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ABSTRACT 
The usage of electric vehicles (EVs) is widely considered because of their contribution to environmental preservation. 
In an EV system, each EV must undergo recharging after use to ensure its battery has sufficient capacity for subse-
quent trips. This study examines an EV recharging problem, focusing on the allocation of EVs to be recharged at some 
stations. The primary objective is to minimize the overall electricity costs associated with recharging. The variation in 
electricity prices at each station plays an important role in influencing the selection of recharging stations. The prob-
lem is formulated mathematically in the form of integer programming. A decomposition-based method is proposed for 
solving larger-sized instances, and then various data sets are solved to test the applicability of the proposed solution 
methods. The results show that the performance gap is, in average, 7.02% using decomposition method in comparison 
to the integer programming. This study addresses a specific problem to obtain a solution within a short computational 
time. 
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1. INTRODUCTION 

Electric vehicle (EV) systems have been deployed in 
various countries due to the crucial role in addressing 
climate changes while reducing nonrenewable fuel source 
dependency worldwide. By 2024, the majority of Japa-
nese and Westerners will have chosen to utilize electric 
vehicles for public transportation, including cars and buses 

(Da Silva et al., 2020). Despite having the benefit of be-
ing environmentally friendly, it is necessary to ensure that 
EVs are recharged appropriately during their operations 
(Agrali and Lee, 2023).  

In the context of sustainable mobility, the Electric 
Vehicle Recharging Allocation Problem assumes great 
importance, especially when combined with the dynamic 
environment of electricity price variations. The electricity 
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price variations can be seen in three different perspectives: 
real-time electricity price (Zhou et al., 2020; Yu et al., 
2020), time-of-use tariff (Gong et al., 2020; Zheng et al., 
2020), and dynamic electricity price (Fang et al., 2021; 
Dante et al., 2022). The dynamic electricity pricing is 
more flexible than the time-of-use tariff and can guaran-
tee appropriate overall scheduling when compared to the 
real-time power price.  

There are numerous research works on dynamic 
electricity pricing for EV recharging allocation problem 
due to its benefits. Lai et al. (2023) presented a dynamic 
pricing model with competitive effects that accomplishes 
the goals of protecting aggregator interests and balancing 
grid load and traffic congestion. Nevertheless, the tech-
nique of dynamic electricity price fixing fails to include 
the stochastic nature of electric vehicles and so it cannot 
provide overall optimality. Integrating a large number of 
various EVs has a number of negative impacts, including 
peak load control, reactive power injection, frequency 
disruption, and voltage fluctuation (Mahfouz and Iravani, 
2020). Dynamic pricing makes it possible to schedule EV 
charging, set variable rates for charging, and profit from 
extra energy by feeding it back into the grid. Furthermore, 
a number of characteristics have also been suggested for 
the fast-charging scheduling, including EV arrival time, 
energy availability, battery full charging capacity, and 
departure time in relation to traffic and customer behavior. 
An EV should charge during a period of low electricity 
market price and discharge to the grid during a period of 
high electricity market price to implement a dynamic 
pricing system. As a result, there is a contradiction when 
it comes to charging and discharging EVs when prices are 
high or low. 

The transportation mode that contributes mainly the 
emissions of roadside pollutants and greenhouse gases is 
taxi. Electrifying the taxi fleet is an effective solution strat-
egy (Zhou et al., 2021). Many cities around the world have 
utilized electric taxis, such as in New York City in USA 
(Hu et al., 2018), Tokyo in Japan (Palmer et al., 2018), 
Stockholm in Sweden (Hagman and Langbroek, 2019), 
Seoul in South Korea (Kang and Lee, 2019), and Beijing 
(Zhou et al., 2021) and Shenzhen in China (Zhang and 
Zhao, 2018). Parking lots and charging stations are two 
crucial aspects that affect how comfortable drivers are us-
ing electric cars (Wolbertus et al., 2018). In addition, taxi 
drivers' working hours and daily earnings are significantly 
impacted by charging times (Zhang et al., 2020). Despite 
the negative consequences of charging times for electric 
taxis, the government of Sweden has implemented laws 
that can offset these costs, allowing electric taxi drivers to 
earn more money (Hagman and Langbroek, 2019). 

1.1 Research Status 

EV charging stations and related equipment can be 

broadly categorized into two groups as of 2020. The first 
division is level 1-2, which uses alternating current and 
may be utilized for up to 150 miles. It takes 3-5 hours to 
fully charge. The second category consists of level 3-5 
cars, which can travel up to 200 miles and require 1-2 
hours and 15-45 minutes, respectively, to fully charge. 
Direct Current Fast Chargers (DCFC) are used by Tesla, 
Hyundai, and Tata Motors for level 3 and 4 divisions elec-
tric vehicle charging.  

It has been observed that numerous private business-
es, like Echo, Tesla, KIA, ChargePoint, etc., are develop-
ing their infrastructure in order to install ultra-fast charg-
ing stations. To find a charging station, many businesses 
have provided maps of charging stations. As of June 2016, 
there were around 43,000 charging stations in the US. 
Even though there are more charging stations available, 
range anxiety is still a significant issue when it comes to 
EV scheduling (Liu and Liang, 2021). 

There are some previous works dealing with re-
charging cost reduction with considerations such as peak 
reduction of electricity grid load (Ren et al., 2023), uncer-
tainty on demand and charging time (Liang et al., 2023), 
and idle rate (Zhong et al., 2023). Some works empha-
sized a specific EV such as logistics fleet (Deng et al., 
2022) or even the recharging type such as smart grid (Lin 
et al., 2021). While those works have similarity with our 
works in terms of dynamic electricity prices, there is none 
of the works focusing on taxi. One of the most similar 
works with this study is Aljafari et al. (2023). It consi-
dered minimum waiting time for the scheduling using 
Markov decision process. Even though it observed queues 
of EVs at recharging stations, it limits the real-time issues 
on which the queues may exceed the number of available 
slots at the EV recharging stations. To the best of our 
knowledge, there are none of previous studies which at-
tempt to consecutively consider dynamic electricity prices 
along with real-time capacity of EV recharging stations. 
The summary of the latest works on EV recharging allo-
cation problem, contrasted to the proposed method is 
shown at Table 1. 

Previous studies on electric vehicle recharging used 
decomposition approaches. Bruglieri et al. (2018) pro-
duced alternatives of worker routes and schedules for the 
EV relocations in the first phase and then found non-
dominated solutions in the second phase. Wang and 
Thompson (2019) solved the EV admission problem in 
the first phase, then schedule the EV recharging in the 
second phase. Wu and Sioshansi (2017) discussed an EV 
recharging problem at one station in the first phase and 
then dealt with uncertain parameters in the second phase. 
All of these studies show the effectiveness of the decom-
position method to solve EV recharging problems. These 
studies differ from our study because they solve different 
EV recharging problems.  
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1.2 Paper Contribution 

Referring to the above problems, this study discusses 
a problem of determining the location and schedule for 
recharging EVs that considers real problem situations, 
e.g., electricity price fluctuation (Mahyari et al., 2023), a 
limited available number of recharging slots, and different 
remaining EV battery levels (Singgih and Kim, 2020). An 
existing work focused on one dataset with an integer pro-
gramming that solely solved the NP-hard optimization 
problem using a complex mathematical model that re-
quires a long computational time (Singgih et al., 2023).  

Decomposition-based algorithms have been success-
fully applied to solve NP-hard optimization problem (Be-
heshti Asl et al., 2022; Arslan and Detienne, 2022). For 
this reason, this study proposes two-phase decomposition 
approach to handle NP-hard optimization problems. To 
show the effectiveness and the efficiency of the proposed 
approach, extensive experiments are performed with vari-
ous datasets. The experiments have been conducted by 
looking at schedules which are generated in real-time, 
considering a short look-ahead period. This EV recharg-
ing problem is faced by the taxi operating companies that 
use EVs and EV rental operators. 

Different from Aljafari et al. (2023), who considered 
queues of EVs at recharging stations, this study solves the 
EV recharging allocation problem in a more real-time 
fashion by ensuring that the number EVs does not exceed 
the number of available slots at the EV recharging sta-
tions. 

The structure of this study is as follows. Section 2 
defines the problem considered in this study. Section 3 
provides the mathematical model for the problem. Section 
4 explains the proposed decomposition algorithm. Section 
5 shows the numerical experiment results. Section 6 con-
cludes the study. 

2. PROBLEM DEFINITION 

This study considers a complete graph with a num-
ber of EV stations, a number of EVs, and a planning hori-
zon (consisting of a set of time slots). Each EV e requires 
a certain number of time slots to recharge its battery level 
to allow its use by the next customers. Each EV e is lo-
cated at its initial station, the ending station of its previous 
use, and can be recharged at any EV station. When an EV 
is recharged at a station that is different from its initial 
station, the EV must be transported first during a prede-
fined transportation time. The EV cannot be recharged 
before it arrives at its recharging station. Also, the EV 
recharging must be completed before the planning hori-
zon. Each recharging station has its own electricity price 
fluctuation, which highly depends on the behavior of the 
people living in the area, e.g., the electricity price is high-
er during working hours in the area with many companies, 
and the price is higher during the night in the residential 
area. Setting a high electricity price during the electricity 
usage peak-hour times is common to influence people to 
shift their electricity use from those peak-hour times. The 
recharging duration for each EV must satisfy its required 
recharging time slots; however, the EV recharging deci-
sions must minimize the total required recharging costs 
when possible. Each recharging station has a number of 
available recharging slots, which limits the number of 
EVs that can be recharged at the station. 

The assumptions used in this study are: 
1. The transportation resources required for trans-

porting the EVs between stations are sufficient 
and not discussed in this study. 

2. The recharging speeds at all EV stations are the 
same. 

3. The EV recharging decisions are made in real-
time, any time necessary. Therefore, the study only 
considers one look-ahead EV recharging process 

Table 1. Differences between this study and previous studies 

Study Decisions Objective  

Ren et al. (2023) EV recharging cost Minimizing total recharging costs and recharging load 
fluctuation 

Liang et al. (2023) EV recharging cost Minimizing total recharging costs for all users 

Zhong et al. (2023) EV charging decisions based on their battery 
levels 

Minimizing total costs for the EVs to travel to the re-
charging stations, the total queuing costs, and the total 
recharging costs 

Deng et al. (2022) EV routing and recharging schedule Minimizing total EV energy consumption 

Lin et al. (2021) EV recharging cost Minimizing recharging load fluctuation and maximizing 
total profits for the EV company 

Aljafari et al. (2023) Allocations of EVs to recharging stations  
(allowing queues at recharging stations) Minimizing the total EV recharging costs 

Our study 
Allocations of EVs to recharging stations  
(exact number EVs to be allocated based on  
the number of available recharging slots) 

Minimizing the total EV recharging costs 
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for each EV. 
 
The EV recharging problem is stated as follows: 
1. Input (given parameters): 

a. A set of EVs to be recharged. Each EV’s initial 
position and required recharging time slots are 
given. 

b. A set of EV recharging stations. Each station 
has its remaining recharging slots and time-
dependent electricity price information. 

c. The required time to transport an EV from any 
pair of recharging stations. 

2. Output (decisions): 
a. Allocation of each EV to a recharging station. 
b. The first and last time slots when each EV is re-

charged at its recharging station. 
3. Objective: 
The total costs required to recharge all EVs. 

3. MATHEMATICAL MODEL 

In this section, the mathematical model of EV re-
charging mechanism under dynamic electricity prices 
with limited number of recharging slots is described in 
detail. The first subsection describes the overall mathe-
matical model. In addition, we propose two-phase de-
composition to solve the computational complexity of the 
firstly proposed mathematical model. 

3.1 Mathematical Model for The Electric Vehicle 
Recharging Problem 

The math models account for the EV for vehicle ca-
pacity, battery capacity, charging time, time-dependent 
electricity prices, and the number of available recharging 
slots in the system. The mathematical model is presented 
as follows. 
 

Sets 
E : Set of electric vehicles to recharge (e = 1, 2, …, 

|E|) 
E : Set of recharging stations (s = 1, 2, …, |S|) 
T : Set of time slots (each time slot could refer to 

30 minutes, 1 hour, etc.) (t = 1, 2, …, |T|) 
 
Parameters 
Cst : Recharging cost per time slot at station s dur-

ing time slot t 
Dsu : Required EV transportation time from station 

s to station u 
Oe : Station where EV e is initially located 
Ps : Number of available recharging slots at sta-

tion s 

Re : Number of required time slots to recharge EV 
e and reach its minimum battery level 

 
Decision variables 
we : The first time slot during when EV e is re-

charged at a station 
xest : 1, if EV e is recharged at station s during time 

slot t; otherwise, 0 
yes : 1, if EV e is recharged at station s; otherwise, 

0 
ze : The last time slot during when EV e is re-

charged at a station 

min est st
e s t

z x C=∑∑∑  (1) 

est esx y≤     ,e E∀ ∈ ,s S t T∈ ∈  (2) 

1es
s

y =∑    e E∀ ∈  (3) 

est s
e

x P≤∑   ,s S t T∀ ∈ ∈  (4) 

0estx =      , , {1,2, , }
eO se E s S t D∀ ∈ ∈ ∈ …  (5) 

ez T≤      e E∀ ∈  (6) 

( )1e est estw T x tx≤ − +  ,e E s S t T∀ ∈ ∈ ∈  (7) 

e estz tx≥     ,e E s S t T∀ ∈ ∈ ∈  (8) 

1e e ez w R− + =  e E∀ ∈  (9) 

est e
s t

x R=∑∑   e E∀ ∈  (10) 

{ }0,1estx =       ,e E s S t T∀ ∈ ∈ ∈  (11) 

Objective (1) minimizes the total costs required to 
recharge all EVs, considering the electricity price fluctua-
tion and the EV recharging decisions (during which time 
slots and at which EV recharging station). Constraints (2) 
and (3) guarantee that each EV e is recharged at a station 
s. Constraints (4) limit the number of recharged EVs with 
the number of available recharging slots at station s. Con-
straints (5) do not allow EV e to be recharged at station s 
if it cannot be transported and arrive at the station on time 
slot t. Constraints (6) restrict EV e to not be recharged if 
the recharging cannot be completed before the time hori-
zon ends. Constraints (7) and (8) define the time slot 
when EV e starts and finishes its recharging, respectively. 
Constraints (9) and (10) ensure that EV e is recharged as 
long as its required time slots. Constraints (11) are binary 
constraints. 
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3.2 Mathematical Model for The Two-Phase  
Decomposition Approach 

Since the above problem is computationally complex, 
it is solved in a two-phase decomposition method that 
deals with a mathematical model for each subproblem. 
The first subproblem is a variant of the knapsack problem, 
in which the EVs are classified into recharging stations 
while minimizing the estimated total recharging costs.  

The second sub-problem determines the EV recharg-
ing schedule at each station separately. This decomposi-
tion method is contrasted with the simultaneous allocation 
and recharging scheduling problem, as shown in Figure 1. 

The decomposition-based method is conducted 
based on Algorithm 1. In Algorithm 1, the value of α is 
set equal to 0.1. 

 
Algorithm 1 

1  : For each station s, set an initial percentage of availa-
ble recharging time slots (of the total available time), 
θs = 100%. 

2  : Solve the EV allocation model (Submodel 1) and 
obtain the EV allocations to the recharging stations. 

3  : Given the EV allocation results, for each station s, 
solve the EV recharging scheduling model (Submo-
del 2) and observe whether a feasible schedule can 
be obtained at each station with EV allocations. If 
the recharging scheduling at any station is infeasible, 
go to Step 4. Otherwise, obtain the EV recharging 
schedules and stop. 

4  : For each station s on which no feasible solution 
could be found, reduce the θs value by a percentage 
of available recharging time (α), go to Step 2. 
 
In this first subproblem (Submodel 1), EVs are allo-

cated to the stations. The EVs can be allocated to a station 
if the total required EV recharging times is less than the 
total available recharging time slots at all recharging slots 
in the station. Because the allocation of EVs to the sta-
tions is based on the total times, the EV recharging might 
be infeasible at one or more slots of a station (e.g. station 
s). To deal with such infeasibility, less number of EVs are 
allocated to such station s by reducing the available re-
charging time slots (θs) when necessary until any feasible 
recharging schedule can be generated. 

Mathematical model, additional sets, parameters, 
and decision variables for the first EV allocation subprob-
lem are described as follows (the unexplained sets, para-
meters, and decision variables have been presented with 
the previous mathematical model in Section 3.1): 

 
Sets 
Gs : Set of available recharging slots at station s (g = 

1, 2, …, |Gs|) 
K : Set of possible consecutive time slots used for 

recharging EVs (k = 1, 2, …, |K|) 
 
Parameters 
Aks :  Total recharging costs when k simultaneous 

time slots are required at station s 

 

Figure 1. Comparison between the simultaneous model (Method 1) and the decomposition method (Method 2). 
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θs :  Percentage of available recharging time slots 
for station s 

 
Decision variables 
qs : 1, if recharging station s is used; otherwise, 0 
vkgs : 1, if k time slots are required when recharging 

EVs at recharging slot g of station s; other-
wise, 0 

ks kgs
k g s

minz A v=∑∑∑  (12) 

1es
s

y =∑    e E∀ ∈  (13) 

es sy q≤      ,e E s S∀ ∈ ∈  (14) 

1kgs
k

v ≤∑    , ss S g G∀ ∈ ∈  (15) 

e es k kgs
e k g

R y kvθ≤∑ ∑∑  s S∀ ∈  (16) 

( )| | 1s sT P q+ −  

e es k kgs
e k g

R y kvθ≥∑ ∑∑   s S∀ ∈  (17) 

( )| | 1s sT P q− −  

kgs es
k g e

v y≤∑∑ ∑  s S∀ ∈  (18) 

, , {0,1}s kgs esq v y =  , , , se E k K s S g G∀ ∈ ∈ ∈ ∈  (19) 

Objective (12) minimizes the estimated total costs 
required to recharge all EVs based on their selected sta-
tions. Please note that each recharging slot is located at a 
station. In this subproblem, it is assumed that the EVs are 
recharged consecutively at their recharging slots, to re-
duce the complexity of the model. Constraints (13) guar-
antee that each EV e is recharged at a recharging slot g. 
Constraints (14)–(17) observe the number of time slots 
required to recharge the EVs allocated to each recharging 
slot g. The range defined for the total number of recharg-
ing slots ensures that the only feasible recharging sche-
dules are generated. Constraints (18) ensure that the num-
ber of accumulated time slot sets does not exceed the 
number of EVs recharged at each station. Constraints (18) 
encourage a more appropriate recharging cost estimation. 
Constraints (19) are binary constraints. This first subprob-
lem ignores the required times for the EVs to be trans-
ported from their origin stations. 

The mathematical model for the second subproblem 
(Submodel 2) utilizes the information of EV allocation to 
the recharging stations and is formulated as follows: 

 
Sets 
Es : Set of allocated electric vehicles to the station 

(e = 1, 2, …, |E|) 
T : Set of time slots (each time slot could refer to 

30 minutes, 1 hour, etc.) (t = 1, 2, …, |T|) 
 
Parameters 

s
tC  : Recharging cost per time slot at the station dur-

ing time slot t 
Ps : Number of available recharging slots at the sta-

tion 
Re : Number of required time slots to recharge EV 

e and reach its minimum battery level 
 
Decision variables 
we : The first time slot during when EV e is re-

charged at the station 
s
etx  : 1, if EV e is recharged at the station during 

time slot t; otherwise, 0 
ze : The last time slot during when EV e is re-

charged at the station 

s s
et t

e t

minz x C=∑∑   (20) 

s s
et

e

x P≤∑  t T∀ ∈  (21) 

0s
etx =  ,e E∀ ∈ {1,2, , }

eO st D∈ …  (22) 

ez T≤  e E∀ ∈  (23) 

( )1 s s
e et etw T x tx≤ − + ,e E t T∀ ∈ ∈  (24) 

s
e etz tx≥  ,e E t T∀ ∈ ∈  (25) 

1e e ez w R− + =  e E∀ ∈  (26) 

s
et e

t

x R=∑  e E∀ ∈  (27) 

{ }0,1s
etx =  ,e E t T∀ ∈ ∈  (28) 

Objective (20) minimizes the total costs required to 
recharge all EVs, considering the electricity price fluctua-
tion and the EV recharging decisions (during which time 
slots at the specified EV recharging station). Constraints 
(21) limit the number of recharged EVs with the number 
of available recharging slots at the station. Constraints (22) 
do not allow EV e to be recharged at the station if it can-
not be transported and arrive at the station on time slot t. 
Constraints (23) restrict EV e to be recharged at the sta-
tion at time slot t if the recharging cannot be completed 
before the time horizon ends. Constraints (24) and (25) 
define the time slot when EV e starts and finishes its re-
charging, respectively. Constraints (26) and (27) ensure 
that EV e is recharged as long as its required time slots. 
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Constraints (28) are binary constraints. 

4. NUMERICAL EXPERIMENTS 

The mathematical model for this study is written in 
Python on a Visual Studio Community 2022 platform. 
The models are solved using GUROBI 9.5.2. The compu-
tation environment is an 8192MB RAM Intel(R) Core 
(TM) i7-5500U CPU at 2.40GHz (4 CPUs). To test the 
model, twenty instances are generated with the characte-
ristics shown in Tables 2 and 3 (please refer to the expla-
nations of the parameters in Section 3). Area width is 
used to define a square area, on which the depot and cus-
tomers are located. The width is measured by the time 
required to travel it. Travel time required between any 
pair of nodes would be defined based on the depot and 
customer locations. The instances are generated while 
ensuring the expected station utilization is around 0.4 to 
0.8. The value is below one to allow the possibility of 
obtaining feasible solutions. Meanwhile, the value is not 
too low to avoid recharging all EVs in a single station and 
allow a more proper evaluation of the proposed method 
by distributing the EVs among stations. The data are ac-
cessible at https://ubaya.id/evrecharging_pricefluctuation. 
The results are shown in Table 4. When generating the 
required transportation time, the triangular inequality re-
quirement between each set of three stations is preserved. 
The presolving heuristic is activated in GUROBI.  

Table 4 shows the effectiveness of the proposed de-
composition method, which obtains less than 10% differ-

ence in the objective value when compared with the best 
solution of the simultaneous model. When solving the 
larger instances (instances 11–20), the proposed decom-
position method obtains good solutions within a short 
computational time, while in most instances the simulta-
neous model could not obtain any feasible solution. 

An example of the results is presented using In-
stance 1 in Figures 2 and 3. Figure 2 shows that some 
EVs are recharged at their initial stations, but some are 
transported to other stations, which have less recharging 
costs, without violating the required transportation time 
before starting the recharging process. The recharging 
schedule of the EVs is shown in Figure 3. In Figure 3, 
the available recharging slots are presented as well. It 
can be seen that the number of recharged EVs at each 
station and time slot does not exceed the available num-
ber of recharging slots.  

In Instance 1, the average recharging cost per time 
slot in Station 1, 2, 3, 4, and 5 are 56.8, 39, 35.4, 51.5, 
and 60, respectively. Based on the average recharging 
cost per time slot, most EVs must be recharged to Sta-
tions 2 and 3. Such results are represented well in Figure 
3 that shows that almost all time slots at Stations 2 and 3 
are used for the recharging. Given the remaining stations 
(Stations 1, 4, and 5), most EVs are recharged at consecu-
tive time slots on those stations that cost the least among 
all remaining possible time slots at all stations. The con-
secutive time slots with the least cost among the remain-
ing ones are time slots 11-15 and 18-24 at Station 1, and 
time slots 20-24 at Station 5. Such results prove the quali-
ty of the proposed method. 

Table 2. Value ranges of parameters in the data sets 

Parameter Range of values 

Cst [1,100] cost unit 

area width 10 time slots 

Ps [2,4] recharging slots 

Re [5,9] time slots 

Oe [1,number of stations] 

 

Table 3. Characteristics of each data set 

Instances # of electric vehicles # of recharging stations # of time slots Expected station utilization 

1–5 25 5 24 [0.43, 0.5] 

6–10 40 7 24 [0.61, 0.65] 

11–15 60 8 24 [0.66, 0.87] 

16–20 80 10 24 [0.72, 0.78] 
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Table 4. Numerical experiment results 

Instances 

Integer Programming Decomposition Method 
Gap = 

(B-A(UB))/B 
(%) 

Objective*  
(A) 

Gap = 
(UB-LB)/ 
UB (%) 

Solving time
(s) 

Best 
objective 

(B) 

Solving time  
(s)** 

Final available recharging 
capacity (per station) 

1 6,208 0 1,063 6,557 1+1=2 [1, 1, 1, 1, 1] 5.32 

2 6,045 0 128 6,591 1+2=3 [1, 1, 1, 1, 1] 8.28 

3 5,907 0 162 6,150 1+1=2 [1, 1, 1, 1, 1] 3.95 

4 6,579 0 982 7,214 1+2=3 [1, 1, 1, 1, 1] 8.80 

5 7,168 0 852 7,725 1+1=2 [1, 1, 1, 1, 1] 7.21 

6 (11,240)  
11,425 1.62 1,800 12,629 1+2=3 [1, 1, 1, 1, 1, 1, 1] 9.53 

7 (9,463)  
9,761 3.05 1,800 10,707 1+2=3 [1, 1, 1, 1, 1, 1, 1] 8.84 

8 (11,942)  
12,028 0.71 1,800 13,254 1+2=3 [1, 1, 1, 1, 1, 1, 1] 9.25 

9 (11,833)  
11,963 1.09 1,800 12,870 1+4=5 [1, 1, 1, 0.9, 1, 1, 1] 7.05 

10 (10,420)  
10,666 2.31 1,800 11,206 1+4=5 [1, 1, 1, 0.9, 1, 1, 1] 4.82 

11 (14,290)  
- - 1,800 16,273 1+5=6 [1, 1, 1, 1, 1, 1, 1, 1] - 

12 (15,758)  
- - 1,800 17,744 6+7=13 [1, 0.9, 0.9, 1, 1, 1, 1, 1] - 

13 (19,177)  
- - 1,800 21,196 62+12=74 [0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 1, 0.9] - 

14 (17,467)  
- - 1,800 19,284 3+8=11 [1, 0.9, 1, 1, 1, 1, 1, 1] - 

15 (18,032)  
18,894 4.56 1,800 19,707 3+8=11 [1, 0.9, 1, 1, 1, 1, 1, 1] 4.13 

16 (22,026)  
- - 1,800 26,677 133+12=145 [0.9, 1, 1, 0.8, 1, 0.9, 0.9, 1, 0.9, 

0.9] - 

17 (18,661)  
- - 1,800 22,714 21+15=36 [1, 1, 1, 1, 0.9, 0.9, 1, 1, 1, 1] - 

18 (20,453)  
- - 1,800 23,191 453+26=479 [0.9, 0.9, 0.9, 1, 1, 1, 0.9, 0.9, 

0.9, 0.9] - 

19 (22,418)  
- - 1,800 26,648 629+30=659 [0.9, 0.9, 0.9, 0.9, 1, 1, 0.9, 0.9, 

0.9, 0.8] - 

20 (19,971)  
- - 1,800 23,870 11+8=19 [1, 1, 1, 1, 1, 1, 1, 1, 0.9, 0.9] - 

Average 1,509  66+8=74  7.02 

*(Lower bound/LB) Upper bound/UB. The lower bound is presented separately, when no optimal solution is found. 
**a+b=c, with a = total computational times of the first EV allocation subproblem, b = total computational times of the second EV recharg-
ing scheduling subproblem. The computational time for each subproblem is limited to 10 minutes. 
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5. CONCLUSIONS 

This study discussed an EV recharging problem that 
considered a limited number of recharging slots and the 
electricity price fluctuation at each recharging station. The 
problem was formulated mathematically, and a decompo-
sition-based method was proposed to solve larger in-
stances effectively. It is shown that the proposed decom-
position method obtains good solutions (that has an aver-
age gap of less than 10% when compared with the com-
plete mathematical model) and solved the instances in 
less than 2 minutes for problems up to 80 EVs, 10 sta-

tions (with 2–4 recharging slots), and 24 time slots.  
The limitation of this study is not considering the EV 

movement costs. Such a situation caused more EV 
movements between stations to minimize the recharging 
costs. EV movement decisions are considered in EV relo-
cation problem (Singgih and Kim, 2020), which could be 
performed using various ways, e.g., trucks moving mul-
tiple EVs, operators driving each individual EV, etc. EV 
allocations obtained in this study could be used as a rec-
ommendation for such EV relocation decisions. When 
movement costs are considered in the EV relocation prob-
lem, inefficient EV movements between stations could be 

 

Figure 2. EV recharging locations and EV movements in Instance 1. 

 
Figure 3. EV recharging schedules at their designated stations. 
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removed when solving the EV allocation model in this 
study iteratively while setting the values of related EV 
movement variables equal to 0. Future research topics 
could also propose (1) more effective solution methods 
and (2) an integrated framework that combines the data 
collection and analysis using machine learning techniques, 
which improves the results of the optimization. 
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