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Abstract Response Surface Methodology (RSM) is an integrated tool for optimization purposes based on an 
experiment. The designed experiment ensures the researcher fully controls all factors that potentially influence 
the response and simultaneously fulfills the orthogonal assumption among factors. On the other side, 
conducting DoE for a continuous production process raises difficulties since it should be interrupted during 
experiment runs. Meanwhile, the rapid development of production data acquisition systems provides stored 
records or observational data with potentially useful information for supporting process optimization. This 
paper proposes an alternative framework for adopting observational data for RSM analysis to reduce the need 
for real experimentation and ongoing production disruption. Referring to three stages of classic RSM and 
adopting the instance selection concept in the data mining context, the proposed framework aimed to achieve 
an observational data condition similar to an orthogonal D-optimal DoE based on criteria of Variance Inflation 
Factor (VIF) and determinant of matrix containing factor levels. It starts by applying a genetic algorithm for 
iteratively selecting an orthogonal subset of observational data and generating new actual experiment points to 
satisfy an orthogonality criterion. Then, a linear RSM model is fitted and continued by adding new experiment 
points. Then a standard numerical optimization method is applied to search among factor levels that optimize 
the response. A simulated data-based case study was taken in this paper, aiming to maximize the response of a 
production process with some pre-determined factors. The proposed framework has been implemented 
successfully, orthogonality of the data subset is achieved, and an optimal solution is found. Both criteria show 
acceptable results and raise some improvement opportunities. 
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1.  Introduction 

Response surface methodology (RSM) 
develops the design of experiment (DoE) for 
optimization purposes by involving it with 
additional tools. Using the basic concept of DoE 
for data acquiring, the RSM fits a mathematical 
model to fit the data and continues by 
performing optimization referring to the model. 
Therefore, the RSM is actually an integrated and 
sequential analysis of three tools, i.e., the 
designed experiment (DoE), mathematical 
modeling, and optimization technique [1]. For 
more than ten decades since first introduced by 
[2] in 1951, the RSM has played an essential role 
in optimizing kinds of processes in industrial or 
laboratory scope. Moreover, various research 
fields involving optimization also apply RSM, 
and over 48.000 SCOPUS-indexed papers 
employ this methodology.   

RSM works by first experimenting; the 
researchers must define potential influencing 
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factors to the response, determine each 
factor level, and accommodate them into a 
designed experiment (DoE). Once experiment 
data is obtained, a linear mathematical model 
that captures causality between factor and 
response is fitted and evaluated by performing 
statistical inference and at the same time, 
correcting the model until specific criteria are 
reached. The final fitted model becomes the 
reference in searching for an optimal factor level 
setting that optimizes the response, and then the 
final aim of RSM is obtained. Full explanations 
of RSM have been published in the primary 
RSM reference, such as in [3] and [4].   

The ideal implementation of RSM is 
suitable for laboratory experimentation scope, 
where almost all factors are fully controlled to 
minimize experimental noises. As mentioned by 
[5] in an editorial, if someone needs to study the 
influence of a factor in a type of process, then the 
engineer should change the setting/level of it 
based on a designed experiment; this statement 
will work for such a laboratory-based 
experiment. However, this approach will not be 
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fully accepted for a type of continuous process 
or production. As the RSM needs to conduct a 
designed-experiment, then such an already 
running process should be stopped in order to 
change the setting to accommodate the designed 
experiment, and it may produce some waste and 
raise additional costs (see [6] and [7]). Even if 
scheduled maintenance pauses the process, 
changes to a fixed factor setting is not always 
acceptable since it will revise a long-term tacit 
knowledge they believe. 

On the other side, the development of a 
data recording system that is installed on such a 
continuous process provides a large dataset 
involving the characteristics of the process and 
product; some examples of manufacturing data 
acquisition are provided in [8] who records data 
using Human-Machine Interface dan Machine 
Execution System. Instead of experimenting, 
some research proposed to use observational or 
historical datasets as an alternative. They believe 
that the dataset contains useful information that 
can lead to optimization purposes, as explained 
by [9] with implementation for semiconductor 
manufacturing. Some methodological 
development of observational data-based RSM 
(RSM-OD) started by [10] where the framework 
treats the observational data to have similar 
characteristics as factorial design. Another 
approach also proposed by [6] and [7], where 
DoE matching procedure produces a subset by 
finding a Taguchi orthogonal array within the 
dataset and then performing analysis as if it is a 
DoE. A similar approach also implemented by 
[11], an extensive dataset from a continuous 
process is investigated for some shifting, and a 
DoE subset match is then performed to find a 
potential orthogonal design within the data. A 
different RSM-OD approach was also proposed 
in [12] and [13]; all the observational data 
becomes RSM model input instead of finding a 
subset from the dataset. Actually, this approach 
is different from real-time data-driven predictive 
modeling proposed by [14] and [15]; the RSM-
OD emphasizes the final aim of optimization 
while that approach focuses on real-time 
prediction purposes.  

The aim of this research is to propose an 
alternative framework for adopting 
observational data in RSM-OD. An approach of 
instance selection in the data mining concept 
(see [16]) becomes a reference in selecting an 
observation subset that similarly fulfills 
orthogonal criteria as if it were a designed 

experiment. Once an orthogonal observation is 
found, the standard procedure of RSM analysis 
will be suitable for finding the optimal 
level/setting to optimize the response. 
Additionally, as there will be difficulties in 
reaching such a perfect orthogonal observations 
subset, a new procedure is also proposed to 
provide additional new experiment points to 
increase the orthogonality of the founded subset. 
This paper structure starts with conveying strong 
rationales for adopting observational data for 
RSM analysis, followed by delivering the 
concept of classic RSM completed by some 
examples of successful RSM-OD 
implementations. A proposed modified RSM to 
accommodate observational data is then 
explained in detail, including some pseudo 
algorithms to execute the framework. A case 
study for implementing the proposed framework 
is selected to perform an evaluation and 
comparison to classic RSM analysis. 

 
2.  Involving observational data for RSM 

analysis 
As mentioned by [1], classic RSM 

consists of three sequential tools, i.e., the DoE, 
mathematical modeling, and optimization 
technique. The DoE stage ensures that all factors 
involved are in orthogonal conditions so that the 
effect of each factor is independent among them. 
As in standard regression analysis (see [17]), 
inter factors independence allows the researchers 
to study the influence of factors individually 
without being affected by other factors, except 
for some predefined interactions between two or 
more factors.  

Once the factors are independent, the 
modeling stage will follow its ideality to fit a 
type of linear model, and there will be no 
concerns about the presence of multicollinearity 
that violates the statistical assumptions in the 
inference. Moreover, a straightforward 
interpretation of the model will perform well, 
involving the effects of each factor and 
interactions and their significance. Standard 
criteria for evaluating the model's goodness of fit 
were also calculated, for example, the coefficient 
of determination (R2) and the MSE. A linear 
polynomial model containing second-order 
quadratic and interaction components is 
preferred to get an optimum point on its response 
surface. When there are no such optimum 
solutions in the model, then a procedure of 
steepest ascent will direct to move the factor 
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levels at certain experimentation area until the 
optimum is reached (see [3] and [4]). 

 

 
Fig 1. Classic RSM analysis procedure, adopted from 

[1] 

 
The complete procedure in classic RSM analysis 
shown in Fig 1 consists of three stages, i.e., 
design of experiment, modeling, and 
optimization. Briefly, the procedures start with 
designing the experiment that meets 

orthogonality among factors. A first-order linear 
model as equation (1) should not be suitable to 
model the data because of the lack of an 
optimum point, whereas the experiment region 
should be ensured to contain such a point. A 
suitable second-order model as equation (2) in 
the region will lead the researcher to find optimal 
factor levels. However, in specific conditions 
with operational constraints, this model can 
sometimes not be fitted, and the optimization is 
forced to find the optimum solution using ridge 
analysis (see [4]). For an ideal second-order 
model, a standard mathematical optimization 
will provide an optimal solution; additionally, 
some numerical approach is also considered as 
an alternative, such as the metaheuristics method 
(see [18]) 
 

                                  (1) 

                                     (2) 
 

As mentioned in section 1, some 
rationales allowed the researcher to use 
observational/historical data for RSM analysis 
for optimization purposes instead of conducting 
designed experiments. Referring to Fig 1, the 
stage of DoE is modified to accommodate such 
observational data. Some selected references on 
adopting observational data for RSM analysis 
are shown in Table 1.  

 

 

Table 1. Selected references for RSM modifications in adopting observational data 

Modification of RSM stage 

References 
Stage 1  

(replace the DoE) 
Stage 2 

(modelling) 
Stage 3 

(optimization) 

Subset of observations 
as RSM input Linear model Local serch  [11], [7], [9] 

Subset of observations 
as RSM input Machine learning Metaheuristics [19], [20] 

All observations as 
RSM input Machine learning Metaheuristics [21], [22] 

All observations as 
RSM input Linear model Local serch  [13], [23] 

All observations as 
RSM input Linear model Metaheuristics [12], [24] 

 

Start

Define factors, response, 
and direction of 

optimization

Conducting experiment 
based on selected DoE

Fit 1st order linear model 
and perform evaluation

First order model 
accepted?

Move factor levels to 
new experiment region 
using steepest ascent 

procedure

Fit 2nd order linear 
model and perform 

evaluation

Based on accepted 
model, find optimal 

factor level that optimize 
the response (using 

optimization technique)

End

Consider mathematical 
transformation for factor/

response, or adopting 
alternative non-linear 

model

2nd order model 
accepted?

Y

N

N

Y

Select suitable Design of 
Experiments (DoE)

Select suitable DoE at 
the new experiment 
region potententially 
containing optimum 

point

Stage 1: Design of Experiment

Stage 2: Modelling

Stage 3: Optimization
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These modifications of RSM provide various 
approaches in each stage of RSM. For stage 1, 
the main problem is treating the observational 
data as if it is a designed experiment, using all 
observations or a subset of them. Some 
evaluation criteria are applied, such as 
orthogonality criteria and outlier detection, as 
explained in [25] using happenstance data. In 
stage 2, as the observational data is adopted, the 
standard linear model often fails to fulfill some 
assumptions during the statistical inference. 
Therefore, some non-linear machine-learning 
model is considered, such as neural networks;  
[23] has implemented this method for a pollutant 
removal process. The consequence is modifying 
the optimization technique with the numerical 
approach to increase optimal point search, such 
as metaheuristics. All these modifications are 
considered to develop a new approach as 
proposed in this paper. 
 
3.  Method 

In order to answer this research's aim, 
sequential steps direct the research activities in 
an integrated research methodology, as shown in 
Fig 2. The final output of implementing these 
steps leads to the proposed framework in 
adopting observational data for RSM analysis. A 
systematic literature review on this topic has 
been published in [26]; the gaps are obtained 
with a focus on evaluating and adopting 
observational data. As the data will contain high 
factor level variation and violate the concept of 
DoE orthogonality, a criterion of data evaluation 
is then proposed. Based on these criteria, a 
procedure to treat the observational data is then 
developed to reach orthogonality among factors. 
As the orthogonality criteria from the data will 
not be perfectly obtained, additional steps are 
developed to increase it. Finally, a case study 
will illustrate the practical implementation of the 
proposed RSM-OD framework completed by its 
performance evaluation. 

 
4.  The proposed RSM-OD framework  

This section is divided into the following 
steps in research methodology as in Fig 2. 
Modification from classic RSM, as in Table 1, 
becomes the bases for developing the proposed 
RSM-OD framework.  
 

 
Fig 2. Research methodology  

 
4.1. Orthogonality criteria 

The concept of orthogonality in DoE 
ensures the independence of involved factors in 
RSM analysis. Therefore, to accept 
observational data as if it is similar to a designed 
experiment, the orthogonality criteria are 
adopted in developing this proposed framework. 
Following the standard RSM model in [4], an 
ordinary linear RSM model forms equation (3). 
 

                                                      ( ) 
                                             (4) 

 
where y represents the response or dependent 
variable, X contains factor level or independent 
variable, and  represents the regression 
coefficient estimated using the least-squares 
method as in (4). The X matrix should be 
orthogonally arranged by implementing the 
DoE;  the typical evaluation of this condition is 
calculating the determinant of (X’X)-1 that 
should be minimized (or maximizing the 
determinant of (X’X)) to reach orthogonality. 
Some DoE designs follow these criteria to 
generate a designed-experiment matrix, such as 
D-optimal and A-optimal designs (see [27]). 
Another approach to evaluating orthogonal 
criteria in calculating the Variance Inflation 
Factor (VIF) appears in [17]; this criterion is 
commonly used in regression analysis to detect 
the existence of multicollinearity among factors, 
and it is the indication of non-orthogonality in 
the X matrix.  

Having a perfect orthogonal matrix from 
all observational data is difficult since the 
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researcher did not control each factor level as in 
the designed experiment. Therefore, the 
determinant of matrix (X’X)-1 and VIF become 
alternatives to evaluate the orthogonal condition 
of the data; the acceptable boundary of both 
criteria is shown in Table 2. 

Table 2. evaluation of orthogonality 

Criteria 
Acceptable 

boundary for 
orthogonality 

Reference 

Determinant 
of (X’X)-1 Minimized  [27], [3] 

VIF Less than 5 [28], [29] 
 
4.2. Procedure to select a subset from 

observational data 
According to references in Table 1, 

instead of using all observational data with less 
orthogonal conditions, a subset is selected to 
obtain sub-observation with higher 
orthogonality. Some examples are shown in [11] 
and [7] by manually selecting a subset that 
matches an ideal DoE, such as factorial and 
Taguchi design; an effort to obtain such a subset 
will increase as the observational data becomes 
large in number. A new approach in this paper 
considers Table 2 criteria and, at the same time, 
selects a subset that fulfills both by optimizing 
the determinant, as in Equation  (5). This subset 
should consider the sufficient degrees of 
freedom of the RSM model to accommodate the 
predefined term.  
 
Maximize  w1 det(X’X)-1 + w2 VIF 
Subject to  w1 + w2 = 1,  
X  available design space         (5) 
 

Once a subset is selected, the criteria are 
evaluated and then followed by updating the 
selected subset with other observations to get 
better ones. This optimization is done iteratively 
by adopting a binary genetic algorithm with both 
criteria as the fitness function. The complete 
pseudo-code for subset selection is shown in 
Algorithm 1. This subset selection process is 
similar to the procedure of instance selection 
(see [16]) in data mining applications; however, 
in this case, such a procedure is implemented in 
RSM analysis with modification of the fitness 
functions.  
 
4.3. Procedure to increase orthogonality 

When orthogonality in a subset is not 
satisfied by implementing Algorithm 1 (Fig 3), it 
means the factors are highly correlated with each 
other, and there are consequences in the RSM 
modeling stage, i.e., assumption violation in 
statistical inference. Following the concept of D-
Optimal design, conducting the additional new 
experiment (a new factor level combination) 
should increase the level of orthogonality as long 
as the researcher can fully control the factor level 
at a specific region that maximizes the criteria. 
Therefore, a selected less-orthogonal subset will 
still be brought to the RSM modeling stage, 
considering a new experiment point generated 
based on the subset information. After the 
experiment point is generated and the researcher 
conducts it, an evaluation or orthogonality is 
taken. This step works iteratively; one-by-one 
new experiment point is generated until reaching 
satisfied orthogonality. A genetic algorithm also 
gives the capability to resolve this procedure, as 
shown in Algorithm 2 (Fig 4), by maximizing 
Equation  (5).

DEFINE 
Data X : contains factors and levels,  N : represents number of all observation 
n : number of selected observations for the subset, n<N (considering RSM model degrees of freedom) 
specify RSM model term (linear, quadratic, interaction) 

INITIALIZE 
Genetic algorithm properties (number of population, parents, offspring, mutation rate) 
Gene code 1: selected for subset, code 0: not selected for subset 
Generate initial population chromosomes represents selected observations for subset 
Involve the RSM model term in the subset 

WHILE termination criteria is not satisfied 
SELECT parents chromosomes from population 
CROSSOVER pairs of parents chromosomes to produce offsprings 
GENERATE MUTATION chromosomes from population 
COMBINE the offsprings with mutated chromosomes 
EVALUATING the fitness function (refer to criteria in Table 2) 
SELECT best chromosomes for next parents generation 

ENDWHILE 
Fig. 3 Algorithm 1. Genetic algorithm pseudo code for subset selection
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DEFINE 
Data X : selected subset, contains factors and levels 
Boundary of new experiment point  (level setting at each factor) 
Convert the boundary (decimal) into binary chromosome 
specify RSM model term (linear, quadratic, interaction) 

INITIALIZE 
Genetic algorithm properties (number of population, parents, offspring, mutation rate) 
Generate initial population chromosomes represents factor levels (within the boundary) 
Involve the RSM model term in the subset 

WHILE termination criteria is not satisfied 
SELECT parents chromosomes from population 
CROSSOVER pairs of parents chromosomes to produce offsprings 
GENERATE MUTATION chromosomes from population 
COMBINE the offsprings with mutated chromosomes 
CONVERT the chromosomes into decimal 
EVALUATING the fitness function (refer to criteria in Table 2) 
SELECT best chromosomes for next parents generation 

ENDWHILE 
GENERATED a new experiment point is the best chromosome 

Fig. 4 Algorithm 2. Genetic algorithm pseudo code to generate a new experiment point 
 

 
Fig 5. proposed RSM-OD framework 

As Algorithm 2 finishes generating each new 
experiment point, the next step is conducting the 
actual experiment, referring to generated points 
(factor level setting). It will loop until the desired 
number of points meets a certain level of 
orthogonality. This procedure is similar to a 
steepest ascent in classic RSM (see Fig 1), 
replacing the optimization target with a level of 
orthogonality.  
 
 
4.4. Complete RSM-OD framework 

The proposed framework of RSM-OD in 
this paper is compiled according to the three 

stages of classic RSM. As mentioned before, the 
level combinations among factors in 
observational data are not designed as ideal DoE, 
the fitted RSM model will use the data as it is, 
and the procedure of moving the experiment 
region to one which contains optimal setting 
should not be conducted as in classic RSM.  

Referring to Algorithm 1, the framework in 
Fig 5 is started by providing observational data 
and predefining the term involved in the RSM 
model. For huge data, there are possibilities to 
contain many features (as potential factors) and 
responses, and it is needed to select and define 
interesting ones for the RSM analysis. 

Start

Define factors, response, 
and direction of 

optimization

Select subset of 
observations n from N

(using genetic algorithm)

Fit the RSM linear 
model according to 
predefined terms

Based on accepted 
model, find optimal 

factor level that optimize 
the response (using 

optimization technique)

End

Pre-define the RSM 
(model terms and 

number of selected 
observations n for the 

subset)
Stage 1: Design of Experiment

Stage 2: Modelling

Stage 3: Optimization

Provide observational 
data (N)

Orthogonally 
satisfied ?

Generate a new 
experiment point

Conduct new actual 
experiment

Evaluate the 
orthogonality of factors



JOURNAL OF ENGINEERING AND MANAGEMENT IN 
INDUSTRIAL SYSTEM VOL. 12 NO. 2 YEAR 2024 

e-ISSN 2477-6025 
https://doi.org/10.21776/ub.jemis.2024.012.02.3  

 

93 

Predefined factors and model terms direct the 
subset selection process to find the best 
observation subset with the calculated level of 
orthogonality based on mentioned criteria above. 
Recommendation of new actual experiment 
point should be taken in case of low 
orthogonality in the subset. When the best subset 
that includes the new experiment is obtained, the 
standard RSM model accommodating 
predefined terms is then fitted, and finally, the 
optimization process works based on this model. 
 
5.  Simulation study and implementation 

result  
A number of 100 observations dataset 

with two factors (X1, X2) and a response (Y) is 
generated for a case study; the generating 
process adopts a second-order regression model 
term, i.e., linear, quadratic, and interaction, as 
equation (5) with additional error component  
as if it were an actually observed causality 
dataset.  
 

                                           (6) 
 
In order to practice the proposed RSM-OD 
frameworks, a condition of multicollinearity 
between both factors is also involved, it means 
that this dataset represents the condition of non-
orthogonal observational data needed to evaluate 
the framework. As mentioned in [17], non-
orthogonal conditions in the dataset raise the 
possibility of biased inference; with the 
existence of multicollinearity, then the dataset 
cannot be further analyzed using RSM because 
of assumption violation. Therefore, the 
subsetting algorithm will produce an orthogonal 
one.  
 
5.1. Selecting subset and generating new 

actual experiment point 
A subset of 120 observations that fulfills 

orthogonality among factors is selected from 150 
ones using Algorithm 1, considering less wasted 
observations and sufficiency of degrees of 
freedom in the linear model inference.    

The main criteria to be minimized in this 
case study is total VIF from the terms, with the 
assumption that less value of VIF will provide 
more orthogonal conditions in the subset. With a 
maximum iteration of 2500, the convergence of 
the genetic algorithm is reached (Fig 6), and its 
shows that subset finding is successfully found. 

 

Table 3. Initial setting of Algorithm 1 

Predefined condition  Setting 
Maximum number of iterations 
in genetic algorithm 2500 

Number of populations 
generated in genetic algorithm 20 

RSM term involved  

Linear, 
quadratic, 
interaction  
(see equation 
5) 

Factors in RSM X1, X2 
Response in RSM Y 
Subset number 120 
Dataset number 150 

 

 
Fig 6. Convergence of Algorithm 1 

 

Table 4. Comparation of complete dataset and the 
subset 

Orthogonality criteria 

Initial 
condition 

from 
complete 
dataset 

Condition 
of subset 

VIF 

Linear 
term 

 5.49 3.06 
 3.97 2.18 

Quadratic 
term 

 8.58 2.66 
 6.04 1.62 

Interaction  15.61 2.55 
Total VIF from the terms 39.69 12.07 
Determinant of (X’X)-1 0.0173944 2.60342 

 
The result of Algorithm 1 is summarized in Table 
4; it shows that the subset with 120 observations 
has higher orthogonality rather than the original 
dataset. Moreover, the target in Table 2 is reached 
with all VIF<5, although the determinant of 
(X’X)-1 failed to reduce. In this case, the 
orthogonal condition is fulfilled, indicating that 
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the RSM model is ready to be fitted based on the 
subset.  

However, to have a lower VIF in the 
subset, then Algorithm 2 will give 
recommendations for new actual experiment 
points that complete the observation and 
increase orthogonality. Only three new actual 
experiment points are generated, considering 
that the RSM-OD focuses on observational data 
and less on actual experimenting. Convergence 
of the algorithm is reached and shown in Fig 7 
with less than 500 iterations, and the generated 
points are summarized in Table 5. Each point 
successfully reduces the total VIF and its 

corresponding model terms; the determinant of 
(X’X)-1 is also decreasing.  

 
5.2. Fitting RSM model and optimization 

Since the subset with additional 
experiment points has fulfilled orthogonality, the 
RSM model starts to fit. Referring to the terms 
in equation (5), the fitted model is shown in 
equation (6) with ANOVA analysis for its 
inference (see Table 6). All the calculation and 
graph is performed by MINITAB ®. 
 

            (7) 
 
 
 
 
 
 
 
 

Fig 7. Convergence of Algorithm 2 for each of 3 additional point (cut at 500 iterations) 

Table 5. Recommendation of new actual experiment point using Algorithm 2 

Additional new actual experiment point  
(factor setting) 

VIF for each term Total VIF 
from the 

terms 

Determin
ant of 

(X’X)-1 

The i-th 
point X1 X2 

Simulated 
experiment 
response Y 

     

Intial VIF and determinant (from Table 4) 

3.06 2.18 2.66 1.62 2.55 12.07 2.603 
1 -1.0000 0.9042 78.3348 1.8672 1.1646 2.6705 3.0477 2.4605 11.2105 0.323 

2 1.0000 -0.1574 79.76588 2.064 1.1307 2.4701 2.8468 2.4394 10.951 1.123 x 10-7 

3 -0.8592 0.218 75.58634 1.4451 1.1188 1.9027 2.2231 2.4957 9.185 5.361 x 10-8 

Table 6. ANOVA for RSM model 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 5 65.349 13.0698 13.18 0.000 
  Linear 2 59.793 29.8967 30.15 0.000 
    X1 1 50.116 50.1158 50.55 0.000 
    X2 1 5.566 5.5656 5.61 0.019 
  Square 2 15.595 7.7977 7.86 0.001 
    X1*X1 1 13.108 13.1075 13.22 0.000 
    X2*X2 1 3.965 3.9646 4 0.048 
  2-Way Interaction 1 0.387 0.3872 0.39 0.533 
    X1*X2 1 0.387 0.3872 0.39 0.533 
Error 117 116.006 0.9915 

  
Total 122 181.355   
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Fig 8. Response surface from RSM model in (6), processed by MINITAB® 

The linear and quadratic inference significantly 
affects the model while the interaction does not. 
This fitted model becomes the bases for finding 
the optimal setting of X1 and X2 that maximizes 
the response Y in an optimization. Since the 
fitted RSM model adopts a commonly linear 
polynomial equation, then the optimization 
procedure uses the standard desirability function 
approach. MINITAB ® provides this 
optimization process by referring to [4], as 
follows 
 
Maximize 

 
subject to  
X1, X2,  available design space     (8) 
 

Solving the optimization of equation (8), 
Fig 9 shows the Optimal response by setting the 
X1=0.3535 and X2 = 0.8416, with the prediction 
of response Y=83.7991. This solution is the final 
aim of implementing the RSM-OD based on the 
subset that is selected from the dataset. Since the 
orthogonal between factors is reached, then the 
unbiased estimation of the RSM model in (6) 
provided meaningful interpretation.  

 

   
Fig 9. RSM optimization result 

5.3. Evaluation of the proposed method 
Successful implementation of the 

proposed framework in Fig 3 for the case study 

gives the opportunity for the RSM-OD analysis 
to develop and be adopted as a formal 
optimization procedure based on the concept of 
classic RSM. The first weakness of this 
framework emphasizes the criteria in selecting 
observation from the dataset to become its subset 
with better orthogonality and, at the same time, 
minimize the determinant of (X’X)-1 as if it is a 
D-optimal designed experiment. The VIF criteria 
successfully helped Algorithm 1 to find the 
subset, but the determinant remains increased. 
Alternatively, for the next improvement, both 
criteria should join to become a single 
measurable one for supporting the algorithm. 
Meanwhile, Algorithm 2 has a similar issue but 
gives better criteria achievement; the VIF and 
the determinant show decreased trends as each 
new point is generated. This result indicates 
potential effectiveness for the additional new 
experiment to reach orthogonality and opens the 
chance to develop such a better procedure. As 
initial research in developing the alternative 
framework for RSM-OD, some improvement for 
further investigation involves; (a) developing 
better criteria for selecting the subset, (b) 
comparison of criteria between actual 
observational data and simulated one, and (c) 
consideration to improve the RSM model and 
optimization technique to accommodate 
nonlinearity on the dataset with remains provide 
clear interpretation. 

 
6.  Conclusion  

RSM-OD gives an alternative to classic 
RSM with the accommodation of observational 
data instead of experimenting. This approach is 
suitable for types of a continuous process where 
some interruptions for experimenting are 
preferred to avoid. With an installed data-
acquiring system, recorded data should give 
potential optimization information. Unlike 
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actual experiment data, the observational data 
provides non-ideal conditions, such as non-
orthogonality and some outliers. Thus, a 
procedure to adopt such data in RSM becomes 
the focus of this paper 

The proposed RSM-OD framework in this 
paper recommends selecting observations as a 
subset from the complete dataset with 
considering orthogonality criteria. Three stages 
in classic RSM remain the reference to 
developing such a procedure. A simulated data is 
generated as a case study for implementing the 
frameworks. A genetic algorithm helps to find 
the subset and has been proven to increase inter 
factors orthogonality. Moreover, to increase the 
orthogonality, a similar algorithm was also 
adopted in the framework by generating new 
actual experiment points to complete the 
selected subset.  

The procedure successfully works, but some 
issues were raised during the RSM-OD analysis. 
The result shows that VIF criteria help the 
algorithm find the desired subset, but the 
calculated determinant (X’X)-1 remains worse. 
On the other side, both criteria provide a better 
trend in generating new experiment points. 
Perfecting the proposed framework is needed in 
order to develop a better approach to RSM-OD 
analysis. The potential applications of proposed 
framework require a provided data recording 
system and it is usually fulfilled by a type of 
smart-manufacturing system. Without 
conducting real experiments that disrupt ongoing 
processes, the provided observational data that 
record process parameter changes will help the 
optimization of the desired process. 
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