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Abstract. Setting logistics routes and product distribution in everyday problems, 

such as delivery of fresh products, requires an algorithm that can produce deci-

sions in a short time. This type of problem belongs to a methodology popularly 

known as the vehicle routing problem (VRP). VRP is NP-Hard, and its complex-

ity increases with additional settings such as time windows and multiple objec-

tives (MOVRPTW). One popular metaheuristic for MOVRPTW is genetic algo-

rithm, but the literature suggests that the algorithm’s running time is usually too 

long, making it prohibitive for daily logistics applications. In this paper, we pro-

posed a modified Artificial Immune System (AIS) for MOVRPTW by hybridiz-

ing it with chromosome splitting procedure called Split and nine-step local search 

mutation. The objective functions are minimum total distance and minimum 

number of vehicles. Based on the experimental results against Solomon data set 

c104, although the proposed algorithm still cannot beat the best-known solution, 

it is able to find solutions in a very short computation time under one minute in 

all scenarios. 

Keywords: Artificial Immune System, Multi-Objective, Vehicle Routing Prob-

lem, Time Windows. 

1 Introduction 

The Vehicle Routing Problem (VRP) is a methodology widely applied for setting lo-

gistics routes. Its applications cover strategic themes such as the construction of mari-

time shipping network as well as tactical decisions such as daily distribution of con-

sumer products. VRP is known to be NP-Hard, therefore additional settings will further 

increase its complexity. Possible additional settings include time windows and multiple 

objectives. Under this class, the model is called multi-objective vehicle routing problem 

with time windows or abbreviated MOVRPTW. Given the complexity, metaheuristic 

approaches are more commonly used to solve the problems than exact optimization 

models. Research conducted in [1] demonstrated a hybridized genetic algorithm (GA) 

in a maritime logistics application with two objectives. The proposed algorithm in that 

research took 5-6 hours of computing time. Such a long computing time can still be 

accepted for strategic decisions such as determining routes in an industry that involves 

large operational costs. However, for everyday problems such as delivery of fresh prod-

ucts, a faster algorithm is needed. 
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 One metaheuristic that has not been much explored for VRP is the artificial immune 
system (AIS). In [2], AIS was tested for fresh product delivery with a single objective 
in cost minimization. To the best of our knowledge, there has never been an application 
of AIS for MOVRPTW. This becomes a research gap as well as the background of this 
research. 

Given the above background, the objective of this research is to develop an AIS 
algorithm to solve routing problems with two objectives. The two objective functions 
are to (1) minimize the total distance and (2) minimize the number of vehicles. The 
algorithm is coded in Python and tested against Solomon benchmark instance data set 
c104. Short computation time is expected from the proposed algorithm to pave future 
applications in logistics cases that require fast decisions such as delivery and distribu-
tion of fresh products. 

2 Literature Review 

One famous VRP variant is the vehicle routing problem with time windows (VRPTW). 
These time windows can be formulated as hard time windows (must be satisfied) or 
soft time windows. Soft time windows means that vehicles can make deliveries faster 
or slower than the specified time as long as they are within the given time limits [3]. 
This flexibility allows logistics companies to save on distribution costs incurred to meet 
customer satisfaction. It also invites many researchers to continue developing methods 
for VRPSTW in order to produce the best solution. 

VRP with single objective only optimizes one objective function, whereas multi-
objective vehicle routing problem (MOVRP) optimizes two or more conflicting objec-
tive functions [4]. In the multi-objective case, usually there are a number of feasible 
solutions referred to as a set of non-dominated solutions or also called the Pareto front. 
In [4], the two objective functions are to minimize the total distance and minimize the 
number of vehicles used for delivery. 

VRP for multi-objective cases, especially those using an a priori approach to seek 
non-dominated sets of solutions, gained researchers’ attention in around 2000. As sug-
gested in [5], a popular metaheuristic algorithm used in MOVRP research is an elitist 
non-dominated genetic sorting algorithm or NSGA-II based algorithm. However, from 
a review conducted in [6], there are other alternative approaches. For example, a me-
taheuristic scatter search algorithm was used in [7]. Another example is [8] where the 
authors combined a multi-objective neighborhood dominance-based algorithm and an 
e-constraint meta-heuristic algorithm. In [9], multi-objective particle swarm optimiza-
tion (MOPSO) and multi-objective ant colony optimization (MOACO) were compared 
to the non-dominated sorting genetic algorithm (NSGA) and the results showed that 
NSGA produced better performance than the other two algorithms. 

This research developed an algorithm for MOVRPTW based on the artificial im-
mune system (AIS). AIS is inspired by the immune system in the human body. AIS can 
be categorized into either population based or network based [10]. Examples of the 
population-based AIS include clonal selection theory and negative selection theory. 
The clonal selection theory is used to explain the basic response of the adaptive immune 
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system to antigenic stimuli [11]. Several AIS algorithms have been developed by imi-
tating the clonal selection theory. A clonal selection algorithm called CLONALG forms 
a population of N antibodies, with each antibody having a specific random solution for 
the optimization process. In each iteration, some of the best antibodies will be selected 
as the clone, followed by a mutation process to form a new candidate population. The 
new antibody will be evaluated, and a certain percentage of the new antibody will be 
introduced into the population. Antibodies that are not selected will be replaced with 
new antibodies that are randomly generated [12]. 

The basic CLONALG algorithm as described above serves as the main algorithm in 
this research. However, we replaced the mutation process with the nine-step mutation 
suggested in [13]. This mutation process is basically a local search procedure with the 
aim of finding a wider distribution of solutions. This local search procedure relies on 
four points, u, v, x, and y, obtained randomly from a chromosome. The nine mutation 
steps are as follows: 

M1: If u is not a depot, move u behind v 
M2: If u and x are not depots, move (u, x) behind v 
M3: If u and x are not depots, move (x, u) behind v 
M4: If u and v are not depots, swap positions between them 
M5: If u, x and v are not depots, swap positions between (u, x) and v 
M6: If (u, x) and (v, y) are not depots, swap positions between (u, x) and (v, y) 
M7: If u and v are on the same route, swap (u, x) and (v, y) for (u, v) and (x, y) 
M8: If u and v are on different routes, swap (u, x) and (v, y) for (u, v) and (x, y) 
M9: If u and v are on different routes, swap (u, x) and (v, y) for (u, y) and (x, v) 

3 Methodology 

After finding the research gap, defining the research objectives, and conducting litera-
ture review, the next step is to build the algorithm. The proposed algorithm combines 
the following principles: 

1. Iterative process with the principle of population-based evolutionary algorithm; 
2. Nearest neighbor (NN) and Clarke-Wright (CW) heuristics to produce the first 

two chromosomes; 
3. Split procedure to transform the chromosome to VRP routes; 
4. Clonal selection algorithm (CLONALG) to duplicate chromosomes (clones); 
5. Mutation of nine steps (exhaustive neighborhood search) in each clone. 
 
The modified AIS algorithm for MOVRPTW above is used to solve the first objec-

tive function which is to minimize the total distance. The NN and CW heuristics were 
used to generate two initial chromosomes with a fairly good fitness value (FV), i.e. the 
total distance. This aims so that not all chromosomes in the initial population are ran-
dom, to accelerate the search process. Other chromosomes of popsize – 2 (popsize = 
population size) were formed randomly. The chromosome is a giant tour consisting of 
nodes without depot representation and trip delimiters. In this research, each chromo-
some from the Solomon c104 data set will contain 100 customer points. An example of 
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a chromosome representation with sequence of nodes 1, 2, 3, …, 100 is given in Figure 
1. To form VRP routes from this chromosome, the Split procedure is used. We refer 
readers to [13] for detailed information of the procedure. 

 

 
Fig. 1. An example of a chromosome structure with ordered nodes 1 to 100. 

Chromosomes will be accepted as members of the population if the spaced condition 
is met, namely each chromosome must have a different FV from the other chromosomes 
at least with a value of ∆ > 0 (1). Based on [14], a fairly good ∆ is 1. 

 
|𝐹𝑉(𝑃1) − 𝐹𝑉(𝑃2)| 	≥ 	∆				∀𝑃1, 𝑃2	 ∈ 	𝜋 ∶ 𝑃1	 ≠ 𝑃 (1) 

  
𝐶𝑙𝑜𝑛𝑒	𝑟𝑎𝑡𝑒 = 	

𝐴𝑓𝑓𝑖𝑛𝑖𝑡𝑦
𝐹𝑉!"#

× 10 
(2) 

 
The flow of the algorithm is shown in Figure 2 with an example of an initial popu-

lation of five chromosomes. Then, using the clonal selection algorithm (CLONALG), 
the five initial chromosomes will be duplicated based on the affinity value of each chro-
mosome (2). Chromosomes with better FV will produce more clones. The initial num-
ber of chromosomes to be duplicated can be one of the parameters in the algorithm. In 
cases where the initial number of chromosomes is large enough, it is not necessary to 
duplicate all the chromosomes and only the top percentile (e.g. 80% of the chromo-
somes with the best FV) of the population is duplicated. In cases where the initial num-
ber of chromosomes is not too large, it is possible for all of them to be duplicated and 
this will result in a population size of the clone that is larger than the size of the base 
population, as shown in Figure 2. 

 

 
Fig. 2. The proposed modified AIS algorithm. 
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In the next stage, the chromosome will be mutated based on the principle of neigh-
borhood search. There is a random factor in play in this process due to the selection of 
2–4 cutting points in the chromosome. Because chromosomes with better FV have a 
greater number of clones, these chromosomes have a greater probability to produce 
better results. After that, the population resulting from the mutation is sorted from the 
best to the worst FV and the best chromosomes will become the new population. This 
process runs iteratively until the stopping criteria are met. 

The algorithm is coded in Python. The code is then run on Solomon c104 benchmark 
instance. This data set was chosen because it contains data on time windows hence 
suitable for VRPTW. The results are reported in the next section. 

4 Results and Discussion 

The following parameters were used in the experiment. Ten replications are required 
due to the randomness in the selection of cross points during the run of the algorithm. 

• population size: 100 

• number of iterations: 50 

• clone rate: 50% 

• number of replications: 10 

Table 1. Results of the first-run experiment. 

Replication no. Total distance Num. of vehicles Run time (sec.) 
1 1258.07 15 34.98 
2 1272.68 16 32.24 
3 1203.60 15 29.19 
4 1269.75 15 29.80 
5 1275.37 15 31.96 
6 1259.65 16 31.00 
7 1270.84 16 32.54 
8 1254.95 16 32.79 
9 1268.73 15 31.98 
10 1276.54 16 31.19 

 
The AIS solution to minimize total distance is given in Table 1. The best solution is 

obtained in the third replication with a total distance of 1203.60 and 15 vehicles. The 
routes of those 15 vehicles are as follows. 

 
Route 1: [0, 57, 55, 54, 53, 56, 58, 60, 0] 
Route 2: [0, 81, 78, 76, 71, 70, 73, 77, 79, 80, 0] 
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Route 3: [0, 32, 33, 35, 37, 38, 39, 36, 59, 0] 
Route 4: [0, 18, 19, 15, 16, 14, 12, 0] 
Route 5: [0, 13, 99, 0] 
Route 6: [0, 87, 98, 96, 95, 94, 97, 17, 100, 0] 
Route 7: [0, 90, 89, 88, 85, 84, 83, 82, 86, 91, 0] 
Route 8: [0, 43, 42, 41, 40, 44, 45, 46, 48, 50, 51, 52, 49, 47, 0] 
Route 9: [0, 92, 93, 9, 7, 75, 1, 2, 0] 
Route 10: [0, 6, 8, 11, 10, 0] 
Route 11: [0, 68, 64, 61, 72, 5, 3, 4, 0] 
Route 12: [0, 67, 65, 63, 62, 66, 69, 0] 
Route 13: [0, 27, 25, 24, 29, 30, 34, 0] 
Route 14: [0, 74, 0] 
Route 15: [0, 20, 21, 23, 26, 22, 28, 31, 0] 

 
From this solution, a series of trial-and-error was then applied to reduce the number 

of vehicles. The results are given in Table 2. Note that the solution with 12 vehicles 
dominates the solutions with 14 and 13 vehicles. 

Table 2. Results of trial-and-error. 

Num. of vehicles Total distance 
14 1389.90 
13 1355.76 
12 1344.13 

 

Sensitivity Analyses. Sensitivity analyses were conducted by changing the model pa-
rameters to evaluate their impact on the solutions. The studied parameters include the 
number of iterations, the population size, and the clone rate. 

Two different iteration numbers were tested in addition to the original 50, i.e. 100 
and 150. The results are summarized in Table 3. From Table 3, it can be concluded that 
increasing the number of iterations has no impact on improving the best objective func-
tion. With 50 iterations, the total distance is minimal (1203.60) with the same number 
of vehicles (15) compared to other scenarios. However, it is important to note that on 
average, a higher number of iterations results in a better average FV, although not that 
significant. 

Table 3. Sensitivity analysis on the number of iterations. 

Number of iterations 50 100 150 
Best FV 1203.60 1245.08 1246.10 
Number of vehicles 15 15 15 
Average FV 1261.02 1258.45 1256.64 
Average run time (sec.) 31.77 56.26 51.02 
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The second sensitivity analysis was done by increasing the population size from 100 

to 200. The number of iterations in the two experiments is maintained at 50 to save 
computation time. The experimental results are summarized in Table 4. With 200 mem-
bers of the population, the best FV was 1245.68, or worse than the FV of the initial 
experiment with 100 population members (1203.60). However, the number of vehicles 
in the solution with 200 population members is 14, which is less than that in the solution 
with 100 population members (15). This means that the two solutions do not dominate 
each other and can be accepted as two solutions in a multi-objective problem. The 14-
vehicle solution with a total distance of 1245.68 is also better than the 14-vehicle solu-
tion with a total distance of 1389.90 obtained previously from trial-and-error. Another 
interesting result from this sensitivity analysis is that the average computation time is 
significantly lower than other scenarios with an average of under 19 seconds. 

Table 4. Sensitivity analysis on the population size. 

Population size 100 200 
Best FV 1203.60 1245.68 
Number of vehicles 15 14 
Average FV 1261.02 1262.24 
Average run time (sec.) 31.77 18.21 

 
Lastly, the third sensitivity analysis was conducted by changing the clone rate from 

50% to 80%. The number of iterations and population sizes are the same as in the initial 
experiments, 50 and 100, respectively. The experimental results are reported in Table 
5. With a clone rate of 80%, the best FV is 1219.72, worse than the results from the 
initial experiment with a 50% clone rate. The number of vehicles in both clone rates are 
the same 15, which means that the best solution at the 80% clone rate is dominated by 
the best solution at the 50% clone rate. However, on average, the FV at the 80% clone 
rate is slightly better than that at the 50% clone rate. In addition, the average computa-
tion time at the 80% clone rate is significantly lower than the other scenarios with an 
average of under 18 seconds. 

Table 5. Sensitivity analysis on the clone rate. 

Clone rate 50% 80% 
Best FV 1203.60 1219.72 
Number of vehicles 15 15 
Average FV 1261.02 1255.57 
Average run time (sec.) 31.77 17.19 

 
From all of the above results, three non-dominated solutions are obtained below: 

1. 15 vehicles, total distance 1203.60 

2. 14 vehicles, total distance 1245.68 
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3. 12 vehicles, total distance 1344.13 

These solutions, marked in red, are plotted in Figure 3 together with the other solu-
tions which are marked in black. 

 

 
Fig. 3. Scatter plot of solutions. 

5 Conclusion and Further Remarks 

This research succeeded in developing an AIS-based algorithm to solve the VRP prob-
lem with two objective functions, namely minimizing the total distance and the number 
of vehicles. The developed algorithm is an integration of several existing algorithms 
such as NN and CW heuristics, Split procedure, and mutation based on local (neigh-
borhood) search. A computer program in Python was coded to run the algorithm. 

Initial experiments were conducted with certain parameters, followed by trial-and-
error and sensitivity analysis. From these extensive experiments, three non-dominated 
solutions were obtained along with the other dominated solutions. The obtained solu-
tions, however, are still dominated by the best-known solutions (BKS) for Solomon 
c104 that can achieve 822.9 of total distance with 10 vehicles using the exact approach, 
and 824.78 with 10 vehicles using a heuristic approach. The performance of the pro-
posed algorithm is the limitation of this research if the two objective functions are con-
sidered as the primary goals without observing the run times. 

Information on the computing times for the above BKS was not found, but the exact 
methods and heuristics generally require significant run time. On the other hand, the 
strength of the proposed algorithm lies in its computing time, where none of the runs 
exceeded one minute in many different scenarios. With a very short computation time, 
this algorithm is suitable for use in logistics cases that call for fast routing solutions. 
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The state of the research above indicates there is still room for model development. 
The direction of development needed to be sought is at improving the total distance 
without too much worsening the computation time. In addition, VRP with heterogene-
ous fleet can be studied, especially if the algorithm on homogeneous fleets has achieved 
satisfactory results. 
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/),
which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.
        The images or other third party material in this chapter are included in the chapter's
Creative Commons license, unless indicated otherwise in a credit line to the material. If material
is not included in the chapter's Creative Commons license and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.
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