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نعجتانيوئرروصقيهةداحلاةيسفنتلاةقئاضلاةمزلاتم:ثحبلافادهأ
ىلعةردقلاةطيسولاةيعذجلاايلاخلاترهظأ.مدلايفةجسكلأاصقنولئاوسلا
ةداضمةطشنأمهيدل.ةيباهتللااايلاخلاوتاباهتللالديؤملاطيسولاتايوتسمضفخ
بنجتىلعةردقلانعلاضف،تابوركيمللةداضموةتامتسلالةداضموتاباهتللال
ةطيسولاةيعذجلاايلاخللنوتراوملاهتاناكمإثحبلااذهميق.ةئرلاتاباصإ
اهببسييتلانارئفلاةئرايلاخيفجمربملاايلاخلاتوموباهتللااطيبثتلةيرشبلا
.ينهدلاديراكسلاديدع

يفةيرشبلاةطيسولاةيعذجلاايلاخللنوتراوملاهجلاعمدختسا:ثحبلاةقيرط
نوتراوملاهايلاخنمةفلتخمابسنينهدلاديراكسلاديدعنعةجتانلاةئرلاايلاخ
،1:10،-5-:1،-1-:1يهو،-"2لإ"وةيرشبلاةطيسولاةيعذجلاايلاخلل
لبقتسمو،2-نيسنتويجنلأللوحملاميزنلإلةينيجلاتاريبعتلاسايقمت.1:25و
يس-سكا-يسو،باباكيوونلالماعلاو،نشيكيلجللةمدقتملاةيئاهنلاتاجتنملا
زاريميلوبلالعافتنميسكعلاخسنلامادختساب9-دنيجيلنيكوميكرصنع
لماعو12-نيكولرتناويسيلعافتلانيتوربلاتايوتسمسايقمتولسلستملا
.ازيللإاةينقتةقيرطمادختسابافلأمرولارخن
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ليوحتميزنإنمةيرشبلاةطيسولاةيعذجلاايلاخللنوتراوملاهداز:جئاتنلا
لماعلاو،9-دنيجيلنيكوميكرصنعيس-سكا-يستضفخو2-نيسنتويجنلأا
ىدأامك.نشيكيلجللةمدقتملاةيئاهنلاتاجتنملاتلابقتسمو،باباكيوونلا
رخنلماعو12-نيكولرتناو،يسيلعافتلانيتوربلاطيبثتىلإاضيأجلاعلا
ايلاخلاوةتيملاايلاخلاةبسننمللقهنكلو،ةيحلاايلاخلاةبسنةدايزوافلأمرولا
ةيسفنتلاةقئاضلاةمزلاتمايلاخجذومنكةيباهتللاانارئفلاةئرايلاخيفةجمربملا
.ةداحلا

ةيعذجلاايلاخللنوتراوملاهايلاخلةكرتشملاةفاقثلاتففخ:تاجاتنتسلاا
ميزنلإلينيجلاريبعتلاةدايزللاخنمباهتللاانم"2لإ"وةيرشبلاةطيسولا
نيكوميكرصنعيس-سكا-يسنيجلاتاريبعتليلقتعم2-نيسنتويجنلأللوحملا
ةمدقتملاةيئاهنلاتاجتنملاتلابقتسموباباكيوونلالماعلاو9-دنيجيل
؛يسيلعافتلانيتوربلاوافلأمرولارخنلماعنيتوربتايوتسمليلقت؛نشيكيلجلل
.1:1ةبسنبةيلعافرثكألكشبةرخأتملاوةركبملاةتامتسلااورخنلاليلقتو

؛جمربملاايلاخلاتوم؛ةداحلاةيسفنتلاةقئاضلاةمزلاتم:ةيحاتفملاتاملكلا
باباكيوونلالماعلا؛ةيرشبلاةطيسولاةيعذجلاايلاخللنوتراوملاه؛باهتللاا

Abstract

Acute respiratory distress syndrome (ARDS) is a type of

lung failure caused by fluids and hypoxemia. Mesenchy-

mal stem cells (MSCs) have been shown to decrease levels

of pro-inflammatory mediators and inflammatory cells.

These cells have anti-inflammatory, anti-apoptotic, and

anti-microbial activity, and protect against lung injury.
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Objective: This research evaluated the potential of hu-

man Wharton’s jelly MSCs (hWJMSCs) to inhibit

inflammation and apoptosis in lipopolysaccharide (LPS)-

induced rat lung cells (L2).

Methods: hWJMSC treatment in LPS-induced rat lung

cells was performed with 1:1, 1:5, 1:10, or 1:25 ratios of

hWJMSCs to L2 cells. The gene expression of

angiotensin-converting enzyme-2 (ACE-2), receptor for

advanced glycation end products (RAGE), nuclear factor

kappa B (NFkB), and C-X-C motif chemokine ligand-9

(CXCL-9) was quantified with RT-PCR, and the levels

of C-reactive protein (CRP), interleukin-12 (IL-12), and

tumor necrosis factor-alpha (TNF-a) were measured with

ELISA.

Results: hWJMSCs increased ACE-2 gene expression,

and decreased CXCL-9, NFkB, and RAGE gene

expression. The treatment also suppressed CRP, TNF-a,
and IL-12 levels, and increased the percentage of live

cells, but decreased the percentages of necrotic cells and

apoptotic cells in inflammatory rat lung cells, which

served as an ARDS cell model.

Conclusion: Co-culture of hWJMSCs and L2 cells miti-

gated inflammation through increasing ACE-2 gene

expression, and decreasing CXCL-9, NFkB, and RAGE

gene expression; decreasing TNF-a and CRP protein

levels; and decreasing necrosis, and early and late

apoptosis. A co-culture ratio of 1:1 was most effective.

Keywords: Apoptosis; ARDS; hWJMSCs; Inflammation;

NFkB

� 2023 The Authors. Published by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Acute respiratory distress syndrome (ARDS) is a type of
lung failure characterized by the presence of fluid and hyp-
oxemia.1 It is the main symptom of coronavirus disease 2019

(COVID-19), which was recently responsible for a highly
fatal pandemic.2 To date, the World Health Organization
has confirmed 763,740,140 global cases and 6,908,554

deaths,3 including 6,759,513 cases and 161,140 deaths in
Indonesia.4 Edema in the lungs promotes lung
inflammation and epithelial cell destruction.5,6 Cytokines
and chemokines are abundantly released in the initial phase

of infection. The pathophysiology becomes complicated,
owing to inflammatory mediators including tumor necrosis
factor-a (TNF-a); interleukin-1b (IL-1b), IL-4, IL-6, IL-8,
IL-19, IL-12, and IL-13; and chemokines (C-X-C motif
ligand (CXCL-8, CXCL-9, and CXCL-10) and CeC motif
ligand (CCL-2, CCL-3, and CCL-5)).7

ARDS is also characterized by angiotensin-converting
enzyme-2 (ACE-2) downregulation, which results in multi-
ple organ injuries in patients with COVID-19.8e10 In
homeostasis, ACE-2 neutralizes severe effects on the renin-
angiotensin system and decreases inflammatory mediators,
such as IL-12 and TNF-a.10 Furthermore, ARDS pathology

appears to be consistent with changes in C-reactive protein
(CRP) levels. CRP levels in systemic inflammation are
frequently used for some diagnoses, although the link

between CRP and ARDS has been poorly explained.11

One critical mechanism in ARDS pathology is the nuclear
factor kappa B (NFkB) signaling pathway.12,13 NFkB
hyperactivity exacerbates ARDS symptoms.12,13 The
activity of NFkB is influenced by the receptor for advanced
glycation end products (RAGE).14

Mesenchymal stem cells (MSCs) have many benefits in

mitigating inflammation through regulating inflammatory
mediators.15,16 In ARDS models, MSCs therapy has been
reported to suppress pro-inflammatory cytokines and

decrease inflammatory cell numbers. MSCs also have activity
against apoptosis, microbial infections, cellular damage, and
other lung injuries, as indicated by a growing number of in vivo

and pre-clinical investigations.17 In contrast, studying ARDS
requires a model of cytokine storms. Inflamed lung cells are a
feasible ARDS model.18 Therefore, this study evaluated the
effects of human Wharton’s jelly MSCs (hWJMSCs) in

suppressing inflammation in lipopolysaccharide (LPS)-
induced rat lung cells, as an ARDS cell model. ACE-2,
CXCL-9, NFkB, and RAGE gene expression, as well as

CRP, TNF-a, and IL-12 levels, and apoptosis percentages
were measured.

Materials and Methods

L2 and hWJMSC cultures

Rat lung cells (L2 cells) (ATCC�CCL-149) and primary

cells of characterized hWJMSCs were obtained from the
Biomolecular and Biomedical Research Center, Aretha
Medika Utama, Bandung, Indonesia. L2 cell culture was

performed in Dulbecco’s modified Eagle’s medium, high
glucose (Biowest, L0103-500), whereas hWJMSC culture
was performed in minimum essential medium-a (Biowest,
L-475-500). Each basal medium was supplemented with

10% fetal bovine serum (Biowest, S181B-500), 1%
antibiotic-antimycotic agent (ABAM) (Biowest, L0010-
100), 1% amphotericin B (Biowest, L0009-050), 1% mini-

mum essential medium vitamins, 100 � without L-glutamine
(Biowest, X0556-100), 1% glutamine, stable, 100�, 200 mM
(Biowest, X0551-100), and 0.1% gentamicin (Biowest,

L0012-100).19

LPS induction and co-culture treatment

L2 cells that had reached 80e90% confluence were har-
vested and seeded at 1 � 106 cells per T25 flask. After

reaching 80% confluence, the cells were treated with 1 mg/mL
LPS for 18 h to establish the ARDS cell model20 and were
then co-cultured with hWJMSCs for 24 h at 37 �C in a 5%
CO2 incubator. The treatment was performed with co-

culture ratios of 1:1, 1:5, 1:10, and 1:25 hWJMSCs:L2 cells.
A transwell plate with 3 mm pores was used with ARDS
model cells (LPS-induced L2 cells) in the lower chamber and

hWJMSCs in the upper chamber. The cell supernatants were
sampled for ELISA, and the pellets were sampled for gene
expression analysis.21

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Figure 1: Effects of hWJMSCs treatment on ACE-2, CXCL-9,

NFkB, and RAGE gene expression in LPS-induced L2 cells, as an

ARDS cell model. Data are shown as averages with standard

deviations. Treatment I: negative control; II: positive control

(LPS-induced rat lung cells), as an ARDS cell model; III:

hWJMSCs with ARDS cell co-culture (1:1); IV: hWJMSCs with

ARDS cell co-culture (1:5); V: hWJMSCs with ARDS cell co-

culture (1:10); VI: hWJMSCs with ARDS cell co-culture (1:25).

Different letters (a, b, c, and d in 1A-B; a, b, and c in 1C; and a,

ab, bc, and c in 1D) indicate statistical differences, according to

Tukey’s HSD post hoc test at p � 0.05.
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Quantification of gene expression

The gene expression of ACE-2, NFkB, RAGE, and

CXCL-9 was quantified with RT-PCR. RNAs were isolated
with a Direct-zol RNA Miniprep Plus Kit (Zymo, R2073),
then processed for cDNA synthesis with iScript Reverse

Transcription Supermix (Bio-Rad, 170-8841). The obtained
cDNA was subsequently mixed with primers (Macrogen),
nuclease free water (Zymo, R2073), and SsoFast Evagreen
Supermix (Bio-Rad, 172-5200). Reactions were run on an

AriaMx RT-PCR system (Agilent). Primer designs, RNA
purity and concentration are shown in Tables 1 and 2
respectively.21e23

Measurement of TNF-a, IL-12, and CRP levels

TNF-a, IL-12, and CRP were measured with rat TNF-a,
rat IL-12, and rat CRP ELISA kits (Elabscience, E-EL-
R2856, E-EL-R0064, and E-EL-R0506, respectively). The

results were read at 450 nm in a microplate reader (Multiskan
Go, Thermo Scientific, 1510-00778C).24

Quantification of live and dead cells

Apoptotic, live, and necrotic cells were quantified with flow
cytometry. The treated cells were sampled and then washed
twice with 500 mL FACS buffer. Cell pellets were prepared
with an Annexin V-FITC/PI Apoptosis Detection Kit

(Elabscience, E-CK-A211). Subsequently, the cells were
measured with MACSQuant Analyser 10 (Miltenyi Biotec).20

Statistical analysis

The data were processed in IBM SPSS 20. After a

normality test was performed, normal data were analyzed
with analysis of variance followed by Tukey’s HSD post hoc
test, with a significance threshold of p � 0.05.

Results

ACE-2, CXCL-9, NFkB, and RAGE gene expression

The expression of the ACE-2, CXCL-9, NFkB, andRAGE
genes was determined (Figure 1). LPS induction significantly
Table 1: Annealing of GAPDH: 57.

Gene

Symbol

Forward (50e30) Reverse (50e30)

ACE-2 AACAAGCACAGACTACAATCGT ACGGTTTGATCTC

RAGE CGAGTCTACCAGATTCCTG CTTTGCCATCAGG

NFkB GGACTATGACTTGAATGCGG ACACCTCAATGTC

CXCL-9 ACTGAAATCATCGCTACACTG GTGTATTAAAGG

GAPDH TCA AGA TGG TGA AGCAG ATGTAGGCCATG

Table 2: RNA purity and concentration.

Group Treatment

I Negative Control (untreated L2 cells, normal L2 cells)

II Positive Control (LPS-induced L2 cells, ARDS cells mo

III WJMSCs 1:1 (hWJMSCs:ARDS cells)

IV WJMSCs 1:5 (hWJMSCs:ARDS cells)

V WJMSCs 1:10 (hWJMSCs:ARDS cells)

VI WJMSCs 1:25 (hWJMSCs:ARDS cells)
decreased ACE-2 gene expression, and increased CXCL-9,

NFkB, and RAGE gene expression. hWJMSC co-cultures
with LPS-induced L2 cells showed upregulated ACE-2 gene
expression, and downregulated CXCL-9, NFkB, and RAGE
Product Size

(bp)

Annealing

(�C)
Reference

TTTGAAGGT 248 58 NM_001012006.2

AATCAG 163 56 NM_053336.2

TTCTTTCTG 230 57 NM_199267.2

GAAGGCGT 278 54 NM_145672.4

AGGTCCAC 217 NM_001289726.1

Concentration (ng/mL) Purity (l260/l280 nm)

168.04 2.162

del) 315.80 2.217

312.00 2.188

564.72 2.329

370.76 2.177

435.80 2.163



I II III IV V VI
0

200

400

600

800

1000

Treatments

TN
F-
α
Le
ve
l(
pg

/m
L)

A

a

c
ab

bc
c

d

I II III IV V VI
0

2000

4000

6000

Treatments

TN
F-
α
Le

ve
l (
pg

/m
g.
pr
ot
)

B

a

d

ab
bc

c
d

I II III IV V VI
0

2

4

6

8

10

Treatments

C
R
P
Le
ve
l(
ng

/ m
L)

C

a

d

b
b

c c

I II III IV V VI
0

20

40

60

80

Treatments

C
R
P
Le

ve
l(
ng

/m
g.
pr
ot
)

D

a
b c

d d

e

I II III IV V VI
0

200

400

600

800

1000

Treatments

IL
-1
2
(p
g/
m
L )

E

a
b

ccdde
e

I II III IV V VI
0

1000

2000

3000

4000

Treatments

IL
-1
2
(p
g/
m
g.
p r
o t
)

F

a

b b b b b

Figure 2: Effects of hWJMSCs on TNF-a, CRP, and IL-12 protein levels in LPS-induced rat lung cells, as an ARDS cell model. Data are

shown as averages with standard deviations. Treatment I: negative control, II: positive control (LPS-induced rat lung cells), as an ARDS

cell model, III: hWJMSCs with ARDS cell co-culture (1:1), IV: hWJMSCs with ARDS cell co-culture (1:5), V: hWJMSCs with ARDS cell

co-culture (1:10), VI: hWJMSCs with ARDS cell co-culture (1:25). Different letters (a, ab, bc, c, and d in A-B; a, b, c, and d in 2C; a, b, c,

d, and e in Figure 1D; a, b, c, cd, de, and e in 2E; and a and b in 2F) indicate statistical differences, according to Tukey’s HSD post hoc test

at p � 0.05.
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gene expression. The highest ACE-2 gene upregulation was
induced by hWJMSC-L2 co-culture with L2 cells at a ratio of

1:5, whereas the highest CXCL-9, NFkB, and RAGE gene
downregulation was induced at a co-culture ratio of 1:1. In
general, hWJMSC and L2 co-culture at a ratio of 1:1 showed
the greatest therapeutic effects.

Protein levels

The protein levels of TNF-a, CRP, and IL-12 were
determined (Figure 2). LPS induction increased the release
of those proteins in L2 cells. hWJMSC-L2 co-culture

decreased the levels of these proteins, except IL-12. Co-
culture at a ratio of 1:1 resulted in the greatest decreases in
TNF-a and CRP protein.

Live, necrotic, and apoptotic cells

Apoptotic cell assays indicated the percentages of live,
necrotic, early apoptotic, and late apoptotic cells (Figures 3
and 4). The co-culture of hWJMSCs with LPS-susceptible
L2 cells did not influence the percentage of live cells but

did influence the percentage of dead cells. The co-culture of
hWJMSCs and L2 cells resulted in significantly less necrosis,
early apoptosis, and late apoptosis than observed in the

positive control. Co-culture at a ratio of 1:5 hWJMSCs to L2



Figure 3: Plots of apoptosis assays, determined by flow cytometry. Treatment I: negative control; II: positive control (LPS-induced rat

lung cells), as an ARDS cell model; III: hWJMSCs with ARDS cell co-culture (1:1); IV: hWJMSCs with ARDS cell co-culture (1:5); V:

hWJMSCs with ARDS cell co-culture (1:10); VI: hWJMSCs with ARDS cell co-culture (1:25).
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Figure 4: Effects of hWJMSCs on live cells, necrosis, early apoptosis, and late apoptosis in LPS-induced rat lung cells, as an ARDS cell

model. Data are shown as averages with standard deviations. Treatment I: negative control; II: positive control (LPS-induced rat lung
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hWJMSCs inhibit inflammation and apoptosis 1523



Figure 5: Proposed anti-inflammation and anti-apoptotic pathways of hWJMSCs in lung cell inflammation. LPS: lipopolysaccharide;

hWJMSCs: human Wharton’s jelly mesenchymal stem cells; TLR-4: Toll-like receptor-4; ACE-2: angiotensin converting enzyme-2;

RAGE: receptor for advanced glycation end products; ERK1/2: extracellular signal-regulated kinase; NFkB: nuclear factor kappa B;

CXCL-9: C-X-C motif chemokine ligand-9; CRP: C-reactive protein; IL-8: interleukin-8; TNF-a: tumor necrosis factor-alpha. Red arrow:

decrease; black arrow: increase. The inflammatory effect of LPS induction is inhibited by hWJMSCs treatment. This inhibition upre-

gulates ACE-2 production, thereby decreasing TNF-a; downregulates RAGE, thereby decreasing NFkB cascade activity; and decreases

CRP and CXCL-9 production. The anti-inflammatory effects of hWJMSCs inhibit apoptosis in lung cells.

W. Widowati et al.1524
cells generated the highest decrease in necrosis and early
apoptosis, and a ratio of 1:1 generated the highest decrease in

late apoptosis among the treatments.

Discussion

This research investigated the effects of hWJMSCs-L2 co-
culture on L2 cells that had been exposed to LPS. LPS enters

cells via CD14 and Myeloid Differentiation factor-2 (MD-2)
binding to Toll-like receptor-4 (TLR)-4. This binding in-
hibits ACE-225,26 and stimulates the activation of mitogen-

activated protein kinase, extracellular signal-regulated ki-
nase (ERK1/2), and p38. This activation causes NFkB to
stimulate the release pro-inflammatory cytokines, such as
TNF-a, thereby resulting in inflammation (Figure 5).27e29

In this study, LPS induction successfully induced ARDS
in L2 cells, as evidenced by increased NFkB, CXCL-9, and
RAGE gene expression, and decreased ACE-2 gene expres-

sion (Figure 1), as well as increased TNF-a and CRP protein
expression (Figure 2AeB) in all positive controls. These
findings were consistent with those from previous research

showing that LPS-induced L2 cells express inflammatory
genes, such as CXCL-9, IL-12, and CCL-2.29

Some studies have confirmed that ACE-2 is a counter-

regulatory protein in ARDS.13 Recent research has
suggested that ACE-2 might regulate the release of cyto-
kines, such as TNF-a and IL-12.9 Evidence has also
indicated that ACE-2 functions as an anti-inflammatory

protein.30,31 In a recent study, ACE-2 levels have been
found to be lower in LPS-induced ARDS in mice.32
hWJMSC therapy has been widely studied in the treat-
ment of lung inflammation due to COVID-19. Immunoreg-

ulatory, angiogenic, antiapoptotic, and cell migration factors
are all paracrine factors secreted by MSCs. MSCs migration
and targeting to injured areas for healing are facilitated by

these cytokines. MSCs promote macrophage M2 phenotype
differentiation, increase release of anti-inflammatory cyto-
kines, and decrease levels of pro-inflammatory molecules
TNF-a, IL-6, and IL-1, thus facilitating healing and pro-

tecting tissue against cytokine storms.33

Our results indicated that hWJMSCs ameliorated ARDS
in lung cells, as indicated by lower expression of the NFkB,
RAGE, and CXCL-9 genes (Figure 1) and higher
expression of ACE-2 than observed in the positive con-
trol. Likewise, the ELISA data indicated that hWJMSCs

decreased the levels of CRP and TNF-a, but increased the
levels of IL-12 proteins (Figure 2). The most effective
hWJMSCs-L2 co-culture ratio was 1:1 (treatment III).

hWJMSCs have been shown to alleviate cytokine
storms.33e35 Our previous study has reported that starved
hWJMSCs secrete anti-inflammatory proteins, such as
Interleukin 1 receptor antagonist (IL-1ra), Fibroblast

Growth Factor-7 (FGF-7), and antibacterial protein LL-
37.27 We also reported that hWJMSCs secrete indolamine
2,3 dioxygenase (IDO), an anti-inflammatory protein that

regulates TNF-stimulated gene-6 (TSG-6) expression and
consequently ameliorates inflammation.34 However an
absence of IL-12 suppression suggested that IL-12 was

not the ultimate inflammatory mediator. In our previous
study, hWJMSCs were found to decrease lung inflammation
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in ARDS rats through decreasing IL-18 and IL-1b, and
consequently suppressing the NFkB cascade.18

Flow cytometry analysis demonstrated that LPS induc-
tion caused cell death (Figure 4), which was associated with
an increase in TNF-a levels. The binding of TNF-a to its

receptors (e.g., p75, CD120B, or TNFRSF1B) results in
recruitment of TNF receptor associated death domain
(TNFRADD) and Fas-associated death domain (FADD).

The resultant complex then activates caspase-8 (CASP-8),
followed by CASP-3, and promotes apoptosis.36 hWJMSCs
treatment decreased cell death. On the basis of our results,
treatment III (1:1) elicited the least late apoptosis,

whereas treatment IV (hWJMSCs-L2 co-culture at a ratio
of 1:5) resulted in more live cells, less necrosis, and less early
apoptosis than the other treatments. These data demon-

strated hWJMSCs’ anti-apoptotic effects in lung cells,
owing to less TNF-a release after treatment. Moreover, a
previous study has indicated that hWJMSCs treatment in

animals lungs upregulates FGF-7, thereby inhibiting
apoptosis.1,18,33

In summary, this study elucidated how hWJMSCs miti-
gate ARDS through decreasing inflammation and apoptosis

in LPS-induced L2 cells. At a co-culture ratio of 1:1 with L2
cells, hWJMSCs generated the best amelioration of ARDS.
Inflammatory mediators, such as CXCL, NFkB, RAGE,

CRP, and TNF-a, were downregulated, and apoptosis was
inhibited. The proposed pathway of ARDS mitigation by
hWJMSCs is shown in Figure 5.

Conclusions

hWJMSCs treatment in LPS-induced lung cells mitigated

inflammation by increasing ACE-2 gene expression, while
decreasing CXCL-9, NFkB, and RAGE gene expression;
decreasing TNF-a and CRP levels; and decreasing necrosis,

early, and late apoptosis. A ratio of 1:1 of hWJMSCs to lung
cells was the most effective.
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