Compared 

to conventional IDSs, the suggested system that uses 

environmental trials can achieve higher accuracy and faster 

convergence. 

 

 

IV. SYSTEM ARCHITECTURE 

This section will discuss the system architecture used in 

this research. This section will discuss the honeypot structure, 

the RL module, the honeypot installation, and the 

measurement of the RL Algorithm used in this research. 

 

a. Honeypot Architecture 

The honeypot that is used in this research is a Cowrie-

based honeypot. In Cowrie source code, an Action Module 

has been implemented to allow console interaction with the 

attacker. The adaptive honeypot has been deployed and 

implemented in Alibaba Cloud's simple application server.  

The honeypot's structure is determined using the 

QRASSH base honeypot model [9]. It uses Q-learning to 

increase the interaction between the honeypot and the 

attacker. In this honeypot, the action module determines what 

action to take using the Q learning calculation. The actions 

implemented in this research are as follows: 

- Allow: permit the command 

- Block: block the execution of Linux command in a 

console 

- Delay: delay the execution of Linux commands in a 

console 

- Fake: change the output of the command by substituting 

the command. 

- Insult: it modifies the command output by showing the 

insult message in a language according to the IP address. 

The explanation of the workflow from Figure 1 can be 

described as follows. After the honeypot is started, it 

receives commands that an attacker inputs; after that, the RL 

module will determine the action based on the RL algorithm 

injected in the honeypot system; if the blocked action has 

been chosen, the system will be stopped. In the RL module, 

the process of the Q learning calculation is determined in the 

module. 

From Figure 1, the process of the Q-learning algorithm 

can explained as follows. For Step 1, initialize the Q value 

before receiving the input. After obtaining the input, the next 

step is to choose an action based on the Q calculation. After 

the action has been selected, the next step is to measure the 

reward R, and the final step is to update the Q values and go 

back to step 2 again.  The process of the Q-learning 

algorithm is the same as the process in the research from 

Pauna et al. [9]. 

 

 
Figure 1. Adaptive Honeypot Diagram 

 

Reinforcement learning is employed here to determine 

the best answer to every command to prevent the attacker 

from ending the session. Initially, The honeypot will respond 

unpredictably (epsilon-greedy), and when more assaults 

occur, it will discover the ideal values to Complete the Q-

table and act based on the results. 

 

b. Honeypot Analysis 

Because of the RL Algorithm, this research will not use 

labeled class and ground truth for the honeypot analysis. In 

this research, the analysis that we measured as follows: 

Total command executed by an attacker, Learning rate of 

the RL Algorithm, and Command mapping: the simulation of 

the attack that adaptive honeypot can handle. 
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In this research, the attacker command will categorised as 

follows:  

- Checkconf: Command used to check configuration to the 

system (whoami, ps, uptime, top, ifconfig, name, history, 

id) 

- Download: Command used to download the remote files 

(wget, FTP, curl) 

- Install: Command used to install the new software (tar, 

unzip, cp, mkdir, chmod, mv) 

- Changeconf: Command used to change the configuration 

of the system (kill, useradd, nano, sshd, userdell, vim) 

- Passwd: Command used to modify the password of the 

user (passwd) 

- Run: Command used to run a program (./). 

 

c. Reward Module Calculation 

The reward module calculation aims to maximize the 

interaction between the honeypot and the attacker. This 

reward function works because the attacker executes the 

download command. More information about the reward 

function is described as follows:  

- If the attacker runs the download command, it will get a 

reward of 500 

- If the check conf command is executed, it will get a 

reward of 200 

- Meanwhile, if the Linux command that has been 

implemented is executed but not a download command, it 

will get 0 rewards. 

- If the Linux command has not been implemented and 

executed but is not a download command, it will get a -

200 reward. 

- If the attacker decides to close the connection, it will get a 

-500 reward. 

 

 

V. RESULT AND DISCUSSION 

This section will discuss the result of deploying and 

installing a honeypot in the Alibaba cloud. Moreover, this 

section will present the honeypot analysis and the measure of 

the learning rate algorithm of the adaptive honeypot. 

Honeypot was installed in two virtual machines in Alibaba 

Cloud, and both machines ran from December 1, 2023, until 

January 1, 2024. 

Both machines sent the output into the kippo graph to 

display the activity in two honeypots. Also, both honeypots 

have been set up to send the output into MySQL. 

 

a.   Comparison between DQN and DDQN Honeypot 

This section will compare command transitions in the 

DDQN Honeypot and DQN Honeypot using QRASSH as the 

base honeypot. In Table 1, we will see the comparison 

between DQN and DDQN honeypots during the processing 

of the attack command transition. 

In Figure 2 and Figure 3, there is the number of 

connections based on the IP Address and country of origin 

attackers.  

 
Figure 2. Connection based on IP Address and Country in 

DQN Honeypot 

 

 

 
Figure 3. Graphic Connection based on IP Address and 

Country in DDQN Honeypot 

 

 In Figure 2 and Figure 3, the most connection attempts by 

attackers in two honeypots are from the USA. In DQN 

Cowrie, the total connection from the USA is 880 

connections; in the DDQN honeypot, the most connections 

from the USA are 1,117 connections; in both honeypots, the 

2nd most successful IP address is from Germany. 

 From both figures, the 2nd IP the attacker used to interact 

with the honeypot is from Danish. It can be stated that most 

attackers who interact with both honeypots are from the USA 

and Denmark. The other countries , are spread in various 

countries, like Vietnam, Russia, China, etc.  

The study also looked at how the two activities in the 

honeypot were compared during that period, and the results 

of the activities in each honeypot are shown in Figure 4 and 

Figure 5 below. In both figures, it can be seen that in each 

honeypot, there was an increase in attack activity from 

December 28, 2023, to January 1, 2024. 

     The increase was very significant, especially in DDQN 

Honeypot, where the number of incoming attacks was 

relatively high and rose drastically in that period. From both 

diagrams, these two adaptive honeypots work well in luring 

attackers to access and execute some commands. 



82  
 

 

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85  

ISSN 2549-8037, EISSN 2549-8045 

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning 

Algorithms on SSH Honeypot 

 

DOI: 10.34148/teknika.v13i1.763 

 
Figure 4. Human Activity in DQN Honeypot 

 

 
Figure 5. Human Activity in DDQN Honeypot 

 

In addition to comparing the activity of the two types of 

honeypots, the study also checked the username 

combinations used by attackers to access the honeypot 

directly. Most combinations of usernames used can be seen 

in Table 2 and Table 3  

 

Table 1. Table of command Transitions that Attackers Input 

on Both Honeypot Types 

No Command Action Honeypot 

DQN 

Honeypot 

DDQN 

1 Df Allow 5 3 

  Block 2 1 

  Insult 2 4 

2 Ifconfig Allow 1 2 

  Block 3 1 

  Insult 2 1 

3 Chmod Allow 575 0 

  Block 586 1 

  Insult 516 0 

4 Echo Allow 547 4 

  Block 584 6 

  Insult 555 5 

5 Mkdir Allow 538 0 

  Block 585 1 

  Insult 544 2 

 

Table 2. Combination of Username and Password Used to 

Access the DDQN Honeypot 

No Username Password Total  

1 Root Broadguam1 140 

2 Admin Admin 42 

3 Root 123456 23 

4 Root 1234 20 

5 Root 12345678 16 

 

Table 3. Combination of Username and Password Used to 

Access the DQN Honeypot 

No Username Password Total  

1 root 3245gs5662d34 2519 

2 345gs5662d34 345gs5662d34 2504 

3 root broadguam1 73 

4 xg xg1234 41 

5 Intell 123 41 

 

In Table 2 and Table 3, there is a similarity in the 

combination of username and password used to enter the two 

honeypots, which is a combination of root username and 

broadguam1 password, wherein the DDQN honeypot, there 

are 140 attempts. The DQN has 73 attempts to access using 

the username and password combination. 

Furthermore, the study also measured the ability of the 

RL learning algorithm to adapt to changes in action that 

occurred in each state. In this study, both used the Adam 

optimizer and a learning rate of 0.001 to manufacture 

artificial neural networks. From the results carried out for the 

duration of the study, results were obtained in Figure 6 and 

Figure 7 as follows. 

 

 
Figure 6. Learning Rate Graphic Honeypot DQN 

 

 
Figure 7. Grafik Learning Rate Graphic Honeypot DDQN 

 

Table 4. The Comparison of Algorithm Result 

Parameters DQN DDQN 

Episode 1000 1000 

Step of smoothed 50 500 
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distance learning 

Memory usage 756 MB/2 GB 800 MB/2 GB 

The total download 

command executed 

25 45 

 

Through Figures 6 and 7, it can be seen that DDQN 

Honeypot has a better learning rate ability compared to DQN 

Honeypot. It can be noticed that in DDQN Honeypot, the 

learning curve increases in the smoothed distance at 50 and 

then stabilizes to step 1,000, while in DQN Honeypot 

learning rate curve, the learning rate curve is only stable at 

500 when entering epoch 500 and above. This indicates that 

the learning ability of the DDQN algorithm, when in discrete 

conditions, can more quickly adapt to changes in state 

conditions because it uses calculations of 2 times the value 

of Q to determine the correct action used to respond to state 

changes. 

An explanation of the algorithm comparison result can be 

found in Table 4. Table 4 explains the result of comparing 

the combination of DQN and DDQN with the Cowrie 

honeypot. The usage memory between the two algorithms is 

shown in Table 4, demonstrating that the DDQN honeypot 

usage is less than that of the DQN Honeypot. More 

download commands are executed in DDQN Honeypot than 

in DQN Honeypot.  

In Table 1 of the two honeypots in response to the 

commands entered and determining the selected action based 

on the calculation of the Q matrix, sampling was taken of 5 

commands entered, and the results were obtained that for the 

system exploitation command, namely ifconfig, in DDQN 

Honeypot the most selected action allowed alias let the 

command run, while in DQN Honeypot,  The most actions 

taken are blocks. 

Then, for the mkdir command on DQN Honeypot, the 

most actions taken are blocks, while on DDQN Honeypot, 

the most actions are insults. From the results of this 

observation, the DDQN honeypot can be said to be more 

optimal in taking action because it goes through a process of 

twice calculating the Q value, as explained in the previous 

chapter. 

Observations were also made to observe what commands 

were carried out by each honeypot during the study period, 

and are shown in Figure 8 and Figure 9 below. 

 

 
Figure 8. Command Graph Recorded by DQN Honeypot 

 
Figure 9. Command Graph Recorded by DDQN Honeypot 

 

Figure 8 shows that most commands executed in the 

DQN Honeypot are commanded to modify the system, 

namely doing the chatter (change attribute) command and 

the rm (remove) directory command. SSH.  

Meanwhile, in the DDQN Honeypot in Figure 9, it is 

obtained that the command executed by the attacker is an 

echo command with hexadecimal characters, indicating that 

the user is making sure they are interacting with the 

honeypot or the original system because the attacker also 

sees how long the system uptime and what usernames are 

running. 

 

 

VI. CONCLUSION AND FUTURE WORK 

 This section will discuss the conclusion and future work 

from this research. About the benefit of using an adaptive 

honeypot to improve the network defense, which RL 

algorithm has a better result, and the future improvement 

from the future research. 

  

a.   Conclusion 

From this research, it was concluded that the DDQN 

algorithm can be integrated with SSH Honeypot.  DDQN 

algorithm is used to determine each action more optimally 

because it uses 2 Q-Values calculation; this can be seen in 

response to specific commands. DDQN can help the 

honeypot learn faster than DQN, it can be noticed that the 

DDQN honeypot uses the memory server less than the DQN 

honeypot.  

DDQN algorithm can be applied as an alternative 

algorithm to be merged with the honeypot. Because the 

usage memory is less than that of the DQN algorithm. In 

addition, the graph of transitions between commands also 

shows that for some commands, DDQN has more accurate 

predictions when compared to the same DQN algorithm 

combined with similar honeypots. It complements the 

previous research, that explained the combination of DDQN 

algorithm with IDS. 

 

b.   Future work 

In future work, there is more scope for future research, 

for example, in the reward module, which is used by 

complex code for the reward module. There is room for 

inverse reinforcement learning to find the optimal reward 

function to increase the attackers' engagement. 
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Other RL optimization techniques, Such as PPO and 

A2C, are also possible, which can show promise in situations 

with more attacks. Further work can be done on the 

honeypot forensics to utilize the data obtained better, making 

the backtracking process easier. 

For the next improvement suggestion, there is also some 

honeypot data severity analysis to analyze the pattern of 

command input by attackers because the dataset collected 

from honeypots can obtain more helpful information than 

unmodified honeypots. 
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