
77

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

Evaluation and Comparison of the Use of Reinforcement

Learning Algorithms on SSH Honeypot

Marco Ariano Kristyanto1, Maya Hilda Lestari Louk2

1,2Informatics Department, University of Surabaya, Surabaya, East Java, Indonesia

Email: 1*marcokristyanto@staff.ubaya.ac.id, 2mayalouk@staff.ubaya.ac.id

 (Received: 9 Jan 2024, revised: 31 Jan 2024, accepted: 2 Feb 2024)

Abstract

A honeypot is a tool or system used to record, redirect, and even lure hackers into penetrating and exploiting a system. The

increasing development of technology causes cyber hackers to realize the existence of honeypots using various other software

and tools. So, honeypots need a way to learn how hackers behave. The idea proposed is to combine honeypots with

reinforcement learning algorithms so that honeypots become adaptive honeypots. This study suggests the concept by

comparing the two Q learning-based RL algorithms, namely DQN and DDQN, to reach which algorithm is more optimal. The

study results showed that the DDQN algorithm is more optimal in determining actions when compared to the DQN algorithm

because using a double Q-value can help determine the action more accurately. Based on the result, the DDQN algorithm

consumed less memory than the DQN Honeypot. The learning rate curve and the processing of DDQN algorithm commands

can be used as an alternative algorithm that can be combined with honeypots because of the learning rate, which can make

honeypots faster in the dynamic environment.

Keywords: Honeypot, Reinforcement Learning, DDQN, DQN, Adaptive Honeypot

I. INTRODUCTION

The development of technology has also led to an increase

in the threat of cybercrime. One way to deal with cybercrime

is to implement a honeypot as an intrusion detection system.

A Honeypot is a tool for luring the attacker to observe and

analyze their method [1]. Honeypots can be used as intrusion

detection systems to monitor and respond to computer abuse.

A Honeypot is a Network Intrusion Detection System that

detects and writes attackers’ activity or counterattack [2].

Traditionally, a honeypot has been used to capture and

study malware activities for a long time. The Server-side

honeypots are designed to intercept assaults and gather

malicious requests and malware by mimicking software or

services susceptible to compromise. This facilitates the

development of intrusion detection systems, understanding

network and web attacks, and stopping spam emails.[3].

However, as technology advances and attackers become

more sophisticated, new problems have arisen; many

attackers know how to detect the honeypot and how to evade

it. Many honeypots spread worldwide and are statically

configured, which means they do not see the change in

attacker behavior [4]. New methods are needed to combat this

issue. One of the ideas is the making of an adaptive honeypot.

The idea proposed by researchers is how to make a honeypot

that can learn and interact with attacker behavior [5], which

allows for more extended interactions between the attacker

and the honeypot.

Researchers combine the honeypot with a reinforcement

learning algorithm to make a honeypot that can learn from the

attacker’s behavior. Despite being both supervised and

unsupervised, reinforcement learning (RL) is one area of

machine learning. This algorithm is used to interact with the

dynamic situation. In cyber security, RL is used to construct

the attack mitigation scheme [6]. Sethi et al. [7] define the

components of the RL algorithm as agent, reward, state,

action, policy, and value.

Many studies related to adaptive honeypots, some of

which are as follows. Pauna and Bica [8] merged the SSH

Honeypot Kippo and RL algorithm to create RASSH, which

used the SARSA algorithm with the Markov decision process

and developed it using the Pybrain library. The research

continued by Pauna et al. [9] when they merged the Cowrie

Honeypot with the DQN Algorithm to create QRASSH. To

prevent attackers from using the honeypot detection tools,

Suratkar et al. [10] joined the Cowrie honeypot with the DQN

Algorithm so it could decoy the honeypot detection tools that

attackers use.

As stated above, the contribution of these papers is as

follows:

78

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

- To determine the performance of the RL Algorithm used

in adaptive honeypots, especially the learning rate, in this

research, researchers compare DQN and DDQN

algorithms.

- To examine the DDQN algorithm performance when

merged with the honeypot.

- Add more measurement metrics for deeper analysis, like

the impact of environment hardware specification on

adaptive honeypot.

The structure of the remaining papers is as follows:

Section I will present the background of the research, section

II explain the literature review, and Section III discuss the

related works used in this research. Section IV will describe

the system architecture used in the study, Section V discuss

the experimental results, and Section VI discuss the

conclusion and future works.

II. LITERATURE SURVEY

a. Honeypot

Dowling et al. [11], in these articles, state that honeypots

were first introduced in 1993, have evolved, and are now

used to match the emerging threat. Touch & Colin [12] state

that a honeypot is a system used to decoy and trap attackers

when they enter the system. Based on the level of

interaction, Zemene and Avadhani [13] categorized

honeypot as follows :

- Low-level interaction honeypot

Honeypots that simulate a single service from a real

server are low-level interaction honeypots. For example:

Kippo, Cowrie.

- High-level interaction honeypot

Honeypots, such as Honeynet, need a complete system to

operate as a server.

The primary objective of honeypot deployment is to trace

the infection process, detect malware, and inspect the entire

picture of botnet activities from the viewpoint of infected

hosts [14]. Honeypots play a crucial role in capturing and

analyzing malware and malicious activity. The honeypot

collects information, including IP addresses, commands

entered into the system, and timestamps [5].

Honeypots are used for many cybersecurity purposes,

such as classifying SSH bruteforce attacks using machine

learning [15]. This research used the Kippo honeypot to deal

with brute force attacks and then used machine learning

classification from the honeypot log to find the best

classification techniques.

Bellekens et al. [16] explain that honeypots and other

interactive defenses are frequently built on actual or

virtualized systems that record harmful users' inquiries and

interactions. Although honeypots help spot and thwart

cyberattacks, their deceitful function is commonly

overlooked.

b. Cowrie

Cowrie is a honeypot that lies between SSH and the telnet

band. It is specifically developed for recording brute-force

attacks and the shell interaction performed by the adversary.

When in high interaction mode (proxy), it acts as an SSH and

telnet proxy to watch attacker activity on another system. In

medium interaction mode (shell), it simulates a UNIX system

in Python [17].

The development of cowrie uses the Kippo honeypot as

the base structure and feature. The purpose of Kippo is to

capture enemy shell interactions and brute force attacks. With

Kippo, one can create and remove files using a fictitious file

system that resembles Debian Linux.

As mentioned before, there is much research conducted

about honeypots because, with the growth of cyber-attacks,

many attackers can detect honeypot presence using specific

tools. In the below section, we will discuss the adaptive

honeypot, one of the main topics in this article.

c. Adaptive Honeypot

Shi et al. [14] discuss in this research that the globally

distributed honeypots are statically configured. Dowling et al.

[11] also mentioned that as soon as malware developers

learned about honeypots, they began recording and

examining assault activities. To overcome and solve this

problem, researchers proposed the concept of an adaptive

honeypot, a honeypot that can learn from adversaries and

amend their actions based on reinforcement learning [4].

The other research about an adaptive honeypot is to make

honeypots more aggressive when dealing with attackers.

Djanali et al. [18] conducted the aggressive honeypot to deal

with XSS attacks and SQL Injection. The method that they

proposed is a honeypot that can open the identity of the

attacker when accessing the honeypot by sending the

malicious code using likejacking techniques.

Pauna and Bica [8] combined the Kippo Honeypot with

SARSA Algorithm and named it RASSH, which it developed

using the my brain library. The study of adaptive honeypots,

continued by Pauna et al. [9], uses the RL algorithm Q

Learning combined with Cowrie Honeypot to decide how to

interact with attackers.

Using an adaptive honeypot as a cyber defense tool is one

of the exciting areas in cyber security. The combination of the

honeypot and the machine learning algorithm is determined

to achieve two different goals: to engage with the attacker and

to guard against the risk of being compromised [19]. The

other benefit of using an adaptive honeypot is that it can

covert against widely used survey and honeypot detection

tools [20].

d. Reinforcement Learning

 Reinforcement Learning (RL) is a branch of machine

learning despite supervised and unsupervised learning [21].

The components of RL, as mentioned by Gupta and Katarya

[22], are:

a. Agent: an agent is a system that does some action to

obtain the reward.

b. State: The action dictates the agent's current condition and

any modifications.

c. Action: A behavior from the system.

d. Environment: a place where the agent operates or moves.

79

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

e. Reward: Beneficial result of the agent's action

f. Discount factor: it is a factor of the future reward

calculated by the agent

g. Penalty: The rules that the agent follows until the next

stage. The policy is based on the user's current stage.

The mathematical models from reinforcement learning

can be described in formula 1 as follows :

𝑉(𝑠) = ∑ 𝛾𝑡
𝑡 (𝑆𝑡) (1)

Note:

V(s) represent the function future reward from future states.

𝛾𝑡 represents the discount factor.

St represents the state.

 Nowadays, RL algorithms are used in many aspects;

despite being used in artificial intelligence, they are employed

in cyber security. Deep Reinforcement Learning (DRL) in

cyber security can solve complex and high-dimensional cyber

defense problems [23]. Using the RL algorithm to determine

how many honeypots are to be deployed to protect the actual

entities, the result is that both Q-learning and epsilon greedy

demonstrate the efficacy of both methods [24].

e. Q-learning

Q-learning is one of the RL algorithms that is used in

many aspects. This algorithm aims to calculate the state

action value [9]. Suwannalai and Porpasert [25] state the

purpose of this algorithm is to maximize the cumulative

discounted reward of the Bellman formula 2 as follows:

Q(St, At) = E[𝑅𝑡+1 + 1 + γ𝑅𝑡+2 + γ2𝑅𝑡+3 + ⋯ +

|St, At|I (2)

Where :

α is a learning rate variable filled with parameter values

between 0 and 1 and determines the speed of learning ability.

γ is a discount factor filled with parameters between 0 and 1

and determines how the future reward is used to replace the

value of the Q-value.

Q-Value / state-action value is a variable used to calculate

the value of the pair of state and action, where this value will

later be used to find the maximum value before determining

the magnitude of the action.

 Tageson [26] explains Q-learning uses a table to store the

values of all actions for all states. In each iteration, the agent

looks up the table's highest-valued action for a given state.

Q-learning is a model-free approach that updates the Q-

values estimation based on the experience samples on each

time step [27].

f. DQN

DQN is a combination of Q-learning and neural networks.

In the DQN algorithm, states are determined through input to

the neural network, which calculates the Q value of all

actions. This algorithm aims to select the maximum value

that depends on the full reward [28]. The two critical

parameters of the DQN algorithm are the Target network and

Experience Replay. Suwannalai and Polpasert [25] explain

that Experience Replay in DQN is a repetition of the previous

process.

Much research combines the DQN algorithm with

cybersecurity tools like honeypot and IDS because the policy

network is simple and fast, which is suitable for online

learning and rapid responses in modern data networks with

evolving environments, especially in cyber security [23],

[29].

g. DDQN

DDQN is an RL algorithm that is formed from the

modification of DQN. The DDQN algorithm was first

introduced by Van Hasselt [30]. He explained that the

weakness of Q-learning is that calculating the Q value can

make a biased result because the overestimation leads to a

limited value. The result value is not the optimal value.

Therefore, as a further adaptation from the Q-Learn

algorithm, two Q-val calculations aim to obtain maximum

results in formula 3 as follows:

𝑄∗(𝑠𝑡 , 𝑎𝑡) ≈ 𝑟𝑡 + 𝛾𝑄𝜃 (𝑠𝑡+1 ,𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄𝜃′(𝑠𝑡+1, 𝑎′)) (3)

Where:

Q* is the Q Value of the Model

Q’ is the Q Value of the Target Model.

 In cyber security, many researchers also use this

algorithm to combine it with IDS, and the result is the

performance of this algorithm in IDS outperforms the other

algorithms, especially in learning and performance [27].

This research uses the DQN and DDQN algorithms from

the previous section because the ability to handle temporal

space and the simple policy network can be applied to

determine the dynamic environment, especially in a honeypot

environment.

III. RELATED WORKS

Much research about adaptive honeypots has been

conducted; this section will discuss the related works in

adaptive honeypots and similar studies about the research. As

mentioned before, the concept of adaptive honeypot was

proposed by researchers because the honeypots that are

distributed around the world are statically configured, which

requires prior knowledge about the attacker [4]. Shi et al. [14]

conducted the model of a mimicry honeypot, which could

perceive and adapt to the change of the network service and

perform better camouflage.

Pauna and Bica [8] developed the RASSH honeypot; they

combined it with the SARSA Algorithm and can interact with

the attacker. In 2018, Pauna et al. introduced the QRASSH,

which is the combination of SSH Honeypot Cowrie with RL

Algorithm Deep Q Network; the result of the research is an

adaptive honeypot that can decide how to interact with the

attacker. Dowling et al. [10] use reinforcement learning to

conceal the honeypot's ability, and from the research,

deploying adaptive honeypots can make prolonged

80

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

interaction. It can cause the honeypot's presence undetected

by the attacker.

Deploying an adaptive honeypot can help predict future

attack patterns because the adaptive honeypot interaction can

create a more realistic interaction with the attacker [28].

Suratkar et al. [9] state that deploying adaptive honeypots,

with some severity analysis, can help deal with honeypot

detection tools. Marco et al. [31] discuss using the Q network

algorithm and compare it with the unmodified honeypot; the

result is the interaction time from the adaptive honeypot is

longer than the nonadaptive honeypot.

The honeypot is one of the most common approaches to

protecting the network against attacks, such as MITM (Man

in the Middle) and DDOS attacks [32]. Their work suggests a

Markov Decision Process (MDP) known as the state-action-

reward-state-action (SARSA) for honeypot design. Compared

to conventional IDSs, the suggested system that uses

environmental trials can achieve higher accuracy and faster

convergence.

IV. SYSTEM ARCHITECTURE

This section will discuss the system architecture used in

this research. This section will discuss the honeypot structure,

the RL module, the honeypot installation, and the

measurement of the RL Algorithm used in this research.

a. Honeypot Architecture

The honeypot that is used in this research is a Cowrie-

based honeypot. In Cowrie source code, an Action Module

has been implemented to allow console interaction with the

attacker. The adaptive honeypot has been deployed and

implemented in Alibaba Cloud's simple application server.

The honeypot's structure is determined using the

QRASSH base honeypot model [9]. It uses Q-learning to

increase the interaction between the honeypot and the

attacker. In this honeypot, the action module determines what

action to take using the Q learning calculation. The actions

implemented in this research are as follows:

- Allow: permit the command

- Block: block the execution of Linux command in a

console

- Delay: delay the execution of Linux commands in a

console

- Fake: change the output of the command by substituting

the command.

- Insult: it modifies the command output by showing the

insult message in a language according to the IP address.

The explanation of the workflow from Figure 1 can be

described as follows. After the honeypot is started, it

receives commands that an attacker inputs; after that, the RL

module will determine the action based on the RL algorithm

injected in the honeypot system; if the blocked action has

been chosen, the system will be stopped. In the RL module,

the process of the Q learning calculation is determined in the

module.

From Figure 1, the process of the Q-learning algorithm

can explained as follows. For Step 1, initialize the Q value

before receiving the input. After obtaining the input, the next

step is to choose an action based on the Q calculation. After

the action has been selected, the next step is to measure the

reward R, and the final step is to update the Q values and go

back to step 2 again. The process of the Q-learning

algorithm is the same as the process in the research from

Pauna et al. [9].

Figure 1. Adaptive Honeypot Diagram

Reinforcement learning is employed here to determine

the best answer to every command to prevent the attacker

from ending the session. Initially, The honeypot will respond

unpredictably (epsilon-greedy), and when more assaults

occur, it will discover the ideal values to Complete the Q-

table and act based on the results.

b. Honeypot Analysis

Because of the RL Algorithm, this research will not use

labeled class and ground truth for the honeypot analysis. In

this research, the analysis that we measured as follows:

Total command executed by an attacker, Learning rate of

the RL Algorithm, and Command mapping: the simulation of

the attack that adaptive honeypot can handle.

81

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

In this research, the attacker command will categorised as

follows:

- Checkconf: Command used to check configuration to the

system (whoami, ps, uptime, top, ifconfig, name, history,

id)

- Download: Command used to download the remote files

(wget, FTP, curl)

- Install: Command used to install the new software (tar,

unzip, cp, mkdir, chmod, mv)

- Changeconf: Command used to change the configuration

of the system (kill, useradd, nano, sshd, userdell, vim)

- Passwd: Command used to modify the password of the

user (passwd)

- Run: Command used to run a program (./).

c. Reward Module Calculation

The reward module calculation aims to maximize the

interaction between the honeypot and the attacker. This

reward function works because the attacker executes the

download command. More information about the reward

function is described as follows:

- If the attacker runs the download command, it will get a

reward of 500

- If the check conf command is executed, it will get a

reward of 200

- Meanwhile, if the Linux command that has been

implemented is executed but not a download command, it

will get 0 rewards.

- If the Linux command has not been implemented and

executed but is not a download command, it will get a -

200 reward.

- If the attacker decides to close the connection, it will get a

-500 reward.

V. RESULT AND DISCUSSION

This section will discuss the result of deploying and

installing a honeypot in the Alibaba cloud. Moreover, this

section will present the honeypot analysis and the measure of

the learning rate algorithm of the adaptive honeypot.

Honeypot was installed in two virtual machines in Alibaba

Cloud, and both machines ran from December 1, 2023, until

January 1, 2024.

Both machines sent the output into the kippo graph to

display the activity in two honeypots. Also, both honeypots

have been set up to send the output into MySQL.

a. Comparison between DQN and DDQN Honeypot

This section will compare command transitions in the

DDQN Honeypot and DQN Honeypot using QRASSH as the

base honeypot. In Table 1, we will see the comparison

between DQN and DDQN honeypots during the processing

of the attack command transition.

In Figure 2 and Figure 3, there is the number of

connections based on the IP Address and country of origin

attackers.

Figure 2. Connection based on IP Address and Country in

DQN Honeypot

Figure 3. Graphic Connection based on IP Address and

Country in DDQN Honeypot

 In Figure 2 and Figure 3, the most connection attempts by

attackers in two honeypots are from the USA. In DQN

Cowrie, the total connection from the USA is 880

connections; in the DDQN honeypot, the most connections

from the USA are 1,117 connections; in both honeypots, the

2nd most successful IP address is from Germany.

 From both figures, the 2nd IP the attacker used to interact

with the honeypot is from Danish. It can be stated that most

attackers who interact with both honeypots are from the USA

and Denmark. The other countries , are spread in various

countries, like Vietnam, Russia, China, etc.

The study also looked at how the two activities in the

honeypot were compared during that period, and the results

of the activities in each honeypot are shown in Figure 4 and

Figure 5 below. In both figures, it can be seen that in each

honeypot, there was an increase in attack activity from

December 28, 2023, to January 1, 2024.

 The increase was very significant, especially in DDQN

Honeypot, where the number of incoming attacks was

relatively high and rose drastically in that period. From both

diagrams, these two adaptive honeypots work well in luring

attackers to access and execute some commands.

82

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

Figure 4. Human Activity in DQN Honeypot

Figure 5. Human Activity in DDQN Honeypot

In addition to comparing the activity of the two types of

honeypots, the study also checked the username

combinations used by attackers to access the honeypot

directly. Most combinations of usernames used can be seen

in Table 2 and Table 3

Table 1. Table of command Transitions that Attackers Input

on Both Honeypot Types

No Command Action Honeypot

DQN

Honeypot

DDQN

1 Df Allow 5 3

 Block 2 1

 Insult 2 4

2 Ifconfig Allow 1 2

 Block 3 1

 Insult 2 1

3 Chmod Allow 575 0

 Block 586 1

 Insult 516 0

4 Echo Allow 547 4

 Block 584 6

 Insult 555 5

5 Mkdir Allow 538 0

 Block 585 1

 Insult 544 2

Table 2. Combination of Username and Password Used to

Access the DDQN Honeypot

No Username Password Total

1 Root Broadguam1 140

2 Admin Admin 42

3 Root 123456 23

4 Root 1234 20

5 Root 12345678 16

Table 3. Combination of Username and Password Used to

Access the DQN Honeypot

No Username Password Total

1 root 3245gs5662d34 2519

2 345gs5662d34 345gs5662d34 2504

3 root broadguam1 73

4 xg xg1234 41

5 Intell 123 41

In Table 2 and Table 3, there is a similarity in the

combination of username and password used to enter the two

honeypots, which is a combination of root username and

broadguam1 password, wherein the DDQN honeypot, there

are 140 attempts. The DQN has 73 attempts to access using

the username and password combination.

Furthermore, the study also measured the ability of the

RL learning algorithm to adapt to changes in action that

occurred in each state. In this study, both used the Adam

optimizer and a learning rate of 0.001 to manufacture

artificial neural networks. From the results carried out for the

duration of the study, results were obtained in Figure 6 and

Figure 7 as follows.

Figure 6. Learning Rate Graphic Honeypot DQN

Figure 7. Grafik Learning Rate Graphic Honeypot DDQN

Table 4. The Comparison of Algorithm Result

Parameters DQN DDQN

Episode 1000 1000

Step of smoothed 50 500

83

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

distance learning

Memory usage 756 MB/2 GB 800 MB/2 GB

The total download

command executed

25 45

Through Figures 6 and 7, it can be seen that DDQN

Honeypot has a better learning rate ability compared to DQN

Honeypot. It can be noticed that in DDQN Honeypot, the

learning curve increases in the smoothed distance at 50 and

then stabilizes to step 1,000, while in DQN Honeypot

learning rate curve, the learning rate curve is only stable at

500 when entering epoch 500 and above. This indicates that

the learning ability of the DDQN algorithm, when in discrete

conditions, can more quickly adapt to changes in state

conditions because it uses calculations of 2 times the value

of Q to determine the correct action used to respond to state

changes.

An explanation of the algorithm comparison result can be

found in Table 4. Table 4 explains the result of comparing

the combination of DQN and DDQN with the Cowrie

honeypot. The usage memory between the two algorithms is

shown in Table 4, demonstrating that the DDQN honeypot

usage is less than that of the DQN Honeypot. More

download commands are executed in DDQN Honeypot than

in DQN Honeypot.

In Table 1 of the two honeypots in response to the

commands entered and determining the selected action based

on the calculation of the Q matrix, sampling was taken of 5

commands entered, and the results were obtained that for the

system exploitation command, namely ifconfig, in DDQN

Honeypot the most selected action allowed alias let the

command run, while in DQN Honeypot, The most actions

taken are blocks.

Then, for the mkdir command on DQN Honeypot, the

most actions taken are blocks, while on DDQN Honeypot,

the most actions are insults. From the results of this

observation, the DDQN honeypot can be said to be more

optimal in taking action because it goes through a process of

twice calculating the Q value, as explained in the previous

chapter.

Observations were also made to observe what commands

were carried out by each honeypot during the study period,

and are shown in Figure 8 and Figure 9 below.

Figure 8. Command Graph Recorded by DQN Honeypot

Figure 9. Command Graph Recorded by DDQN Honeypot

Figure 8 shows that most commands executed in the

DQN Honeypot are commanded to modify the system,

namely doing the chatter (change attribute) command and

the rm (remove) directory command. SSH.

Meanwhile, in the DDQN Honeypot in Figure 9, it is

obtained that the command executed by the attacker is an

echo command with hexadecimal characters, indicating that

the user is making sure they are interacting with the

honeypot or the original system because the attacker also

sees how long the system uptime and what usernames are

running.

VI. CONCLUSION AND FUTURE WORK

 This section will discuss the conclusion and future work

from this research. About the benefit of using an adaptive

honeypot to improve the network defense, which RL

algorithm has a better result, and the future improvement

from the future research.

a. Conclusion

From this research, it was concluded that the DDQN

algorithm can be integrated with SSH Honeypot. DDQN

algorithm is used to determine each action more optimally

because it uses 2 Q-Values calculation; this can be seen in

response to specific commands. DDQN can help the

honeypot learn faster than DQN, it can be noticed that the

DDQN honeypot uses the memory server less than the DQN

honeypot.

DDQN algorithm can be applied as an alternative

algorithm to be merged with the honeypot. Because the

usage memory is less than that of the DQN algorithm. In

addition, the graph of transitions between commands also

shows that for some commands, DDQN has more accurate

predictions when compared to the same DQN algorithm

combined with similar honeypots. It complements the

previous research, that explained the combination of DDQN

algorithm with IDS.

b. Future work

In future work, there is more scope for future research,

for example, in the reward module, which is used by

complex code for the reward module. There is room for

inverse reinforcement learning to find the optimal reward

function to increase the attackers' engagement.

84

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

Other RL optimization techniques, Such as PPO and

A2C, are also possible, which can show promise in situations

with more attacks. Further work can be done on the

honeypot forensics to utilize the data obtained better, making

the backtracking process easier.

For the next improvement suggestion, there is also some

honeypot data severity analysis to analyze the pattern of

command input by attackers because the dataset collected

from honeypots can obtain more helpful information than

unmodified honeypots.

REFERENCE

[1] R. Vishwakarma and A. K. Jain, “A honeypot with

machine learning based detection framework for

defending IoT based botnet DDoS attacks,” Proc. Int.

Conf. Trends Electron. Informatics, ICOEI 2019, no.

Icoei, pp. 1019–1024, 2019, doi:

10.1109/ICOEI.2019.8862720.

[2] F. Zhang and S. cheng Khoo, “An empirical study on

clone consistency prediction based on machine

learning,” Inf. Softw. Technol., vol. 136, Aug. 2021.

[3] C. Yang, J. Zhang, and G. Gu, “A taste of tweets:

Reverse engineering twitter spammers,” ACM Int. Conf.

Proceeding Ser., vol. 2014-Decem, no. December, pp.

86–95, Dec. 2014, doi: 10.1145/2664243.2664258.

[4] G. Wagener, R. State, T. Engel, and A. Dulaunoy,

“Adaptive and self-configurable honeypots,” Proc. 12th

IFIP/IEEE Int. Symp. Integr. Netw. Manag. IM 2011,

pp. 345–352, 2011, doi: 10.1109/INM.2011.5990710.

[5] D. Fraunholz, M. Zimmermann, and H. D. Schotten,

“An adaptive honeypot configuration, deployment and

maintenance strategy,” Int. Conf. Adv. Commun.

Technol. ICACT, pp. 53–57, Mar. 2017, doi:

10.23919/ICACT.2017.7890056.

[6] J. Wang, J. Liu, H. Guo, and B. Mao, “Deep

Reinforcement Learning for Securing Software-Defined

Industrial Networks With Distributed Control Plane,”

IEEE Trans. Ind. Informatics, vol. 18, no. 6, pp. 4275–

4285, 2022, doi: 10.1109/TII.2021.3128581.

[7] K. Sethi, Y. V. Madhav, R. Kumar, and P. Bera,

“Attention based multi-agent intrusion detection

systems using reinforcement learning,” J. Inf. Secur.

Appl., vol. 61, p. 102923, Sep. 2021, doi:

10.1016/J.JISA.2021.102923.

[8] A. Pauna and I. Bica, “RASSH - Reinforced adaptive

SSH honeypot,” IEEE Int. Conf. Commun., 2014, doi:

10.1109/ICCOMM.2014.6866707.

[9] A. Pauna, A.-C. Iacob, and I. Bica, “QRASSH - A Self-

Adaptive SSH Honeypot Driven by Q-Learning,” pp.

441–446, Oct. 2018, doi:

10.1109/ICCOMM.2018.8484261.

[10] S. Suratkar et al., “An adaptive honeypot using Q-

Learning with severity analyzer,” J. Ambient Intell.

Humaniz. Comput., vol. 13, no. 10, pp. 4865–4876, Oct.

2022, doi: 10.1007/S12652-021-03229-2/TABLES/7.

[11] S. Dowling, M. Schukat, and E. Barrett, “Using

reinforcement learning to conceal honeypot

functionality,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 11053 LNAI, pp. 341–355, 2019,

doi: 10.1007/978-3-030-10997-4_21/COVER.

[12] S. Touch and J.-N. Colin, “A Comparison of an

Adaptive Self-Guarded Honeypot with Conventional

Honeypots,” Appl. Sci., vol. 12, no. 10, p. 5224, May

2022, doi: 10.3390/APP12105224.

[13] M. S. Zemene and P. S. Avadhani, “Implementing high

interaction honeypot to study SSH attacks,” 2015 Int.

Conf. Adv. Comput. Commun. Informatics, ICACCI

2015, pp. 1898–1903, Sep. 2015, doi:

10.1109/ICACCI.2015.7275895.

[14] A. Shimoda, T. Mori, and S. Goto, “Sensor in the dark:

Building untraceable large-scale honeypots using

virtualization technologies,” Proc. - 2010 10th Annu.

Int. Symp. Appl. Internet, SAINT 2010, pp. 22–30, 2010,

doi: 10.1109/SAINT.2010.42.

[15] M. A. Kristyanto et al., “SSH Bruteforce Attack

Classification using Machine Learning,” 2022 10th Int.

Conf. Inf. Commun. Technol. ICoICT 2022, pp. 116–

119, 2022, doi: 10.1109/ICOICT55009.2022.9914864.

[16] X. Bellekens et al., “From Cyber-Security Deception to

Manipulation and Gratification Through Gamification,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes

Artif. Intell. Lect. Notes Bioinformatics), vol. 11594

LNCS, pp. 99–114, 2019, doi: 10.1007/978-3-030-

22351-9_7/FIGURES/9.

[17] M. Oosterhof, “Cowrie Documentation,” p. 1, 2022,

[Online]. Available:

https://readthedocs.org/projects/cowrie/downloads/pdf/l

atest/

[18] S. Djanali, F. Arunanto, B. A. Pratomo, A. Baihaqi, H.

Studiawan, and A. M. Shiddiqi, “Aggressive web

application honeypot for exposing attacker’s identity,”

2014 1st Int. Conf. Inf. Technol. Comput. Electr. Eng.

Green Technol. Its Appl. a Better Futur. ICITACEE

2014 - Proc., pp. 212–216, Mar. 2015, doi:

10.1109/ICITACEE.2014.7065744.

[19] S. Touch and J. N. Colin, “Asguard: Adaptive Self-

guarded Honeypot,” Int. Conf. Web Inf. Syst. Technol.

WEBIST - Proc., vol. 2021-Octob, no. Webist, pp. 565–

574, 2021, doi: 10.5220/0010719100003058.

[20] C. Guan, H. Liu, G. Cao, S. Zhu, and T. La Porta,

“HoneyIoT: Adaptive High-Interaction Honeypot for

IoT Devices Through Reinforcement Learning,” WiSec

2023 - Proc. 16th ACM Conf. Secur. Priv. Wirel. Mob.

Networks, vol. 11, pp. 49–59, May 2023, doi:

10.1145/3558482.3590195.

[21] R. S. Sutton and A. G. Barto, “Reinforcement learning:

An Introduction Second edition,” Learning, vol. 3, no.

9, p. 322, 2012.

[22] G. Gupta and R. Katarya, “A Study of Deep

Reinforcement Learning Based Recommender

Systems,” ICSCCC 2021 - Int. Conf. Secur. Cyber

Comput. Commun., pp. 218–220, May 2021, doi:

10.1109/ICSCCC51823.2021.9478178.

85

TEKNIKA, Volume 13(1), Maret 2024, pp. 77-85

ISSN 2549-8037, EISSN 2549-8045

Kristyanto, M.A., et. al.: Evaluation and Comparison of the Use of Reinforcement Learning

Algorithms on SSH Honeypot

DOI: 10.34148/teknika.v13i1.763

[23] T. T. Nguyen and V. J. Reddi, “Deep Reinforcement

Learning for Cyber Security,” IEEE Trans. Neural

Networks Learn. Syst., vol. 34, no. 8, pp. 3779–3795,

2023, doi: 10.1109/TNNLS.2021.3121870.

[24] P. Radoglou-Grammatikis et al., “Strategic Honeypot

Deployment in Ultra-Dense Beyond 5G Networks: A

Reinforcement Learning Approach,” IEEE Trans.

Emerg. Top. Comput., 2022, doi:

10.1109/TETC.2022.3184112.

[25] E. Suwannalai and C. Polprasert, “Network Intrusion

Detection Systems Using Adversarial Reinforcement

Learning with Deep Q-network,” in International

Conference on ICT and Knowledge Engineering, 2020,

vol. 2020-November. doi:

10.1109/ICTKE50349.2020.9289884.

[26] D. Tagesson, N. Xiong, and S. Barua, “a Comparison

Between Deep Q-Learning and Deep Deterministic

Policy Gradient for an Autonomous Drone in a

Simulated Environment,” 2021.

[27] H. Alavizadeh, H. Alavizadeh, and J. Jang-Jaccard,

“Deep Q-Learning Based Reinforcement Learning

Approach for Network Intrusion Detection,”

Computers, vol. 11, no. 3, 2022, doi:

10.3390/computers11030041.

[28] O. Navarro Ferrer, “Analysis of reinforcement learning

techniques applied to honeypot systems,” 2021,

[Online]. Available: http://hdl.handle.net/10609/126948

[29] J. S. López-Yépez and A. Fagette, “Increasing attacker

engagement on SSH honeypots using semantic

embeddings of cyber-attack patterns and deep

reinforcement learning,” Proc. 2022 IEEE Symp. Ser.

Comput. Intell. SSCI 2022, pp. 389–395, 2022, doi:

10.1109/SSCI51031.2022.10022206.

[30] H. Van Hasselt, A. Guez, and D. Silver, “Deep

Reinforcement Learning with Double Q-learning”.

[31] M. A. Kristyanto, H. Studiawan, and B. A. Pratomo,

“Evaluation of Reinforcement Learning Algorithm on

SSH Honeypot,” Proceeding - 6th Int. Conf. Inf.

Technol. Inf. Syst. Electr. Eng. Appl. Data Sci. Artif.

Intell. Technol. Environ. Sustain. ICITISEE 2022, pp.

346–350, 2022, doi:

10.1109/ICITISEE57756.2022.10057816.

[32] A. Pashaei, M. E. Akbari, M. Zolfy Lighvan, and A.

Charmin, “Early Intrusion Detection System using

honeypot for industrial control networks,” Results Eng.,

vol. 16, no. July, p. 100576, 2022, doi:

10.1016/j.rineng.2022.100576.

