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ABSTRACT

The usage of electric vehicles (EVs) is widely considered because of their contribution to environmental preservation.
In an EV system, each EV must undergo recharging after use to ensure its battery has sufficient capacity for subse-
quent trips. This study examines an EV recharging problem, focusing on the allocation of EVs to be recharged at some
stations. The primary objective is to minimize the overall electricity costs associated with recharging. The variation in
electricity prices at each station plays an important role in influencing the selection of recharging stations. The prob-
lem is formulated mathematically in the form of integer programming. A decomposition-based method is proposed for
solving larger-sized instances, and then various data sets are solved to test the applicability of the proposed solution
methods. The results show that the performance gap is, in average, 7.02% using decomposition method in comparison
to the integer programming. This study addresses a specific problem to obtain a solution within a short computational
time.
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1. INTRODUCTION

Electric vehicle (EV) systems have been deployed in
various countries due to the crucial role in addressing
climate changes while reducing nonrenewable fuel source
dependency worldwide. By 2024, the majority of Japa-
nese and Westerners will have chosen to utilize electric
vehicles for public transportation, including cars and buses

(Da Silva et al., 2020). Despite having the benefit of be-
ing environmentally friendly, it is necessary to ensure that
EVs are recharged appropriately during their operations
(Agrali and Lee, 2023).

In the context of sustainable mobility, the Electric
Vehicle Recharging Allocation Problem assumes great
importance, especially when combined with the dynamic
environment of electricity price variations. The electricity
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price variations can be seen in three different perspectives:

real-time electricity price (Zhou et al., 2020; Yu et al.,
2020), time-of-use tariff (Gong et al., 2020; Zheng et al.,
2020), and dynamic electricity price (Fang et al., 2021;
Dante et al., 2022). The dynamic electricity pricing is
more flexible than the time-of-use tariff and can guaran-
tee appropriate overall scheduling when compared to the
real-time power price.

There are numerous research works on dynamic
electricity pricing for EV recharging allocation problem
due to its benefits. Lai er al. (2023) presented a dynamic
pricing model with competitive effects that accomplishes
the goals of protecting aggregator interests and balancing
grid load and traffic congestion. Nevertheless, the tech-
nique of dynamic electricity price fixing fails to include
the stochastic nature of electric vehicles and so it cannot
provide overall optimality. Integrating a large number of
various EVs has a number of negative impacts, including
peak load control, reactive power injection, frequency
disruption, and voltage fluctuation (Mahfouz and Iravani,
2020). Dynamic pricing makes it possible to schedule EV
charging, set variable rates for charging, and profit from
extra energy by feeding it back into the grid. Furthermore,
a number of characteristics have also been suggested for
the fast-charging scheduling, including EV arrival time,
energy availability, battery full charging capacity, and

departure time in relation to traffic and customer behavior.

An EV should charge during a period of low electricity
market price and discharge to the grid during a period of
high electricity market price to implement a dynamic
pricing system. As a result, there is a contradiction when
it comes to charging and discharging EVs when prices are
high or low.

The transportation mode that contributes mainly the
emissions of roadside pollutants and greenhouse gases is
taxi. Electrifying the taxi fleet is an effective solution strat-
egy (Zhou et al., 2021). Many cities around the world have
utilized electric taxis, such as in New York City in USA
(Hu et al., 2018), Tokyo in Japan (Palmer et al., 2018),
Stockholm in Sweden (Hagman and Langbroek, 2019),
Seoul in South Korea (Kang and Lee, 2019), and Beijing
(Zhou et al., 2021) and Shenzhen in China (Zhang and
Zhao, 2018). Parking lots and charging stations are two
crucial aspects that affect how comfortable drivers are us-
ing electric cars (Wolbertus et al., 2018). In addition, taxi
drivers' working hours and daily earnings are significantly
impacted by charging times (Zhang et al., 2020). Despite
the negative consequences of charging times for electric
taxis, the government of Sweden has implemented laws
that can offset these costs, allowing electric taxi drivers to
earn more money (Hagman and Langbroek, 2019).

1.1 Research Status

EV charging stations and related equipment can be

broadly categorized into two groups as of 2020. The first
division is level 1-2, which uses alternating current and
may be utilized for up to 150 miles. It takes 3-5 hours to
fully charge. The second category consists of level 3-5
cars, which can travel up to 200 miles and require 1-2
hours and 15-45 minutes, respectively, to fully charge.
Direct Current Fast Chargers (DCFC) are used by Tesla,
Hyundai, and Tata Motors for level 3 and 4 divisions elec-
tric vehicle charging.

It has been observed that numerous private business-
es, like Echo, Tesla, KIA, ChargePoint, etc., are develop-
ing their infrastructure in order to install ultra-fast charg-
ing stations. To find a charging station, many businesses
have provided maps of charging stations. As of June 2016,
there were around 43,000 charging stations in the US.
Even though there are more charging stations available,
range anxiety is still a significant issue when it comes to
EV scheduling (Liu and Liang, 2021).

There are some previous works dealing with re-
charging cost reduction with considerations such as peak
reduction of electricity grid load (Ren et al., 2023), uncer-
tainty on demand and charging time (Liang et al., 2023),
and idle rate (Zhong et al., 2023). Some works empha-
sized a specific EV such as logistics fleet (Deng et al.,
2022) or even the recharging type such as smart grid (Lin
et al., 2021). While those works have similarity with our
works in terms of dynamic electricity prices, there is none
of the works focusing on taxi. One of the most similar
works with this study is Aljafari et al. (2023). It consi-
dered minimum waiting time for the scheduling using
Markov decision process. Even though it observed queues
of EVs at recharging stations, it limits the real-time issues
on which the queues may exceed the number of available
slots at the EV recharging stations. To the best of our
knowledge, there are none of previous studies which at-
tempt to consecutively consider dynamic electricity prices
along with real-time capacity of EV recharging stations.
The summary of the latest works on EV recharging allo-
cation problem, contrasted to the proposed method is
shown at Table 1.

Previous studies on electric vehicle recharging used
decomposition approaches. Bruglieri et al. (2018) pro-
duced alternatives of worker routes and schedules for the
EV relocations in the first phase and then found non-
dominated solutions in the second phase. Wang and
Thompson (2019) solved the EV admission problem in
the first phase, then schedule the EV recharging in the
second phase. Wu and Sioshansi (2017) discussed an EV
recharging problem at one station in the first phase and
then dealt with uncertain parameters in the second phase.
All of these studies show the effectiveness of the decom-
position method to solve EV recharging problems. These
studies differ from our study because they solve different
EV recharging problems.
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1.2 Paper Contribution

Referring to the above problems, this study discusses
a problem of determining the location and schedule for
recharging EVs that considers real problem situations,
e.g., electricity price fluctuation (Mahyari et al., 2023), a
limited available number of recharging slots, and different
remaining EV battery levels (Singgih and Kim, 2020). An
existing work focused on one dataset with an integer pro-
gramming that solely solved the NP-hard optimization
problem using a complex mathematical model that re-
quires a long computational time (Singgih ef al., 2023).

Decomposition-based algorithms have been success-
fully applied to solve NP-hard optimization problem (Be-
heshti Asl ef al., 2022; Arslan and Detienne, 2022). For
this reason, this study proposes two-phase decomposition
approach to handle NP-hard optimization problems. To
show the effectiveness and the efficiency of the proposed
approach, extensive experiments are performed with vari-
ous datasets. The experiments have been conducted by
looking at schedules which are generated in real-time,
considering a short look-ahead period. This EV recharg-
ing problem is faced by the taxi operating companies that
use EVs and EV rental operators.

Different from Aljafari et al. (2023), who considered
queues of EVs at recharging stations, this study solves the
EV recharging allocation problem in a more real-time
fashion by ensuring that the number EVs does not exceed
the number of available slots at the EV recharging sta-
tions.

The structure of this study is as follows. Section 2
defines the problem considered in this study. Section 3
provides the mathematical model for the problem. Section
4 explains the proposed decomposition algorithm. Section
5 shows the numerical experiment results. Section 6 con-
cludes the study.

2. PROBLEM DEFINITION

This study considers a complete graph with a num-
ber of EV stations, a number of EVs, and a planning hori-
zon (consisting of a set of time slots). Each EV e requires
a certain number of time slots to recharge its battery level
to allow its use by the next customers. Each EV e is lo-
cated at its initial station, the ending station of its previous
use, and can be recharged at any EV station. When an EV
is recharged at a station that is different from its initial
station, the EV must be transported first during a prede-
fined transportation time. The EV cannot be recharged
before it arrives at its recharging station. Also, the EV
recharging must be completed before the planning hori-
zon. Each recharging station has its own electricity price
fluctuation, which highly depends on the behavior of the
people living in the area, e.g., the electricity price is high-
er during working hours in the area with many companies,
and the price is higher during the night in the residential
area. Setting a high electricity price during the electricity
usage peak-hour times is common to influence people to
shift their electricity use from those peak-hour times. The
recharging duration for each EV must satisfy its required
recharging time slots; however, the EV recharging deci-
sions must minimize the total required recharging costs
when possible. Each recharging station has a number of
available recharging slots, which limits the number of
EVs that can be recharged at the station.

The assumptions used in this study are:

1. The transportation resources required for trans-
porting the EVs between stations are sufficient
and not discussed in this study.

2. The recharging speeds at all EV stations are the
same.

3. The EV recharging decisions are made in real-
time, any time necessary. Therefore, the study only
considers one look-ahead EV recharging process

Table 1. Differences between this study and previous studies

Study Decisions

Objective

Ren et al. (2023) EV recharging cost

Minimizing total recharging costs and recharging load
fluctuation

Liang et al. (2023) EV recharging cost

Minimizing total recharging costs for all users

EV charging decisions based on their battery

Zhong et al. (2023) levels

Minimizing total costs for the EVs to travel to the re-
charging stations, the total queuing costs, and the total
recharging costs

Deng et al. (2022) EV routing and recharging schedule

Minimizing total EV energy consumption

Lin et al. (2021) EV recharging cost

Minimizing recharging load fluctuation and maximizing
total profits for the EV company

Allocations of EVs to recharging stations

Aljafari et al. (2023) (allowing queues at recharging stations)

Minimizing the total EV recharging costs

Allocations of EVs to recharging stations
Our study (exact number EVs to be allocated based on
the number of available recharging slots)

Minimizing the total EV recharging costs
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for each EV.

The EV recharging problem is stated as follows:
1. Input (given parameters):

a. A set of EVs to be recharged. Each EV’s initial
position and required recharging time slots are
given.

b. A set of EV recharging stations. Each station
has its remaining recharging slots and time-
dependent electricity price information.

c. The required time to transport an EV from any
pair of recharging stations.

2. Output (decisions):

a. Allocation of each EV to a recharging station.

b. The first and last time slots when each EV is re-
charged at its recharging station.

3. Objective:
The total costs required to recharge all EVs.

3. MATHEMATICAL MODEL

In this section, the mathematical model of EV re-
charging mechanism under dynamic electricity prices
with limited number of recharging slots is described in
detail. The first subsection describes the overall mathe-
matical model. In addition, we propose two-phase de-
composition to solve the computational complexity of the
firstly proposed mathematical model.

3.1 Mathematical Model for The Electric Vehicle
Recharging Problem

The math models account for the EV for vehicle ca-
pacity, battery capacity, charging time, time-dependent
electricity prices, and the number of available recharging
slots in the system. The mathematical model is presented
as follows.

Sets
E : Set of electric vehicles to recharge (e=1, 2, ...,
E])
E : Set of recharging stations (s =1, 2, ..., |S])
T : Set of time slots (each time slot could refer to
30 minutes, 1 hour, etc.) (=1, 2, ..., |T])

Parameters

C,; : Recharging cost per time slot at station s dur-
ing time slot ¢

Dy, : Required EV transportation time from station
s to station u

O, : Station where EV e is initially located

P, : Number of available recharging slots at sta-
tion s

R, : Number of required time slots to recharge EV
e and reach its minimum battery level

Decision variables
W, . The first time slot during when EV e is re-
charged at a station
Xeosr o 1, If EV e is recharged at station s during time
slot #; otherwise, 0
Ves : 1,if EV eis recharged at station s; otherwise,
0
Z, . The last time slot during when EV e is re-
charged at a station

min z = Zzzxestcst (1)

Xogt < Vs Vee E, se S,teT )
DVe=l  Veek 3)
erst <P vseSieT 4
X, =0 Vee E,se S,te {1,2,...,DOES} %)
z, <|T| Vee E (©6)

w, S|T|(1-x,y )+ 1x,, Vee E,seSteT (7)

Z, 21X, Veec E,seSteT ®)
z,—W,+1=R, VeeFE Q)
DD e =R Veek (10)
s t

X, =10,1} Vee E,se SteT (11)

Objective (1) minimizes the total costs required to
recharge all EVs, considering the electricity price fluctua-
tion and the EV recharging decisions (during which time
slots and at which EV recharging station). Constraints (2)
and (3) guarantee that each EV e is recharged at a station
s. Constraints (4) limit the number of recharged EVs with
the number of available recharging slots at station s. Con-
straints (5) do not allow EV e to be recharged at station s
if it cannot be transported and arrive at the station on time
slot . Constraints (6) restrict EV e to not be recharged if
the recharging cannot be completed before the time hori-
zon ends. Constraints (7) and (8) define the time slot
when EV e starts and finishes its recharging, respectively.
Constraints (9) and (10) ensure that EV e is recharged as
long as its required time slots. Constraints (11) are binary
constraints.
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3.2 Mathematical Model for The Two-Phase
Decomposition Approach

Since the above problem is computationally complex,
it is solved in a two-phase decomposition method that
deals with a mathematical model for each subproblem.
The first subproblem is a variant of the knapsack problem,
in which the EVs are classified into recharging stations
while minimizing the estimated total recharging costs.

The second sub-problem determines the EV recharg-
ing schedule at each station separately. This decomposi-
tion method is contrasted with the simultaneous allocation
and recharging scheduling problem, as shown in Figure 1.

The decomposition-based method is conducted
based on Algorithm 1. In Algorithm 1, the value of a is
set equal to 0.1.

Algorithm 1

1 : For each station s, set an initial percentage of availa-
ble recharging time slots (of the total available time),
0, = 100%.

2 : Solve the EV allocation model (Submodel 1) and
obtain the EV allocations to the recharging stations.

3 : Given the EV allocation results, for each station s,
solve the EV recharging scheduling model (Submo-
del 2) and observe whether a feasible schedule can
be obtained at each station with EV allocations. If
the recharging scheduling at any station is infeasible,
go to Step 4. Otherwise, obtain the EV recharging
schedules and stop.

4 : For each station s on which no feasible solution
could be found, reduce the 6, value by a percentage
of available recharging time (a), go to Step 2.

In this first subproblem (Submodel 1), EVs are allo-
cated to the stations. The EVs can be allocated to a station
if the total required EV recharging times is less than the
total available recharging time slots at all recharging slots
in the station. Because the allocation of EVs to the sta-
tions is based on the total times, the EV recharging might
be infeasible at one or more slots of a station (e.g. station
s). To deal with such infeasibility, less number of EVs are
allocated to such station s by reducing the available re-
charging time slots (6,) when necessary until any feasible
recharging schedule can be generated.

Mathematical model, additional sets, parameters,
and decision variables for the first EV allocation subprob-
lem are described as follows (the unexplained sets, para-
meters, and decision variables have been presented with
the previous mathematical model in Section 3.1):

Sets

G, : Set of available recharging slots at station s (g =
L,2,...,1G)

K : Set of possible consecutive time slots used for
recharging EVs (k=1, 2, ..., |K])

Parameters
Ay ¢ Total recharging costs when & simultaneous
time slots are required at station s

Method 1:
Simultaneous EV allocation and
recharging scheduling

Method 2:
Two-stage method
(allocate-then-schedule)

Simultaneous
scheduling
at all stations

& Station 1
@i Station 2
’m Station 3

Submodel 1: Submodel 2:
EV Allocation Scheduling
(m Station 1
1 @l Scheduling

R

| i |

at Station 1

L-----I
R—

at Station 2

at Station 3

Figure 1. Comparison between the simultaneous model (Method 1) and the decomposition method (Method 2).
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6, : Percentage of available recharging time slots
for station s

Decision variables

qs 1, if recharging station s is used; otherwise, 0

Vigs - 1, if k time slots are required when recharging
EVs at recharging slot g of station s; other-

wise, 0
minz = ZZZA“V’%’S (12)
k g s
dVe=l Veek (13)
Vos 4, Vee E,se€ S (14)

kags <1

k
ZReyes S ;Z@ck‘) kes Nse S (16)
e g

+T| P (1-q,)

ZReyes 2 ;Zﬁk kagS Vse S (17)
e g

—IT|P,(1~q,)
Zk‘,zvkgs <D Ve Vses (18)
g e

s> VigssVes =101} Vee E,ke K,s€ S,g€ G, (19)

Vse S,ge G, (15)

Objective (12) minimizes the estimated total costs
required to recharge all EVs based on their selected sta-
tions. Please note that each recharging slot is located at a
station. In this subproblem, it is assumed that the EVs are
recharged consecutively at their recharging slots, to re-
duce the complexity of the model. Constraints (13) guar-
antee that each EV e is recharged at a recharging slot g.
Constraints (14)—(17) observe the number of time slots
required to recharge the EVs allocated to each recharging
slot g. The range defined for the total number of recharg-
ing slots ensures that the only feasible recharging sche-
dules are generated. Constraints (18) ensure that the num-
ber of accumulated time slot sets does not exceed the
number of EVs recharged at each station. Constraints (18)
encourage a more appropriate recharging cost estimation.
Constraints (19) are binary constraints. This first subprob-
lem ignores the required times for the EVs to be trans-
ported from their origin stations.

The mathematical model for the second subproblem
(Submodel 2) utilizes the information of EV allocation to
the recharging stations and is formulated as follows:

Sets
E° : Set of allocated electric vehicles to the station

(e=1,2,..,|E)
T : Set of time slots (each time slot could refer to
30 minutes, 1 hour, etc.) (¢=1,2, ..., |T])

Parameters

C,; :Recharging cost per time slot at the station dur-
ing time slot ¢

P : Number of available recharging slots at the sta-
tion

R, : Number of required time slots to recharge EV
e and reach its minimum battery level

Decision variables
w, : The first time slot during when EV e is re-
charged at the station

x,, : 1, if EV e is recharged at the station during
time slot #; otherwise, 0
z, : The last time slot during when EV e is re-

charged at the station

minz = Zijth (20)
e t
Zx;t <P*

VteT 2D
x5, =0 Vee E, te {1.2,....Dy .} (22)
z, <|T]| Vee E (23)
weS|T|(l—xjt)+tx§t Vee E,te T (24)
z, > tx; Vee E,te T (25)
Z,—w,+1=R, Vee E (26)
D xu=R, Vee E @7)

t

xj, ={0,1} VYeec E,te T (28)

Objective (20) minimizes the total costs required to
recharge all EVs, considering the electricity price fluctua-
tion and the EV recharging decisions (during which time
slots at the specified EV recharging station). Constraints
(21) limit the number of recharged EVs with the number
of available recharging slots at the station. Constraints (22)
do not allow EV e to be recharged at the station if it can-
not be transported and arrive at the station on time slot 7.
Constraints (23) restrict EV e to be recharged at the sta-
tion at time slot t if the recharging cannot be completed
before the time horizon ends. Constraints (24) and (25)
define the time slot when EV e starts and finishes its re-
charging, respectively. Constraints (26) and (27) ensure
that EV e is recharged as long as its required time slots.
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Constraints (28) are binary constraints.

4. NUMERICAL EXPERIMENTS

The mathematical model for this study is written in
Python on a Visual Studio Community 2022 platform.
The models are solved using GUROBI 9.5.2. The compu-
tation environment is an 8192MB RAM Intel(R) Core
(TM) 17-5500U CPU at 2.40GHz (4 CPUs). To test the
model, twenty instances are generated with the characte-
ristics shown in Tables 2 and 3 (please refer to the expla-
nations of the parameters in Section 3). Area width is
used to define a square area, on which the depot and cus-
tomers are located. The width is measured by the time
required to travel it. Travel time required between any
pair of nodes would be defined based on the depot and
customer locations. The instances are generated while
ensuring the expected station utilization is around 0.4 to
0.8. The value is below one to allow the possibility of
obtaining feasible solutions. Meanwhile, the value is not
too low to avoid recharging all EVs in a single station and
allow a more proper evaluation of the proposed method
by distributing the EVs among stations. The data are ac-
cessible at https://ubaya.id/evrecharging_pricefluctuation.
The results are shown in Table 4. When generating the
required transportation time, the triangular inequality re-
quirement between each set of three stations is preserved.
The presolving heuristic is activated in GUROBI.

Table 4 shows the effectiveness of the proposed de-
composition method, which obtains less than 10% differ-

ence in the objective value when compared with the best
solution of the simultaneous model. When solving the
larger instances (instances 11-20), the proposed decom-
position method obtains good solutions within a short
computational time, while in most instances the simulta-
neous model could not obtain any feasible solution.

An example of the results is presented using In-
stance 1 in Figures 2 and 3. Figure 2 shows that some
EVs are recharged at their initial stations, but some are
transported to other stations, which have less recharging
costs, without violating the required transportation time
before starting the recharging process. The recharging
schedule of the EVs is shown in Figure 3. In Figure 3,
the available recharging slots are presented as well. It
can be seen that the number of recharged EVs at each
station and time slot does not exceed the available num-
ber of recharging slots.

In Instance 1, the average recharging cost per time
slot in Station 1, 2, 3, 4, and 5 are 56.8, 39, 35.4, 51.5,
and 60, respectively. Based on the average recharging
cost per time slot, most EVs must be recharged to Sta-
tions 2 and 3. Such results are represented well in Figure
3 that shows that almost all time slots at Stations 2 and 3
are used for the recharging. Given the remaining stations
(Stations 1, 4, and 5), most EVs are recharged at consecu-
tive time slots on those stations that cost the least among
all remaining possible time slots at all stations. The con-
secutive time slots with the least cost among the remain-
ing ones are time slots 11-15 and 18-24 at Station 1, and
time slots 20-24 at Station 5. Such results prove the quali-
ty of the proposed method.

Table 2. Value ranges of parameters in the data sets

Parameter Range of values
Cy [1,100] cost unit
area width 10 time slots
P [2,4] recharging slots
R, [5,9] time slots
0, [1,number of stations]

Table 3. Characteristics of each data set

Instances # of electric vehicles # of recharging stations # of time slots Expected station utilization
1-5 25 5 24 [0.43,0.5]
6-10 40 7 24 [0.61, 0.65]
11-15 60 8 24 [0.66, 0.87]
1620 80 10 24 [0.72,0.78]
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Table 4. Numerical experiment results

Integer Programming Decomposition Method
Gap =
Instances Objective” Gap = Solving time BeSF Solving time Final available recharging (B-A(UB))/B
(UB-LB)/ objective Fa . ) (%)
(A) UB (%) (s) (B) (s) capacity (per station)
1 6,208 0 1,063 6,557 1+1=2 [1,1,1,1,1] 5.32
2 6,045 0 128 6,591 1+2=3 [1,1,1,1,1] 8.28
3 5,907 0 162 6,150 1+1=2 [1,1,1,1,1] 3.95
4 6,579 0 982 7,214 1+2=3 [1,1,1,1,1] 8.80
5 7,168 0 852 7,725 1+1=2 [1,1,1,1,1] 7.21
(11,240) _
6 11,425 1.62 1,800 12,629 1+2=3 [1,1,1,1,1,1,1] 953
7 (9:463) 3.05 1,800 10,707 1+2=3 [1,1,1,1,1,1,1] 8.84
9,761
(11,942) _
8 12,028 0.71 1,800 13,254 1+2=3 [L,1,1,1,1,1,1] 9.25
(11,833) _
9 11,963 1.09 1,800 12,870 1+4=5 [1,1,1,09,1,1,1] 7.05
(10,420) -
10 10.666 2.31 1,800 11,206 1+4=5 [1,1,1,09,1,1,1] 4.82
11 (14’_290) - 1,800 16,273 1+5=6 [L,1,1,1,1,1,1,1] -
12 (15’_758) - 1,800 17,744 6+7=13 [1,09,09,1,1,1,1,1] -
13 (19’_1 ) - 1,800 21,196 62+12=74 [0.9,0.9,0.9,0.9,0.9,0.9, 1,0.9] -
14 (17’?67) - 1,800 19,284 3+8=11 [1,09,1,1,1,1,1,1] -
(18,032) _
15 18.894 4.56 1,800 19,707 3+8=11 [1,09,1,1,1,1,1,1] 413
16 (22’?26) - 1,800 26,677 133+12=145 09,11, 0'8’01’9(])'9’ 09,1,09, -
17 (18’_661) - 1,800 22,714 21+15=36 [1,1,1,1,09,09,1,1,1,1] -
18 (20,453) ) 1,800 23,191 453426=479 [0.9,0.9,09,1,1,1,0.9,0.9, i
- 0.9,0.9]
19 (22,418) ) 1,800 26,648 629+30=659 [0.9,0.9,09,0.9,1,1,0.9,0.9,
- 0.9,0.8]
20 (19’_971) 1,800 23,870 11+8=19 [,1,1,1,1,1,1, 1,09, 0.9] -
Average 1,509 66+8=74 7.02

*(Lower bound/LB) Upper bound/UB. The lower bound is presented separately, when no optimal solution is found.
**at+b=c, with a = total computational times of the first EV allocation subproblem, b = total computational times of the second EV recharg-
ing scheduling subproblem. The computational time for each subproblem is limited to 10 minutes.
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EV 5,16

Station 1

Station 5

EV a is originally located
EV:a at the station and recharged

ﬁ at the station (without being

d to any other station)

e ——————
EV4,7,13

EV: 15

Station 4

m EV ofs movement from
its origin station to a target

ﬁ station for recharging

Figure 2. EV recharging locations and EV movements in Instance 1.
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Figure 3. EV recharging schedules at their designated stations.

5. CONCLUSIONS

This study discussed an EV recharging problem that
considered a limited number of recharging slots and the
electricity price fluctuation at each recharging station. The
problem was formulated mathematically, and a decompo-
sition-based method was proposed to solve larger in-
stances effectively. It is shown that the proposed decom-
position method obtains good solutions (that has an aver-
age gap of less than 10% when compared with the com-
plete mathematical model) and solved the instances in
less than 2 minutes for problems up to 80 EVs, 10 sta-

tions (with 2—4 recharging slots), and 24 time slots.

The limitation of this study is not considering the EV
movement costs. Such a situation caused more EV
movements between stations to minimize the recharging
costs. EV movement decisions are considered in EV relo-
cation problem (Singgih and Kim, 2020), which could be
performed using various ways, e.g., trucks moving mul-
tiple EVs, operators driving each individual EV, etc. EV
allocations obtained in this study could be used as a rec-
ommendation for such EV relocation decisions. When
movement costs are considered in the EV relocation prob-
lem, inefficient EV movements between stations could be
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removed when solving the EV allocation model in this
study iteratively while setting the values of related EV
movement variables equal to 0. Future research topics
could also propose (1) more effective solution methods
and (2) an integrated framework that combines the data
collection and analysis using machine learning techniques,
which improves the results of the optimization.
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