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Asiatic acid (AA) has previously shown its neuroprotective efects, but low oral bioavailability limits its penetration into the brain.
Tis study aimed to investigate the efect of intranasal AA administration in mice with memory dysfunction induced by
scopolamine. Mice received either intranasal AA (INAA), oral AA (POAA3 or POAA30), or donepezil, followed by scopolamine
for 10 days. Morris water maze (MWM)was performed on days 0–5, 30min after treatment. Locomotor activity was conducted on
day 6 followed by brain collection. InMWM, INAA treatment had signifcantly reduced escape latency on days 2–4, while POAA3
decreased escape latency on day 3 and POAA30 and donepezil decreased escape latency on day 4. INAA inhibited acetyl-
cholinesterase activity, increased catalase protein expression, and decreased malondialdehyde levels in the brain tissue. Terefore,
intranasal administration of AA produced a rapid onset in the protection of learning andmemory defcits induced by scopolamine
through acetylcholinesterase inhibition and antioxidant efect.

1. Introduction

Alzheimer’s disease (AD) is one of the most common
neurodegenerative diseases in elderly patients that is often
associated with learning defcits and memory loss [1]. Ag-
gregated amyloid-beta (Aβ) plaque is one of the main
pathological features of AD [2, 3]. Some evidence suggests
that Aβ induces the formation of neurofbrillary tangles
(NFTs) by promoting tau hyperphosphorylation of the nerve
microtubule [2, 4]. NFTs, together with Aβ, could lead to
neuronal loss in the hippocampus and induce neuro-
infammation, oxidative stress, and cortical atrophy, and

a decrease in cholinergic transmission [2, 5]. Current AD
therapies such as donepezil and memantine are limited to
symptomatic treatment, as they do not exhibit the protective
efect to prevent the progression of AD [6]. Terefore,
fnding alternative treatments that can prevent the pro-
gression of AD has become increasingly important.

Asiatic acid (AA) is a bioactive substance that can be
extracted from Centella asiatica. AA has been found to
exhibit protective activity against neurotoxicity in the
neuronal cell line exposed to glutamate and methamphet-
amine [7, 8]. In addition, AA prevented memory dysfunc-
tion induced by valproate, 5-fuorouracil, quinolinic acid,

Wiley
Advances in Pharmacological and Pharmaceutical Sciences
Volume 2024, Article ID 9941034, 8 pages
https://doi.org/10.1155/2024/9941034

https://orcid.org/0009-0009-2405-7021
https://orcid.org/0000-0002-8622-689X
https://orcid.org/0000-0002-8227-4667
https://orcid.org/0000-0001-5462-7931
https://orcid.org/0000-0002-5656-8266
https://orcid.org/0000-0001-7666-6480
mailto:ratchanee.r@pharm.chula.ac.th
mailto:ridhoislamie@staff.ubaya.ac.id
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1155%2F2024%2F9941034&domain=pdf&date_stamp=2024-09-09


and AlCl3 [9–11].Te neuroprotective efects of AA involved
its antioxidant activity [10, 12], anti-infammation [12], and
protection of adult neurogenesis [10, 11]. Moreover, in vitro
and in silico studies revealed that AA can inhibit AChE [13].
Inclusively, AA is a promising compound in the treatment
of AD.

AA has limitations in its pharmacokinetic profle when
given orally. Te bioavailability of AA is as low as 16.25% in
rodents by oral administration, which could be attributed to
the intensive metabolism by cytochrome C450 [14]. AA was
encapsulated in the solid lipid nanoparticle (SLN) for in-
tranasal delivery to increase AA penetration into the brain.
Intranasal administration is seen to increase drug availability
in the brain by avoiding frst-pass metabolism and providing
rapid onset of action, thus reducing systemic adverse efects
[15]. Several CNS drugs such as carbamazepine, venlafaxine,
olanzapine, and donepezil have been modifed for the nasal
delivery system [15–18]. Furthermore, due to the small
particle size and lipophilic property, the solid lipid nano-
particles can be delivered to the brain via the olfactory and
trigeminal nerves as well as through the blood-brain
barrier [19].

Tis study aimed to determine the efect of intranasal AA
administration on scopolamine-induced memory impair-
ment in mice. In addition, the protective mechanisms of AA
involving AChE activity, antioxidant enzyme, and lipid
peroxidation were also examined.

2. Materials and Methods

2.1.Chemicals andReagents. Asiatic acid (Sigma-Aldrich, St.
Louis, MO, USA) was prepared in the SLN formulation for
intranasal delivery. AA concentration in the SLN formu-
lation was 2.26mg/mL. Te particle size, polydispersity
index, and zeta potential of AA in SLN were
189.27± 4.22 nm, 0.321± 0.047, and −18.33± 0.45mV, re-
spectively [20]. AA at a concentration of 3 and 30mg/mL
was prepared in 0.5% carboxymethylcellulose (CMC) for
oral administration. Scopolamine, donepezil, CMC, pyri-
dine, 1,1,3,3-tetraethoxypropane (TEP), sodium dodecyl
sulfate (SDS), thiobarbituric acid (TBA), and butanol were
obtained from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Animals. Male ICR mice (6–8weeks old, 20–25 g) were
obtained from the National Laboratory Animal Center
(Mahidol University, Nakhon Pathom, Tailand) and accli-
matized for 1week before the experiments. Te animals were
kept under a 12-hour light-dark cycle with 22± 2°C of room
temperature and 40–60% humidity. Te mice were provided
unrestricted access to both food and water. Te experimental
protocols were approved by the Institutional Animal Care and
Use Committee, Faculty of Pharmaceutical Sciences, Chula-
longkorn University, Tailand (approval no. 1933012). Te
ARRIVE guidelines were applied in all animal protocols.

2.3. Treatments. Mice were divided into six groups: control
(CON), scopolamine (SCO), scopolamine plus donepezil
(SCO+DON), scopolamine plus AA intranasal

administration (SCO+ INAA), and two groups for scopol-
amine plus AA oral administration (SCO+POAA3 and
SCO+POAA30). Mice in the CON and SCO groups re-
ceived 0.5% CMC (10mL/kg, p.o.), while mice in the
SCO+DON group received donepezil (3mg/kg, i.p.)
[21, 22]. AA in SLN formulation was then given to mice in
the SCO+ INAA group intranasally, ffteen μL per nostril
(equivalent to a dose of 2.3mg/kg). Te intranasal admin-
istration was given to fully awaken mice. Te mice in the
SCO+POAA3 and SCO+POAA30 groups were orally
given AA (3 and 30mg/kg, respectively). Ten, SCO,
SCO+DON, SCO+ INAA, SCO+POAA3, and
SCO+POAA30mice were injected with scopolamine (3mg/
kg, i.p) [22, 23], while controls were injected with normal
saline solution (NSS) (10mL/kg, i.p). All treatments were
given 30min before the experiments for 10 consecutive days
(days 1–10). All mice were performed MWM on days 0–5
and locomotor activity on day 6. On day 10, mice were
euthanized by CO2. Mice’ brains were then quickly removed
and dissected for the hippocampus. Te brains were snap-
freezed in liquid nitrogen and kept in a −80°C freezer for
later analysis. Te hippocampus was determined by AChE
activity and CAT and SOD protein expression. Te rest of
the brain except the cerebellum was kept for thiobarbituric
acid reactive substance (TBARS) assay.

2.4. Morris Water Maze. MWM apparatus consisted of
a circular water pool (130 cm in diameter and 50 cm in
depth) with four visual cues and a platform (8 cm in di-
ameter and 18 cm in height) placed in the center of the
northeast quadrant. Te water pool was flled with water at
a temperature of 22± 2°C. On day 0, the platform was visible
at 1 cm above the water level, while on days 1–4, the platform
was hidden at 1 cm below the water level. On days 0–4, mice
were allowed to fnd the platform for 60 s. Tree consecutive
trials were performed each day, while mice were started from
three quadrants. Te escape latency was recorded using
a video tracking system (VideoMot2, TSE Systems, Ger-
many), and the average escape latency from the three trials
was presented. Mice that failed to reach the platform within
60 s were placed on the platform and allowed to stay for 20 s.
On day 5, the probe trial was performed by removing the
platform from the pool. A mouse was allowed to fnd the
platform location for 60 s. Te time spent in the platform
quadrant was recorded.

2.5. Open-Field Test. Locomotor activity was performed in
a square box (50× 50× 40 cm). Mice were placed in the
open-feld chamber for 30min following the treatment. Te
locomotion time was detected using the VideoMot2 system
(VideoMot2, TSE Systems, Germany) for 5min.

2.6. Acetylcholinesterase (AChE) Activity. Brain acetylcho-
linesterase activity was measured using a colorimetric
AChE assay kit (Abcam, Cambridge, MA, USA). Brain
tissues were homogenized in a lysis bufer on ice and
centrifuged at 4°C. Te supernatants were then incubated
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with the acetylthiocholine reaction mixture containing
acetylthiocholine and dithiobisnitrobenzoate (DTNB).
Te reaction product, that is, thiocholine, was then
measured using a microplate reader (CLARIOstar®, BMG
LABTECH, Germany) at 410 nm after 20min of
incubation.

2.7. Western Blotting Analysis. Catalase and SOD protein
expression levels were measured using western blot
analysis. Brain tissues were lysed in a lysis bufer, and
a BCA assay kit (Termo Fisher Scientifc, Rockford, IL,
USA) was used to determine the total protein level. In
total, 10% SDS-PAGE gel was used to separate protein
samples by electrophoresis followed by a PVDF mem-
brane transfer process. Unspecifc proteins were blocked
with around 5% skim milk. Tereafter, the membrane was
incubated with rabbit monoclonal anti-SOD (1 : 5000),
anticatalase (1 : 300) (Santa Cruz Biotechnology, CA,
USA), and mouse monoclonal anti-GAPDH (1 : 1000)
(Millipore, Billerica, MA, USA) antibodies at 4°C over-
night. After that, the membrane was incubated with
horseradish peroxide (HRP)-conjugated goat anti-rabbit
IgG antibodies (1 : 1000) (Millipore, Billerica, MA, USA)
or anti-mouse IgG antibodies (1 : 1000) (Santa Cruz
Biotechnology, CA, USA) at room temperature for 2 h.
Te membrane was prepared with a chemiluminescence
solution and analysed with a detector of a luminescent
image (ImageQuant LAS 4000, GE Healthcare Bio-
sciences, Japan).

2.8. Lipid Peroxidation. TBARS assay was used in detecting
the lipid peroxidation by measuring malondialdehyde
(MDA) levels. Te brains were weighed, and a 1 : 5 w/v
solution of ice-cold phosphate-bufered saline (PBS) was
added at 4°C. Brain tissues were then homogenized and
centrifuged at 2000 g for 15minutes. 100 μL of the samples
was incubated in a water immersion at 95 °C for 60minutes
after the addition of approximately 1.5mL of 20% acetic
acid, 1.5mL of 0.8% TBA, and 0.2mL of 8.1% SDS. Te
samples were cooled down for 10minutes after heating.
Ten, 2mL of butanol/pyridine (15 :1 v/v) was added, and
the mixture was centrifuged at 2000 g for 15minutes. Using
a microplate reader (CLARIOstar®, BMG LABTECH,
Germany), the supernatants were extracted and measured at
532 nm. 1,1,3,3-tetraethoxypropane (TEP) was utilized to
generate a standard curve.

2.9. Statistical Analysis. All data were provided as
mean ± S.E.M. and analysed using GraphPad Prism
version 10.1.0 (GraphPad Software, San Diego, CA,
USA). Two-way ANOVA with treatment and time as the
main factors was used to analyse the escape latency
during the acquisition phase in the Morris water test. For
other experiments, the comparison between groups was
determined via one-way ANOVA, followed by Fisher’s
(LSD) post hoc test. Te p values <0.05 were defned as
statistically signifcant.

3. Results and Discussion

3.1. Intranasal AA Administration Prevents Scopolamine-
Induced Learning and Memory Impairment. MWM was
conducted to evaluate the learning and memory behavior in
mice. On day 0, mice received no treatment and performed
MWM with a visible platform. It was noted that the mean
escape latency at baseline was not diferent between the groups
(p> 0.05, one-way ANOVA). On days 1–4, mice received
treatment 30min before the MWM test with a hidden plat-
form. Scopolamine-treated mice had signifcantly higher es-
cape latency than that of control on days 1, 3, and 4 (p< 0.01,
p< 0.01, and p< 0.001, respectively). Donepezil signifcantly
reduced escape latency on day 4 compared to scopolamine
treatment alone (p< 0.05). Intranasal administration of AA
signifcantly decreased escape latency on days 2, 3, and 4
compared to scopolamine treatment alone (p< 0.05, p< 0.05,
and p< 0.001, respectively). POAA3 treatments signifcantly
reduced escape latency on day 3 compared to scopolamine
treatment alone (p< 0.05). Te escape latency of POAA30
mice was not diferent from that of the control group and the
scopolamine group (Figure 1(a)).

Te probe trial on day 5 showed that mice in the INAA
group spent signifcantly higher time in the target quadrant
than scopolamine-treated mice (p< 0.05) (Figure 1(b)).
Alternatively, POAA3, POAA30, and donepezil treatment
failed to increase the time spent in the target quadrant in the
probe trial.

Locomotor activity was conducted on day 6 to determine
the efect of treatment on mice’ motor performance. As per
the results, no diference was observed in terms of loco-
motion time among groups (Figure 2), indicating that
scopolamine, donepezil, INAA, and POAA do not afect
locomotor activity.

AA in solid lipid nanoparticle formulation has been
developed for intranasal administration to enhance brain
penetration. Our previous study demonstrated successful
delivery of AA to the olfactory bulb and hippocampus after
a single intranasal administration within 30minutes [20].
Te present study showed that the intranasal administration
of AA in SLN prevented scopolamine-induced learning and
memory impairment. Acetylcholine plays a vital role in the
learning and memory processes in the hippocampus [24].
Learning and memory defcits in patients with AD can be
alleviated by acetylcholinesterase inhibitors [6]. In this
study, scopolamine, a muscarinic receptor antagonist, in-
duced memory impairments in the MWM test. Intranasal
and oral AA treatment as well as donepezil, an AChE in-
hibitor, can reverse the memory impairment efect of sco-
polamine. Interestingly, AA given intranasally was noted to
produce faster efects than donepezil and oral administration
of AA. Tis result could be due to that intranasal route
accelerated drug delivery of AA to achieve the target site of
action in the brain. In line with our previous study, nasal
administration of AA improved cognitive impairment in-
duced by Aβ1−42 in ICR mice [20].

It is noticeable that a low dose of oral AA (3mg/kg)
prevented memory impairment induced by scopolamine,
while a high dose of oral AA (30mg/kg) had no efect. A
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previous study showed that AA dose-dependently increased
the expression of the P-glycoprotein (P-gp) efux trans-
porter in a concentration-dependent manner [25]. It is likely
that low-dose AA did not induce P-gp, thus, AA could reach
the efective concentration in the brain and produced an
acute efect.

3.2. Intranasal AA Administration Inhibits Acetylcholines-
terase (AChE) Activity in the Hippocampus. On day 10, mice
were terminated 30min after treatment. Te brain AChE
activity was then determined to elucidate the mechanism of
action of AA. INAA, POAA3, and POAA30 had signifcantly
reduced AChE activity compared to scopolamine treatment
alone in the hippocampus (p< 0.05) (Figure 3).

Our study demonstrated that AA prevented memory
impairments by AChE inhibition. A previous study showed
that AChE activity was inhibited by AA using the thin-layer
chromatography (TLC) bioautographic method [26]. In
addition, raw extract of Centella asiatica inhibited AChE
activity in SH-SY5Y and AW 264.7 cells, and in the animal
model [27]. Previously, the IC50 value for AA was de-
termined to be 15.05 μg/mL by in vitro analysis, while the
binding energy value was found to be −10.27Kcal·mol−1 by
in silico analysis [13]. Terefore, AA can increase acetyl-
choline levels through interactions with the active sites of
AChE and consequently prevent memory defcits induced by
scopolamine. Several studies showed that scopolamine in-
duces memory decline by increasing AChE activity in the
mouse brain [28, 29]. Scopolamine inhibited cholinergic
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Figure 1: (a) Efects of INAA, POAA3, and POAA30 on the escape latency during the acquisition phase (days 1–4) in the MWM test. Data
were provided as mean± S.E.M. (n� 7). ∗∗p< 0.01, ∗∗∗p< 0.001 compared with the CON group, #p< 0.05, ###p< 0.001 compared with the
SCO group on the same day. (b) Efects of INAA, POAA3, and POAA30 on the time spent in the target quadrant during the probe trial in the
MWM test. Data were provided as mean± S.E.M. (n� 7). ∗∗p< 0.01 compared with the CON group. #p< 0.05 compared with the
SCO group.
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Figure 2: Efect of INAA, POAA3, and POAA30 on locomotor activity in the open-feld test. Data were presented as mean± S.E.M. (n� 7).
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transmission by blocking the interaction of acetylcholine
(ACh) with muscarinic receptors, leading to an increase in
ACh levels in the synaptic cleft [28]. Te upregulation of
AChE activities might be due to a feedback mechanism to
degrade the excess ACh neurotransmitter.

3.3. Intranasal AA Administration Elevates Hippocampal
Catalase (CAT) Protein Expression and Decreases Brain Lipid
Peroxidation. We investigated the efects of repeated AA
administration on the expression of antioxidant enzymes in
the hippocampus (Figure 4). It was shown that nasal delivery
of AA signifcantly increased CAT expression levels com-
pared to those of control and scopolamine treatment alone
(p< 0.05 and p< 0.05, respectively) (Figure 4(a)). However,
SOD expression was unaltered (Figure 4(b)).

Malondialdehyde (MDA), which is a lipid peroxidation
product, was used as a parameter of oxidative stress in brain
tissue. Scopolamine and POAA3 treatment signifcantly
increased MDA levels compared to control (p< 0.01 and
p< 0.05, respectively), while INAA and POAA30 adminis-
tration signifcantly decreased MDA levels compared to
scopolamine treatment alone (p< 0.01 and p< 0.05, re-
spectively) (Figure 5).

Oxidative stress is one of the main factors involved in the
pathological processes in AD [30]. Antioxidants are one of
the therapeutic approaches to prevent neurodegeneration in
AD [31]. Catalase and SOD are the two main factors of frst-
line defence antioxidant enzymes in the living tissue [32].
Previous studies indicated that scopolamine-induced oxi-
dative stress in the brains of rodents by decreasing SOD and
catalase expression, leading to a decline in MDA levels
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Figure 3: Efect of INAA, POAA3, and POAA30 on acetylcholinesterase (AChE) activity in the hippocampus. Data were provided as
mean± SEM (n� 4–6). #p< 0.05 compared with the SCO group.
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Figure 4: (a) Efect of INAA, POAA3, and POAA30 on catalase (CAT) protein expression in the hippocampus. All data were provided as
mean± S.E.M. (n� 7). ∗p< 0.05 compared with the CON group. #p< 0.05 compared with the SCO group. Full blots are presented in the
Supplementary data 1. (b) Efect of INAA, POAA3, and POAA30 on superoxide dismutase (SOD) protein expression in the hippocampus.
All data were provided as mean± S.E.M. (n� 7). Full blots are presented in the Supplementary data 1.
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[33, 34]. A study showed that the antioxidant enzymes were
controlled by some transcription factors such as nuclear
factor (erythroid-derived 2)-like 2 (Nrf2) and peroxisome
proliferator-activated receptor-gamma (PPAR-c) [35].
Scopolamine injection reduced the expression of Nrf2 in the
mouse brain [36]. A previous study showed that AA reduced
lipid peroxidation by increasing Nrf2 protein expression in
chemotherapy-induced neurotoxicity in rats [37] Moreover,
AA increased PPAR-c activation in human keloid fbroblasts
exposed to TGF-β1 [38]. Previous research has demon-
strated the antioxidant properties of AA in a rodent model of
memory loss produced by quinolinic acid and aluminium
chloride (AlCl3) by increasing the expression of superoxide
dismutase (SOD), catalase, and glutathione and decreasing
lipid peroxidation [10, 39]. In line with our study, repeated
intranasal delivery of AA increased the expression of catalase
in the hippocampus and subsequently reduced lipid per-
oxidation, suggesting the beneft of AA to increase anti-
oxidants in the normal brain.

4. Conclusions

In summary, our study showed that intranasal AA adminis-
tration protected against scopolamine-induced learning and
memory impairment in mice. Te efect of intranasal ad-
ministration of AA was faster than AA oral administration.
Repeated intranasal administration of AA inhibited acetyl-
cholinesterase activity, elevated antioxidant enzyme expression,
and decreased lipid peroxidation in the brain (Figure 6). Tis
study suggests that AA can be a potential treatment for AD.

Data Availability

Data will be made available upon request from the corre-
sponding author.
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Figure 6: Schematic diagram of the proposed mechanisms of AA by nasal delivery in mice.
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