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Abstract: Machine learning techniques have advanced rapidly, leading to better prediction accuracy
within a short computational time. Such advancement encourages various novel applications,
including in the field of operations research. This study introduces a novel way to utilize regression
machine learning models to predict the objectives of vehicle routing problems that are solved using a
genetic algorithm. Previous studies have generally discussed how (1) operations research methods
are used independently to generate optimized solutions and (2) machine learning techniques are used
independently to predict values from a given dataset. Some studies have discussed the collaborations
between operations research and machine learning fields as follows: (1) using machine learning
techniques to generate input data for operations research problems, (2) using operations research
techniques to optimize the hyper-parameters of machine learning models, and (3) using machine
learning to improve the quality of operations research algorithms. This study differs from the types of
collaborative studies listed above. This study focuses on the prediction of the objective of the vehicle
routing problem directly given the input and output data, without optimizing the problem using
operations research algorithms. This study introduces a straightforward framework that captures the
input data characteristics for the vehicle routing problem. The proposed framework is applied by
generating the input and output data using the genetic algorithm and then using regression machine
learning models to predict the obtained objective values. The numerical experiments show that the
best models are random forest regression, a generalized linear model with a Poisson distribution,
and ridge regression with cross-validation.

Keywords: vehicle routing problem; genetic algorithm; prediction; regression machine learning;
smart logistics

1. Introduction

In recent years, machine learning studies have advanced rapidly and encouraged
collaboration with various research fields, including the operations research field. There are
several main frameworks used when conducting research in both areas simultaneously. The
first framework applies machine learning techniques to predict input data for operations
research problems. One application is estimating the energy consumption of electric
vehicles on different paths and routes before solving the routing problem [1]. Another
application is clustering flights based on the similarity in the working crews before solving
the flight connection optimization problem [2]. The last example is predicting the demand
for cash transportation between bank branches based on historical data and calendar
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information before determining the transportation schedules [3]. A review of this first
framework can be observed in [4].

The second framework applies operations research techniques to optimize the ma-
chine learning method’s results. Some examples are (1) using differential flower pollination
metaheuristics to optimize the hyper-parameters of a support vector machine model for
image-processing-based pavement condition observation [5] and (2) using the firefly algo-
rithm to optimize the hyper-parameters in a support vector regression machine learning
model used for the prediction of a building’s energy consumption level [6]. A recent review
of this type of study is presented in [7]. It shows that such research with such a framework
is still rare.

The third framework applies machine learning models to improve the quality of
operations research models. The first category in this framework is using machine learning
methods (e.g., reinforcement learning) to find the best operator in metaheuristics, as
described in a recent review [7]. The second category in this framework is using machine
learning to improve the quality of operations research methods. Two examples are (1) using
a decision tree to differentiate poor and good vehicle routing problem solutions [8] and
(2) using machine learning techniques to select bins in a stochastic bin packing problem
considering various features (the bin’s capacity, the reduced cost, and variable values in
the relaxed version of the optimization problem) [9].

Despite the continuous growth in machine learning studies in various fields and
the development of numerous operations research techniques, collaboration between the
machine learning and operations research fields is still in its initial phase. As mentioned
in [10], most of the proposed machine learning methods have not yet been applied to solve
vehicle routing problem variants, one of the most studied topics in operations research.

Machine learning was used by Arnold and Sörensen [8] to extract important features
and develop a problem-specific decision tree. It opened up the opportunity to design
heuristics with good knowledge of the studied problem. However, their approach still
required the development and running of heuristics. Differing from the three frameworks
mentioned above, this study introduces a more general framework that could be used to
predict the results of a solution method given an operations research problem without
running an operations research algorithm. Such a situation is encountered when the
decision-makers need to predict the system’s behavior without waiting for long periods of
computational time. This prediction is important before making any related decisions. As
an example, after the decision-makers predict the total travel times of trucks, they could
measure how much energy (gasoline or electricity) is consumed for deliveries and possibly
solve another follow-up optimization problem, e.g., (1) determining the number of energy
supply centers to locate within the area and (2) allocating trucks to energy supply centers,
to ensure that the trucks run smoothly.

The proposed framework could also be applied when data are generated based on
(1) the decision-maker’s knowledge or (2) historical data without any of the solution
method’s information. The broad implementation of the proposed framework is thus
possible. Implementing the framework for such practical data could be beneficial when it is
difficult for managers (as decision-makers) to install the required computational systems to
run the optimization models [11]. For ease of understanding, this study demonstrates the
proposed framework when solving the vehicle routing problem (VRP) using the genetic
algorithm (GA) method.

A framework for the use of machine learning techniques to observe the behavior
of operations research models (discussed in this study) has been suggested in recent
studies [12,13]. De Bock et al. [12] listed the steps as follows: (1) data generation and pre-
processing, (2) machine learning model selection for the processing of the data, and (3) the
interpretation of the model running results, including a feature importance analysis and
rule extraction. Although De Bock et al. [12] presented such a data generation framework,
they [12] did not specify any details regarding (1) which method should be used for data
generation and (2) how the data generation and the machine learning model’s running
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should be conducted when solving a specific case study. Different from [12], this study
proposes a detailed framework for data generation using a specific operations research
method and demonstrates how the proposed framework could be applied to solve a specific
operations research problem. Different from [13], which proposed a classification-model-
based prediction framework for a scheduling problem with several simple rules, this study
proposes a framework for the routing problem that is solved using metaheuristics and
predicted using regression machine learning models.

The structure of this study is as follows. Section 2 describes the proposed frame-
work used to solve the operations research problem using regression machine learning
techniques. Section 3 explains the case study: the VRP solved with the GA. Section 4
presents the numerical experiment’s results. Section 5 explains managerial insights related
to the implementation of the framework and lists possible applications of the proposed
framework. Section 6 concludes the study.

2. Proposed Operations Research Problem Solving Using Machine Learning
(OpReMaL) Framework

The solution of operations research problems is usually evaluated based on two
performance indicators: (1) the solution quality regarding the best objective value and
(2) the computational time. Although many solution methods are available, it is common
practice to initially solve the problem using a mathematical model to obtain the optimal
solutions for small-sized problems. The problems that arise when using a mathematical
model to solve larger-sized problems are (1) the long computational time and (2) the
possibility of not obtaining any feasible solution due to the complexity of the model.
Therefore, various methods that obtain slightly worse solutions but during a much shorter
computational time are applied, e.g., algorithms and metaheuristics [14].

In general, to obtain good-quality solutions, running any method for a longer compu-
tational time is necessary. Even though, in general, algorithms and metaheuristics require
much less computational time than mathematical models, these methods might still need a
long computational time to obtain solutions for larger-sized problems. As a consequence,
it is necessary to develop a fast way to conduct real-time prediction and deal with the
data generation process, which is costly [12]. This study resolves this long computational
time issue by replacing the initial solution generation method, which is the operations re-
search method (e.g., metaheuristics), with regression machine learning models. This study
proposes the Operations Research Problem Solving Using Machine Learning (OpReMaL)
framework, which is illustrated in Figure 1. The framework consists of (Step 1) the running
of the operations research method to generate the input and output data and (Step 2) the
running of the machine learning model to predict the generated output data based on the
input data.

Figure 1. The proposed Operations Research Problem Solving Using Machine Learning (OpRe-
MaL) framework.

In the first step of the OpReMaL framework (Figure 1), the operations research method
is run for several instances to produce input and output data. An instance refers to a
single operations research problem (with a set of problem parameters), generally solved
to obtain a single best solution. The input is related to the characteristics of the problem;
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meanwhile, the output refers to the objective value obtained after running a given solution
method, e.g., metaheuristics. The OpReMaL framework could be considered a black box.
The system represented by the black box is assumed to have a single means to generate the
optimization solution. In practice, decision-makers could have (1) a method that generates
a single solution for each instance or (2) a method that generates multiple solutions that
would later be further evaluated for the final decision-making. This study considers the
former. The generated input and output data will then be used to train the machine
learning method.

In the second step of the framework (Figure 1), the machine learning model is trained
and then used to predict the objective value in a much shorter time than when running op-
erations research methods. The machine learning models predict the single objective value
provided for each instance. When multiple objective values are considered, modifications
could be performed with either of two options. The first involves preprocessing multiple
objective values into a single weighted objective value. It includes the case in which the
total costs are measured as a single value [15]. The second is applying the framework
as many times as the number of objectives (and then selecting the best solution in the
post-processing stage, e.g., using Pareto front analysis).

The OpReMaL framework starts with the operations research method, which is fol-
lowed by the running of the machine learning model. During the real-time prediction
process, the trained machine learning model is used directly within a very short prediction
time. Such a situation occurs under the condition that the historical data size is already
sufficiently large and there is no fundamental change in the problem parameters. On the
contrary, when a new set of parameters is introduced into the problem, e.g., a new area of
customers with different characteristics from the original ones, the whole framework (the
operations research method and the machine learning model training) would need to be
executed again.

3. Case Study: Vehicle Routing Problem Resolved Using Genetic Algorithm
3.1. Vehicle Routing Problem Resolved Using Genetic Algorithm (VRP-GA)

To show the effectiveness of the proposed OpReMaL framework, this study considers
the case of the VRP that is resolved using the GA. The considered VRP is illustrated in
Figure 2. Given the number of customers that must be visited and whose demand must
be satisfied, multiple truck delivery routes are determined. The VRP considers that all
homogeneous trucks (with the same capacity) start and end their travel from a single depot
(node 0). The objective is to minimize the total travel times of all trucks. The mathematical
model for this well-known VRP is presented in [16].

Figure 2. The considered vehicle routing problem.

The chromosome in Figure 2 represents a single solution. Given the sequence of
customers to be visited by the truck, each route is constructed by subsequently adding
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customers while calculating the total amount of items transported by the truck. Before
the truck capacity is violated, a single truck route generation step is completed, and then
another truck is scheduled to satisfy the next customer’s demands. In the considered VRP,
the truck starts and ends at the depot.

The GA used to solve the VRP is shown in Figure 3. The GA uses the solution repre-
sentation shown in Figure 2. The algorithm starts by randomly generating population_size
chromosomes in the initial population. The objective value of each chromosome is cal-
culated. Next, new solutions are generated through crossover and mutation operations
within num_of_population populations.

Figure 3. The genetic algorithm that is used to solve the vehicle routing problem.

In each population, the new solution generation process is conducted as follows
(Figure 3): (1) selecting some best solutions (to be used as parent chromosomes during the
crossover operation), (2) applying the crossover operator, and (3) applying the mutation
operator. In part (1), a total of less than or equal to num_of_selected_initial_chromosomes
unique best chromosomes are selected from the latest population. Next, each of the selected
best chromosomes is given a selection probability (to be a parent chromosome) using the
objective value conversion formula presented in Equation (1). The selection probability of
each chromosome is then calculated using Equation (2). These equations set solutions with
shorter travel times to have a larger selection probability.

inverted_objective_value =
1

objective_value
(1)

selection_probability =
inverted_objective_value

total inverted_objective_value of all best chromosomes
(2)

When applying the crossover operator in part (2), two parent chromosomes are se-
lected randomly based on the selection probabilities. After selecting these two parent
chromosomes, a random number between 0 and 1 is generated. The crossover operator is
applied if the random number is less than the crossover_rate. Otherwise, the parent chro-
mosomes are stored as the result of the crossover operation. The outputs of the crossover
operation are called child chromosomes. After applying the crossover operator, the two best
chromosomes between two parent and two child chromosomes are selected to be stored in
the new population. Given the num_of_selected_initial_chromosomes initial best chromosomes
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that are already stored in the new population, more chromosomes are generated during the
crossover operation until the new population is filled with population_size chromosomes.

Given the population_size chromosomes in the new population, in part (3), each chro-
mosome in the new population is further processed by applying the mutation operator.
After selecting one parent chromosome using the selection probability in Equation (2), a
random number between 0 and 1 is generated. The mutation operator is applied if the
random number is less than the mutation_rate. Otherwise, the parent chromosome is stored
as the result of the mutation operation. After applying the mutation operator, the child
chromosome is selected to be stored in the new population, even though its objective value
is worse than the parent chromosome. Such a selection is allowed in order to ensure good
exploration while generating new solutions. The convergence of the GA is encouraged by
selecting the best chromosomes before applying the crossover operator.

The crossover and mutation operators are illustrated in Figure 4. In the crossover
operation, two-point crossover is applied. Two cutting points are randomly selected
within the parent chromosomes. The customer numbers at the middle of the cutting
points are copied into the child chromosomes (the red and blue highlighted parts in
Figure 4). The remaining parts in each child chromosome are copied from the other parent
chromosome. The remaining customer numbers are copied from left to right until all
customer numbers are inserted into the child chromosomes. The mutation operation is
applied by randomly selecting two customer numbers and exchanging their positions to
produce the child chromosome.

Figure 4. The crossover and mutation operators that are applied in this study.

3.2. Operations Research Problem Solving Using Machine Learning (OpReMaL) Framework Using
Regression Machine Learning Models for the VRP-GA Case Study

In this study, regression machine learning models are used to predict the objective
value of the VRP-GA (the total distances traveled by the trucks). The list of input and
output data is shown in Figure 5. The input data represent the characteristics of each
vehicle routing problem instance. Each input datum is presented as follows.

• min_distance_depot: the minimum distance between all customer–depot pairs;
• average_distance_depot: the average distance between all customer–depot pairs;
• max_distance_depot: the maximum distance between all customer–depot pairs;
• min_distance_nondepot: the minimum distance between all customer pairs, excluding

the depot;
• average_distance_nondepot: the average distance between all customer pairs, excluding

the depot;
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• max_distance_nondepot: the maximum distance between all customer pairs, excluding
the depot;

• min_demand: the minimum demand value among all customers;
• average_demand: the average demand value of all customers;
• max_demand: the maximum demand value among all customers;
• num_customers: the number of customers considered in the instance;
• vehicle_capacity: the capacity of homogeneous trucks.

Figure 5. The input and output data used for the regression machine learning models.

Based on the best result obtained using the GA for each VRP instance, the regression
machine learning models are applied to predict the total traveled distances of the trucks.
The regression machine learning model is expected to predict the objective value of the
VRP in a much shorter time than when using the GA.

4. Numerical Experiments

For the first step in the proposed framework (Figure 1), the data are generated using
the GA. The characteristics of the problem instances and the GA parameter settings used in
the numerical experiments are listed in Table 1. Other general characteristics and settings
in all instances are listed in Table 2. Initially, a 1000 × 1000 map is generated, and then
the customer coordinates in the x and y axes are determined randomly. The coordinates
are then used to measure the Euclidean distances between the customers. A value for
the capacity of the homogeneous trucks is selected randomly for each instance. The
objective values of the VRP are calculated using the GA. The data can be accessed online
at https://ubaya.id/vrp_ga_input_output (accessed on 2 December 2023). Considering
various sets of instances for the machine learning prediction could offer a means to resolve
the overfitting situation (which is caused by focusing only on one set of instances).

Table 1. The specific characteristics of the instances and the genetic algorithm parameter settings
used in the numerical experiments.

Set of
Instances

Number of
Instances

Number of
Customers 1 population_size num_of_selected_

initial_chromosomes
num_of_

populations

Average
Computational

Time Using
the GA (s)

Set 1 2000 [10, 100] 50 30 50 4
Set 2 2000 [201, 300] 50 30 50 16
Set 3 500 [401, 500] 100 50 100 181
Set 4 50 [601, 700] 200 80 200 1811

1 [minimum value, maximum value].

https://ubaya.id/vrp_ga_input_output
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Table 2. The general characteristics of the instances and the genetic algorithm parameter settings
used in the numerical experiments.

Characteristic or Parameter Value

Map width (square area) 1000
Customer demand [30, 100]

Homogeneous truck capacity 300, 400, or 500
crossover_rate 0.8
mutation_rate 0.2

For the second step in the proposed framework (Figure 1), the output data are pre-
dicted using regression machine learning models without solving the optimization problem
again. Several regression machine learning models are tested, and then the best mod-
els are reported in this section. The following regression machine learning models from
scikit-learn [17] are used for the predictions: (1) random forest regression, (2) linear regres-
sion, (3) RidgeCV, (4) ElasticNetCV, (5) LarsCV, (6) LassoCV, (7) LassoLarsCV, (8) Orthog-
onalMatchingPursuitCV, (9) ARDRegression, (10) BayesianRidge, (11) HuberRegressor,
(12) RANSACRegressor, (13) TheilSenRegressor, (14) PoissonRegressor, (15) TweedieRe-
gressor, (16) GammaRegressor, and (17) PassiveAggressiveRegressor. At the time of writing,
scikit-learn has more than 90,000 citations based on Google Scholar. Its minimal depen-
dencies and ease of use allow a high reproducibility rate in many studies. Each regression
machine learning model is described in Table 3.

Table 3. Explanations of each regression machine learning model.

Regression Machine
Learning Model Explanation

(1) Random Forest
Regression

An ensemble method consisting of some decision trees. It
considers the decision trees’ diversity when making

decisions [18].

(2) Linear Regression A linear equation used to represent relationships between
variables, generated based on the observed data [19].

(3) RidgeCV

A multiple linear regression with a reduction in the weights of
unimportant coefficients (ridge regression) and cross-validation.

It allows the greater generalization of the prediction
model [20,21].

(4) ElasticNetCV

A regularization method that eliminates the redundancy of
variables. It has some penalty terms that are used as a

compromise strategy between the LASSO and ridge regression
techniques [22]. ElasticNetCV is an ElasticNet with

cross-validation [21].

(5) LarsCV

A linear regression machine learning model that starts with all
coefficients equal to 0 and then gradually updates the coefficients
after identifying the most correlated input with the output data. It
is very efficient because of its piecewise linear solution paths [23].

LarsCV applies cross-validation [21].

(6) LassoCV

A linear regression machine learning model with the least
absolute shrinkage and selection operator (LASSO) that selects
variables and determines regression coefficients simultaneously

in one step [24]. LassoCV applies cross-validation [21].

(7) LassoLarsCV A cross-validated LASSO, applied in the LARS algorithm [21].

(8) OrthogonalMatchingPur-
suitCV

A method that iteratively selects the feature that has the largest
correlation with the current residual. Each selected feature will
then be projected to the span of selected features. The iteration

continues until K columns are selected [25]. It applies
cross-validation [21].
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Table 3. Cont.

Regression Machine
Learning Model Explanation

(9) ARDRegression

A Bayesian model with automatic relevance determination that
prunes redundant features by estimating the parameters of the

data distribution based on a maximum likelihood
consideration [26].

(10) BayesianRidge A Bayesian method that considers a common variance for all
regression coefficients [27].

(11) HuberRegressor A regression machine learning model that is robust to outlier data
due to considering a linear loss for such outlier data [21].

(12) RANSACRegressor

An iterative algorithm that conducts the robust estimation of
parameters based on inliers from the data after randomly

extracting matching points. The inliers are determined based on a
threshold [21,28].

(13) TheilSenRegressor A median-based estimator that uses generalization in multiple
dimensions, allowing it to be robust to multivariate outliers [21].

(14) PoissonRegressor
A generalized linear model that considers the dependent

variables to be independent and random variables that follow a
Poisson distribution [29].

(15) TweedieRegressor
A generalized linear model that considers the dependent

variables to be independent and random variables that follow a
Tweedie distribution [21].

(16) GammaRegressor
A generalized linear model that considers the dependent

variables to be independent and random variables that follow a
Gamma distribution [21].

(17) PassiveAggressiveRe-
gressor

An online learning regression machine learning model that learns
data that are added continuously [30]. It is suitable for large-scale

learning [21].

The regression machine learning models are evaluated via the mean absolute error
(MAE) values, as shown in Figure 6. The three best models with the lowest MAE values
are random forest regression (2216.86), HuberRegressor (4940.09), and ARDRegression
(5013.01). The average objective value of all instances is 98,576.

The regression machine learning models are evaluated via the mean squared error
(MSE) values, as shown in Figure 7. The three best models with the lowest MSE values are
random forest regression (12,204,263.19), ARDRegression (51,956,577.89), and TheilSenRe-
gressor (58,285,906.56). The regression machine learning models are evaluated via the root
mean squared error (RMSE) values, as shown in Figure 8. The three best models with the
lowest RMSE values are random forest regression (3493.46), TheilSenRegressor (7634.52),
and PassiveAggressiveRegressor (9610.48). A list of all MAE, MSE, and RMSE values for
each model is shown in Table 4. The experiments with the MAE, MSE, and RMSE metrics
show that the best model is random forest regression.

To further evaluate the proposed framework, the prediction is conducted when con-
sidering each set of instances (in Table 1) separately. The best MAE value, the average
objective value, and the best regression machine learning model when considering each
set of instances are shown in Table 5. The prediction quality is good because the deviation
measured by the best MAE in contrast to the average objective value is less than 5% for
each set of instances. When compared with the results in Figure 6, the best model is not
always the same. It could be concluded that it is necessary to apply different regression
machine learning models for each set of instances (Table 5). This would allow a better
prediction to be produced, rather than considering instances from all sets simultaneously
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(Figure 6). However, the decision-maker could still consider using the whole set of data to
apply a more general method for the problem characteristics.

Figure 6. Performance of all regression machine learning models (with mean absolute error metric).

Figure 7. Performance of all regression machine learning models (with mean squared error metric).
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Figure 8. Performance of all regression machine learning models (with root mean squared
error metric).

Table 4. Performance metrics for each regression machine learning model when considering all
data instances.

Regression Machine Learning Model MAE MSE RMSE

(1) Random Forest Regression * 2216 * 12,204,263 * 3493
(2) Linear Regression 5013 51,871,442 7202
(3) RidgeCV 5015 51,800,637 7197
(4) ElasticNetCV 65,859 5,903,239,905 76,832
(5) LarsCV 5013 51,871,442 7202
(6) LassoCV 5038 52,427,706 7240
(7) LassoLarsCV 5013 51,871,442 7202
(8) OrthogonalMatchingPursuitCV 5037 52,412,692 7239
(9) ARDRegression 5013 51,956,577 7208
(10) BayesianRidge 5013 51,868,066 7201
(11) HuberRegressor 4940 56,948,824 7546
(12) RANSACRegressor 5043 51,806,962 7197
(13) TheilSenRegressor 5369 58,285,906 7634
(14) PoissonRegressor 13,100 397,203,436 19,929
(15) TweedieRegressor 62,313 5,299,130,027 72,795
(16) GammaRegressor 62,694 5,312,249,478 72,885
(17) PassiveAggressiveRegressor 6847 92,361,365 9610

* Best performance value for each metric.

Table 5. MAE values when each set of instances is considered separately.

Set of
Instances Best MAE Average

Objective Value Best Model Computational
Time (s)

Set 1 932.58 (3.8%) 24,863 Random Forest Regression 2
Set 2 2142.51 (1.6%) 132,821 PoissonRegressor <1
Set 3 3839.04 (1.6%) 234,490 PoissonRegressor <1
Set 4 3452.44 (1.1%) 318,115 RidgeCV <1
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Each of the best regression machine learning models requires less than two seconds for
its training. Using any regression machine learning model, the objective value prediction
of any instance could be conducted within less than one second. When compared with
the computational time presented in Table 1, the objective value prediction using the
regression machine learning model is up to 1800 times faster than when the objective
values are calculated using the GA, especially when dealing with large-sized problems.
Further evaluations using each set of instances when using the MSE and RMSE are shown
in Tables 6 and 7, respectively. The experiments with the MAE, MSE, and RMSE metrics
show that the best models are random forest regression (for Set 1), PoissonRegressor (for
Set 2), PoissonRegressor (for Set 3), and RidgeCV (for Set 4).

Table 6. MSE values when each set of instances is considered separately.

Set of Instances Best MSE Best Model Computational Time (s)

Set 1 1,456,221.20 Random Forest Regression 2
Set 2 7,513,768.98 PoissonRegressor <1
Set 3 23,010,249.50 PoissonRegressor <1
Set 4 18,644,231.03 RidgeCV <1

Table 7. RMSE values when each set of instances is considered separately.

Set of Instances Best RMSE Best Model Computational Time (s)

Set 1 1206.74 Random Forest Regression 2
Set 2 2741.13 PoissonRegressor <1
Set 3 4796.90 PoissonRegressor <1
Set 4 4317.90 RidgeCV <1

5. Managerial Insights and Potential Applications

The proposed OpReMaL framework was designed to predict the objective values
of operations research problems. Different operations research problems have different
problem characteristics (which would be considered as the input data). When generating
the objective value as the output data, a specific operations research method would be
applied to the set of input data. When solving each specific type of operations research
problem, the best solution method could be different. This best solution method is selected
through extensive numerical experiments [14,31]. Likewise, given different sets of input
and output data, the best regression machine learning models should be tested. In this
study, we test the effectiveness of the proposed framework by observing the VRP when
solved using the GA.

In terms of computational time, it is shown that the prediction models could predict the
objective values in a very short time (around 1 s). It is much shorter than the average time
required to solve the VRP-GA for the largest-sized instance, which is around 1800 s (Table 1).
We considered up to 700 customers in the numerical experiments, which was larger than the
size of the real problem (e.g., 385 customers in [32]). This shows that the proposed method
could deal with real-world problems effectively. It could be concluded that the proposed
OpReMaL does not only predict the output of operations research problems well but also
reduces the computational (prediction) time significantly. In the current big data era, it
is strongly necessary to develop fast solution methods to ensure that good decisions are
made based on recently collected data. It offers a huge opportunity to provide high-quality
services and generate significantly larger profits for businesses and decision-makers.

In practice, the decision-makers simply need to run the prediction using regression
machine learning when they need to observe the total traveled distances based on the given
information of the VRP. However, when implementing the OpReMaL framework, it is
necessary to understand when the prediction model needs to be tuned, which is when the
characteristics of the VRP input differ from the ones considered before. The tuning starts
with the addition of more input data by solving the VRP for the new data set using the GA,
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using the updated input data to tune the regression machine learning models and then
selecting the best one for the new predictions.

6. Conclusions

This study proposed the Operations Research Problem Solving Using Machine Learn-
ing (OpReMaL) framework to predict the objective values of a vehicle routing problem. The
proposed framework requires a very short time without running an operations research
algorithm, which might require a long computational time, especially for large-sized prob-
lems. The proposed framework (1) differs from most frameworks that combine operations
research and machine learning methods and (2) is the first one that considers regression
machine learning models to observe the characteristics of the vehicle routing problem
solved using the genetic algorithm. The numerical experiment’s results showed that the
best models for all sets of instances were random forest regression, the generalized linear
model with a Poisson distribution, and ridge regression with cross-validation.

The proposed OpReMaL framework predicts the behavior of data that belong to a
specific operations research problem and solution method. For future studies, it would
be interesting to observe more operations research problems (e.g., the location routing
problem [33], routing problem for shared logistics [34], electric vehicle relocation prob-
lem [14], multi-altitude drone routing problem for post-disaster observation [32]) and more
solution methods (e.g., beetle swarm optimization [35], hybrid metaheuristics [36,37]) and
show how the proposed OpReMaL framework could also obtain good solutions. It is
challenging to determine the appropriate input data selection and observe how different
the prediction result would be when different operations research solution methods are
implemented to solve the problem. Future studies could also consider testing more ad-
vanced machine learning techniques, e.g., ensemble machine learning models [38]. Another
possible implementation of the proposed method is in predicting the features of the best
solutions instead of the objective. The issue to resolve is how to deal with the limited
capability of machine learning models to predict only a single value, while the features of
the best solutions are much more complicated than a single value. Such a problem needs a
great deal of further investigation.
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