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ABSTRACT
Monoclonal antibodies (mAbs) have made significant progress in the treatment of Alzheimer's disease (AD). However, mAbs

are associated with adverse effects, including Amyloid‐Related Imaging Abnormality (ARIA), which manifests as edema or

effusion (ARIA‐E) and hemorrhage (ARIA‐H). The mechanisms behind these effects are not yet fully understood. Moreover,

spontaneous ARIA has been insufficiently explored, and mAb therapies, particularly lecanemab, have mainly focused on

patients with the APOE‐ε4 allele carrier. This review aims to address this gap by examining the mechanisms of spontaneous

ARIA, ARIA induced by mAbs, and the influence of genetic variants on ARIA development. The autoantibody‐Aβ‐mediated

immune response targets excessive Aβ deposits, increasing immune activity through microglial reactivity. The heightened

immune response, driven by Aβ accumulation in blood vessels, promotes angiopathy and inflammation, potentially con-

tributing to spontaneous ARIA. The APOE‐ε4 allele carrier is more strongly associated with ARIA‐E because it redistributes Aβ
deposition from the brain to blood vessels, influencing microglial reactivity. The redistribution enhances vascular integrity and

reduces the risk of ARIA‐H. However, it also increases the likelihood of ARIA‐E due to Aβ accumulation in the vasculature,

triggering inflammation. In contrast, the development of ARIA‐H is linked to increased TREM2 expression and microglial

reactivity, leading to impaired vascular integrity and disrupted matrix remodeling, which worsens the condition. Additionally,

the adverse effects of mAbs may extend beyond the APOE‐ε4 allele, possibly impacting other genetic variants involved in

microglial reactivity, Aβ redistribution, and vascular integrity.

1 | Introduction

Anti‐amyloid‐beta (Aβ) monoclonal antibodies (mAbs) repre-
sent a promising class of therapeutics for Alzheimer's disease
(AD). One such drug, lecanemab, has received FDA approval.
BAN2401, further developed into lecanemab, is a second‐
generation immunoglobulin G1 (IgG1) monoclonal antibody
humanized from the murine antibody mAb158 that targets Aβ

protofibrils with high affinity [1]. A unique feature of lecane-
mab is its bivalent design (RmAb158‐scFv8D3), which enables it
to effectively clear soluble Aβ protofibrils at a dose ten times
lower than RmAb158 alone while demonstrating ten times
greater efficiency in eliminating its target from the brain [2].
Despite its structural properties, this results in monovalent
binding to transferrin receptor 1 (TfR1), which facilitates highly
efficient transport across the blood–brain barrier (BBB) [3, 4].
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This breakthrough marks a significant advancement in the
development of drugs that can cross the BBB, overcoming a
longstanding challenge in the treatment of AD.

A meta‐analysis has demonstrated that mAbs significantly
increase the risk of side effects, such as amyloid‐related
imaging abnormality (ARIA), particularly in APOE‐ε4 allele
carriers in AD [5]. The risk of ARIA is also higher in
individuals with a history of stroke, infarct, or hemorrhage
[6, 7]. and age is another contributing factor, as discussed in a
separate review [8]. ARIA initially develops due to MRI
abnormalities associated with mAb treatment in AD. How-
ever, ARIA has also been observed to occur spontaneously as
a result of cerebral amyloid angiopathy (CAA), which was
previously underreported because it lacked a clear definition
[9]. ARIA is categorized into two types: cerebral edema or
effusion (ARIA‐E) and cerebral microhemorrhage with he-
mosiderosis (ARIA‐H) [10].

The prevalence of ARIA is underrepresented in the population,
particularly among different ethnic groups, due to several
studies not focusing on its prevalence study. Previous studies
have reported that the incidence of ARIA in AD is lower
with lecanemab treatment (ARIA‐E 9.9%–12.6%; ARIA‐H
6.8%–17.3%) compared to aducanumab (ARIA‐E 35%–36%;
ARIA‐H 19%–20%) and donanemab (ARIA‐E 24%–26.7%;
ARIA‐H 19.7%–22.1%) [11]. This suggests that lecanemab has
a better safety profile compared to aducanumab and donane-
mab. Interestingly, APOE‐ε4 allele carriers have about 3.5 times
higher risk of ARIA‐E than non‐carriers [5]. The reasons for the
differential risk of ARIA‐E and ARIA‐H between APOE‐ε4 allele
carriers and non‐carriers remain poorly understood. This
review is the first to examine the mechanisms by which mAbs
induce ARIA, the role of genetic factors, particularly the APOE‐
ε4 allele carrier, in the development of ARIA, the occurrence of
spontaneous ARIA, and the influence of genetic profiles on the
adverse effects of mAbs. Additionally, it discusses the mecha-
nism of action of current mAbs.

2 | Spontaneous ARIA

ARIA was identified following the detection of abnormalities on
imaging associated with monoclonal antibody treatments,
despite being asymptomatic in most cases (96.7%) of lecanemab
therapy [12]. The finding has attracted significant attention
from researchers and clinicians. However, ARIA can also occur
spontaneously due to CAA [9]. The question arises as to
whether a specific case of ARIA is attributable to spontaneous
causes or to mAb treatment. However, limited evidence has
been explored to address this issue.

As previously discussed, ARIA can occur spontaneously in
cases of CAA, although it was not well‐defined in earlier
research [9]. Recent studies have identified spontaneous ARIA
as a rare autoimmune encephalopathy characterized by ARIA
suggestive of ARIA‐E. This condition results from an
autoantibody‐mediated immune reaction against Aβ induced by
CAA [13]. Several studies suggest that spontaneous ARIA can
resolve within 3 months to 1 year with corticosteroids as initial
therapy [7, 13, 14]. However, one case reported fatality after the
patient initially underwent conservative management and was
administered steroids only after clinical deterioration, with
subsequent intolerance to increased steroid dosages [15]. Sim-
ilar to ARIA caused by lecanemab, which has an incidence of
less than 10% and typically resolves spontaneously within
3 months, the majority of cases are asymptomatic (97%) [16].

Studies have observed microglial activation during acute ARIA,
characterized by elevated levels of anti‐Aβ, Aβ40, Aβ42, Tau,
and p‐Tau181. In contrast, during remission, microglial activity
returns to an inactive state, with biomarker levels returning to
the normal range after recovery [13, 14]. Microglial activity
exhibits two peaks of activation: one during mild cognitive
impairment (MCI) and the other during late‐stage AD [17, 18].
In MCI, microglial activation facilitates the clearance of Aβ and
Tau through immune activation. However, over time, micro-
glial activity declines. In late‐stage AD, microglial aging
becomes reactive, leading to increased pro‐inflammatory
responses [17, 18]. This is primarily due to the deposition of
Aβ and Tau in the vasculature, a condition linked to cerebral
amyloid angiopathy‐related inflammation (CAA‐ri). This is
supported by evidence indicating that spontaneous ARIA fre-
quently coexists with pre‐existing CAA‐ri [13], involving
immune activation driven by CAA, which primarily contributes
to the reduction of Aβ plaques [19].

Under normal conditions, the anti‐Aβ antibody, also referred to
as naturally occurring autoantibodies, facilitates the clearance
of Aβ. In individuals with MCI, levels of anti‐Aβ Immuno-
globulin M (IgM) increase, whereas in AD, IgM levels decrease,
while IgG levels rise [20, 21]. This is further supported by evi-
dence of an increase in plasma B cells producing IgG against Aβ
protofibrils (autoantibodies), which is elevated in late‐stage AD
but reduced against Aβ monofibrils (Figure 2A) [22]. IgG levels
increase further in CAA‐ri and closely resemble normal con-
ditions during spontaneous ARIA remission [14]. IgG mediates
Aβ clearance by initiating microglial phagocytosis through the
activation of the fragment crystallizable (Fc) γ receptor (FcγR).
Upon FcγR activation, Syk (spleen tyrosine kinase) is recruited
to the receptor and undergoes autophosphorylation, triggering a
cascade that leads to phagocytosis [23].

A single conserved N‐glycosylation site in the heavy chain, with
two asparagine‐linked carbohydrates (N‐glycans), is an integral
part of the structure, co‐forming with the disulfide bond that
forms the IgG molecule [24]. IgG typically does not induce pro‐
inflammatory responses, as it is regulated to function in an anti‐
inflammatory phenotype [25]. In AD, alterations in
N‐glycosylation have been observed, and these changes can
significantly modify immune responses, leading to a pro‐
inflammatory phenotype [26, 27]. These alterations include
decreased sialylation and core fucosylation, along with
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increased bisecting N‐acetylglucosamine (GlcNAc) in the Fc
domain [28]. The absence of core fucose and the presence of
bisecting GlcNAc lead to a significantly increased binding to
FcγR, while the lack of sialic acid results in an aberrant anti‐
inflammatory phenotype [24]. Alterations in N‐glycosylation
enhance the activation of antibody‐dependent cell‐mediated
cytotoxicity (ADCC) and promote the release of pro‐
inflammatory cytokines (Figure 2B) [24, 28].

The proposed mechanism of spontaneous ARIA involves an
autoantibody‐Aβ‐mediated immune response targeting ex-
cessive Aβ deposits. Furthermore, heightened immune activity,
particularly involving IgG, driven by the accumulation of Aβ in
the vasculature, promotes angiopathy, including CAA‐ri and
vasculitis, which are commonly observed in late‐stage AD
(Figure 2A). Alterations in N‐glycosylation further exacerbate
this process, leading to inflammation that manifests brain
edema or effusion, characteristic of spontaneous ARIA
(Figure 2B). Further investigations are needed to determine
whether spontaneous ARIA is exclusively symptomatic or can
also manifest asymptomatically. Additionally, further research
is needed to determine whether spontaneous ARIA represents
an advanced stage of CAA or arises from distinct pathological
mechanisms. Current evidence suggests that spontaneous ARIA
is similar to ARIA‐E. Additional studies are required to inves-
tigate whether spontaneous ARIA occurs exclusively in ARIA‐E
or if it can also be associated with ARIA‐H.

3 | Mechanism of Aβ Deposition and Mechanism
of Action of Monoclonal Antibodies

The pathophysiology of AD is widely recognized to be closely
associated with the production and clearance of Aβ. The amy-
loid precursor protein (APP) is cleaved by several proteases to
generate Aβ, which then aggregates into soluble forms
(monomers, oligomers, and protofibrils) and insoluble forms
(fibrils, which accumulate to form plaques) [29]. Among this
form, Aβ protofibrils are considered the most toxic form [30].
Under physiological conditions, astrocytes and other glial cells
rapidly engulf large quantities of Aβ protofibrils. However, in
AD, these cells store the ingested material rather than degrad-
ing it. The incomplete digestion leads to the accumulation of
undigested Aβ, resulting in the secretion of extracellular
vesicular truncated Aβ and lysosomal dysfunction. These
changes increase ApoE levels in astrocytes, neurons, and oli-
godendrocytes and induce axonal swelling, vacuolization of
neuronal cell bodies, and cholesterol deposits in lysosomal
compartments. Ultimately, these processes lead to apoptosis in
the neuronal cortex [31–33].

The mechanism of action of mAb drug clearance of Aβ is
similar in principle, aiming to increase the clearance of Aβ but
targeting different Aβ subtypes, such as soluble or insoluble
forms. Aducanumab targets Aβ fibrils, while Gantenerumab
targets aggregated forms of Aβ. Donanemab specifically targets
β‐amyloid plaques. In contrast, Bapineuzumab (3D6) does not
specifically target monomeric or fibrillar Aβ but binds both with
comparable affinity, including soluble and insoluble forms,
while lecanemab targets Aβ protofibrils (Figure 1A) [34, 35].
These mAbs share a similar mechanism of binding Aβ through

pathways independent of FcγR, enhancing phagocytosis and
increasing the clearance of pathological Aβ by astrocytes and
microglia. This process helps rescue neurons from secondary
cell death (Figure 1A) [23, 36].

Triggering receptor expressed on myeloid cells 2 (TREM2) is
believed to play a significant role in ARIA‐H, while CAA is closely
linked to the development of ARIA‐E [37, 38]. A human IgG
targeted at activating TREM2 (AL002) has been developed and
tested in preclinical studies using monkeys over 4 weeks, dem-
onstrating good tolerability in a 12‐week clinical trial. This study
showed increased microglial recruitment to Aβ deposits, driven by
activated microglia enhancing phagocytosis [39, 40]. TREM2 levels
reprogram microglia into a reactive state. Interestingly, the re-
programming of TREM2 is driven not only by direct agonist mAbs
that influence TREM2 levels but also by mAbs like 3D6, which
bind both soluble and insoluble forms of Aβ and enhance TREM2
levels [37]. This suggests that TREM2 activation is influenced not
only by agonist TREM2‐targeting mAbs but also by other mAbs
that directly target specific Aβ subtypes.

The mAbs further enhance microglial‐mediated phagocytosis of
amyloid by increasing the expression of TREM2 [37]. TREM2‐
containing microglial exosomes bind to Aβ, forming complexes
that mitigate the inflammatory state surrounding Aβ and
facilitate its recognition by microglia. This process promotes
microglial engulfment and clearance of Aβ [41]. Additionally,
TREM2 activation reprograms microglia into a reactive state,
[42] enabling active phagocytosis through antibody‐dependent
cellular phagocytosis (ADCP) (Figure 1B).

4 | Mechanisms of ARIA Induced by Monoclonal
Antibodies

Antibodies targeting Aβ represent a form of passive immunity
designed to bind and aggregate Aβ, thereby reducing Aβ pla-
ques. However, this therapy is associated with adverse effects,
including ARIA‐E and ARIA‐H [11]. The underlying mecha-
nisms behind these side effects remain unclear. A potential
explanation for ARIA‐E caused by mAbs is that certain treat-
ments, such as aducanumab, bapineuzumab, donanemab, and
gantenerumab, exhibit high binding affinity to CAA fibrils,
which correlates with a higher incidence of ARIA‐E (24%–35%).
In contrast, lecanemab demonstrates a lower binding affinity to
CAA fibrils and is associated with a lower incidence of ARIA‐E
(12.6%) [38]. This phenomenon is similar to spontaneous ARIA,
where the binding of antibodies to CAA fibrils may trigger
CAA‐ri to clear Aβ, leading to inflammation and edema that
result in ARIA‐E.

TREM2 is predominantly expressed in macrophages and mi-
croglia but is also found in exosomes released by microglia.
Under physiological conditions, TREM2‐containing microglial
exosomes bind to Aβ. These complexes reduce the inflamma-
tory response surrounding Aβ by making it recognizable to
microglia, promoting the microglial engulfment and clearance
of Aβ [41]. ARIA‐H has a distinct mechanism compared to
physiological conditions. While Aβ immunotherapy helps in
clearing Aβ, this process triggers an increased expression of
TREM2 in macrophages, which contributes to vascular fibrosis,
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microhemorrhages, smooth muscle cell damage, and compro-
mised BBB integrity [37]. The expression of TREM2 is further
exacerbated, as the negative regulator of natural antibodies
against TREM2 is lower in AD [43].

In hepatic steatosis, TREM2‐positive macrophages have been
found to increase the production of matrix metalloproteinase‐12
(MMP‐12) while decreasing the expression of the tissue inhibitor
of metalloproteinase‐1 (TIMP‐1), which normally inhibits MMP‐
12. Additionally, these macrophages reduce the expression of
collagen type 1 alpha 1 (COL1A1) and collagen type 3 alpha 1
(COL3A1) [44]. Consequently, the increase in TREM2 levels
induced by mAbs downregulates genes essential for maintaining
vascular integrity, such as COL1A1 and COL3A1, while also dis-
rupting matrix remodeling by increasing MMP‐12 expression and
decreasing TIMP‐1. These changes collectively contribute to the
development of ARIA‐H. Unlike ARIA‐E, which is characterized
predominantly by edema or effusion, ARIA‐H is associated with
more extensive microhemorrhages (Figure 3) [37].

ARIA associated with mAbs differs from spontaneous ARIA.
ARIA induced by mAbs typically occurs in individuals with
early‐stage AD, [12, 45], whereas spontaneous ARIA is more
commonly observed in late‐stage AD. As highlighted in the
section on spontaneous ARIA, the difference arises from the
increased accumulation of Aβ in late‐stage AD, which activates
inflammation through microglial reactivity. In contrast, ARIA
associated with mAbs typically manifests earlier than sponta-
neous ARIA (Figure 2A). Further research is needed to better
understand why inflammation leads to the development of
distinct phenotypes, such as ARIA‐E and ARIA‐H.

5 | Mechanisms of APOE Variant Influence on
the Occurrence of ARIA Subtypes

Apolipoprotein (Apo) has been extensively studied for its role in the
clearance of Aβ. Among these, the APOE‐ε4 allele has received
significant attention in neurodegeneration research, particularly

FIGURE 1 | Mechanism of action of monoclonal antibodies targeting Aβ in the treatment of AD. (A) Targets of various mAbs. (B) Mechanism of

monoclonal antibody‐mediated clearance of Aβ. mAbs facilitate the clearance of Aβ by enhancing microglial‐mediated phagocytosis through the

upregulation of TREM2 expression. Increased TREM2 expression reduces inflammation surrounding Aβ deposits, allowing microglia to recognize

and recruit these deposits. Additionally, TREM2 activation reprograms microglia into a reactive state, promoting active phagocytosis via antibody‐
dependent cellular phagocytosis (ADCP), thereby enhancing Aβ clearance.

4 of 11 Chronic Diseases and Translational Medicine, 2025
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regarding the development of mAbs. Current guidelines also
recommend assessing the APOE genotype before administering
lecanemab to determine whether a patient is an APOE‐ε4 allele
carrier [46]. This is crucial, as APOE‐ε4 allele carriers are known to
have a 3.5‐fold increased risk of developing ARIA‐E [5].

The question arises as to why only APOE‐ε4 is considered, while
other genes are not. This may be due to the current research focus,
particularly in the development of mAbs. To the best of our
knowledge, the development of mAbs has predominantly focused
on the APOE‐ε4 allele because previous studies have shown sig-
nificant impacts on APOE‐ε4 allele carriers. Notably, the APOE‐ε2
allele has a protective role in AD, while the APOE‐ε3 allele does
not have as significant an impact on AD as the APOE‐ε4 allele [47,
48]. However, the exclusive focus on the APOE‐ε4 allele overlooks
the potential contributions of other genes that may also influence
the efficacy and safety of mAb therapies.

Preclinical studies have demonstrated that the non‐lipidated
APOE‐ε4 allele carrier exhibits greater co‐aggregation with Aβ
compared to the non‐lipidated APOE‐ε3 allele carrier.

Additionally, the non‐lipidated APOE‐ε4 allele induces higher
secretion of cytokines and chemokines, following the order
APOE‐ε4>APOE‐ε3>APOE‐ε2. Glial cell engulfment is more
pronounced in the non‐lipidated APOE‐ε2 allele compared to
the non‐lipidated APOE‐ε4 allele. Notably, the non‐lipidated
APOE‐ε4 allele is more toxic than other isoforms. These findings
suggest that the co‐aggregation of the non‐lipidated APOE‐ε4
allele with Aβ is slower to clear and induces greater inflam-
mation compared to other APOE variants [47].

A possible explanation for the increased incidence of ARIA‐E in
individuals with the APOE‐ε4 allele is that the genetic variant
promotes the formation of CAA by redistributing Aβ deposition
from the brain parenchyma to the blood vessels (Figure 3).
However, this mechanism may simultaneously enhance vas-
cular integrity and provide protection to the cerebrovascular
system [49], with the redistribution of Aβ deposition potentially
influenced by TREM2 (Figure 2B) [50]. In contrast, spontane-
ous ARIA observed in late‐stage AD is primarily attributed to
the excessive accumulation of Aβ, a hallmark feature of late‐
stage AD. mAb therapies may further accelerate this process in

FIGURE 2 | Mechanisms of ARIA‐E induced by monoclonal antibodies. (A) Involvement of microglia, inflammation, and immunoglobulin

levels is dependent on the stage of AD. In late‐stage AD, high Aβ deposition leads to increased microglial activation, heightened inflammation, and

elevated IgG levels, contributing to spontaneous ARIA. mAb therapies shift this phenomenon toward early‐stage AD. (B) Heightened immune

activity increases plasma cell proliferation, particularly involving IgG, driven by the accumulation of Aβ in the vasculature, known as cerebral

amyloid angiopathy (CAA), leading to inflammation. The tendency to develop CAA is further exacerbated in APOE‐ε4 carriers. In AD, alterations in

N‐glycosylation include decreased sialylation and core fucosylation, along with increased bisecting N‐acetylglucosamine (GlcNAc) in the Fc domain.

These modifications enhance the activation of ADCC and promote the release of pro‐inflammatory cytokines, contributing to spontaneous ARIA,

which is frequently observed in late‐stage AD. Meanwhile, mAb therapies may further accelerate this process in early‐stage AD.
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early‐stage AD, a condition that shares some pathological fea-
tures with late‐stage AD (Figure 2A).

Under AD conditions, TREM2 exhibits reduced activation in
microglia [51]. Similarly, the loss of TREM2 in vascular regions

results in nonreactive microglia that accumulate cholesterol,
particularly ApoE, during the early stages of CAA [52]. The
increase in TREM2 levels is linked with the occurrence of
ARIA‐H [37]. In APOE‐ε4 allele mice models, TREM2 levels are
also reduced [53]. The reduction of TREM2 may explain the

FIGURE 3 | Mechanisms of ARIA‐H induced by monoclonal antibodies. Increased microglial reactivity, driven by elevated TREM2 expression,

exhibits allele‐dependent effects, particularly in APOE‐ε4 and APOE‐ε2 carriers. In APOE‐ε4 allele carriers, increased TREM2 expression leads to the

redistribution of Aβ deposition from the brain parenchyma to blood vessels, enhancing vascular integrity. This reduces the occurrence of ARIA‐H but

increases the risk of ARIA‐E. In contrast, APOE‐ε2 allele carriers exhibit the opposite effect. The heightened TREM2 expression in APOE‐ε2 carriers,

further amplified by mAb therapy, downregulates genes critical for vascular integrity, such as COL1A1 and COL3A1, while disrupting matrix

remodeling by increasing MMP12 expression and decreasing TIMP‐1 expression, ultimately leading to microhemorrhage development. These

vascular alterations contribute to ARIA‐H progression. Additionally, increased TREM2 expression reduces inflammation surrounding Aβ deposits,

facilitating microglial recognition and recruitment to these sites. TREM2 activation further reprograms microglia into a reactive state, enhancing Aβ
clearance.

6 of 11 Chronic Diseases and Translational Medicine, 2025
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lower prevalence of ARIA‐H in APOE‐ε4 allele carriers, as the
variant promotes the redistribution of Aβ from the brain
parenchyma to the vasculature [49]. Conversely, another study
showed that the absence of TREM2 in mouse models decreases
CAA occurrence but increases Aβ accumulation in the brain
while trapping microglia in a transitional state [50]. However,
this study did not examine the differences between human
APOE‐ε4 allele carriers and APOE‐ε4 allele carriers in mouse
models. The contradictory findings may arise from these dif-
ferences, as the mouse APOE‐ε4 allele carrier promotes Aβ
deposition and CAA more effectively than the human APOE‐ε4
allele carrier [48, 54]. This disparity may be due to the
approximately 70% similarity in amino acid sequences between
the human and mouse APOE‐ε4 allele carrier.

A cohort study revealed that CAA without hemorrhage is
more common in APOE‐ε4 allele carriers, while CAA with
hemorrhage is more frequently observed in APOE‐ε2 allele
carriers [55]. Additionally, a case study demonstrated that
ARIA‐H occurs more prominently in APOE‐ε2 allele carriers
compared to APOE‐ε4 allele carriers. This was observed
during lecanemab administration, which led to the develop-
ment of ARIA‐H in APOE‐ε2 allele carriers without pro-
gressing to intracranial hemorrhage (ICH) [56]. These
findings suggest that the APOE‐ε2 allele carrier has a greater
tendency to develop ARIA‐H due to its unique character-
istics. The APOE‐ε2 allele carrier is associated with enhanced
engulfment of Aβ and a reduced ability to redistribute Aβ
from the cerebral tissue to the vasculature (Figure 3) [47].
These factors collectively increase the likelihood of ARIA‐H,
particularly during monoclonal antibody therapy, offering
insight into a possible mechanism by which mAbs induce
ARIA, influenced by the differing characteristics of APOE‐ε4
and APOE‐ε2 allele carriers.

Reduced TREM2 levels might contribute to the progression of
CAA while enhancing vascular integrity and reducing the risk
of microhemorrhages. Microglial reactivity plays a key role in
the differential occurrence of ARIA. Reduced microglial
reactivity, driven by downregulated TREM2, is associated with
ARIA‐E, particularly in APOE‐ε4 allele carriers. This is sup-
ported by the contrasting microglial activity observed between
APOE‐ε2 and APOE‐ε4 allele carrier, with the APOE‐ε2 allele
carrier exhibiting higher activity compared to the lower activity
seen in APOE‐ε4 allele carriers [57].

The high risk for APOE‐ε4 allele carriers to develop ARIA‐E
should be acknowledged, with symptoms including headache,
cognitive dysfunction, and agitation, although more than half
remain asymptomatic, and the condition can be recurrent with
retreatment [58]. APOE‐ε2 allele carriers, on the other hand, are
at higher risk for ARIA‐H, but it is generally asymptomatic
[56, 58]. Further research is needed to determine whether
APOE‐ε4 and APOE‐ε2 allele carriers should receive differential
treatment. It is also essential to monitor the risk of ARIA
development, recognize its symptoms promptly, and establish
appropriate criteria for initiating or discontinuing treatment. It
is also important to be cautious of recurrent ARIA, particularly
ARIA‐E, and perform serial MRIs to detect ARIA, which may
occur asymptomatically, especially early in treatment, as
ARIA‐H is often asymptomatic.

6 | Potential Occurrence of ARIA Based on
Genetic Variants

The occurrence of ARIA‐E and ARIA‐H is potentially influ-
enced not only by the APOE‐ε4 allele carrier but also by genetic
variants that affect microglial reactivity, Aβ redistribution, and
vascular integrity. Specifically, variants that influence apo-
lipoprotein levels and TREM2 activity may play a role. Based on
this evidence, we summarize the genetic variants that may ei-
ther increase or decrease the occurrence of ARIA‐E and
ARIA‐H (Table 1). However, further studies are needed to verify
whether there are genetic variants, other than the APOE‐ε4
allele carrier, that have clinical significance in the occurrence of
ARIA, especially regarding ARIA types.

Increased microglial reactivity, reduced Aβ redistribution from
the brain to the vasculature, and impaired vascular integrity are
associated with a higher occurrence of ARIA‐H, while the
opposite factors are linked to an increased occurrence of ARIA‐
E. Genetic variants that might increase the occurrence of
ARIA‐H include those associated with microglial reactivity,
such as the ABCA7 rs117187003 A allele, ABI3 rs616338 T allele,
APOE‐ε2 allele, PLCG2 rs72824905 G allele, TREM2 rs75932628
T allele, and CD33 rs3865444 T allele; redistribution of Aβ from
the brain to the vasculature, such as the APOE‐ε2 allele; and
vascular integrity, such as the APOE‐ε2 allele, APP rs201729239
T allele, LINC‐PINT rs10234094 C allele, and MS4A4A
rs1582763 A allele. In contrast, other genetic variants listed in
Table 1 are associated with an increased occurrence of ARIA‐E.

The CLU variant shares similarities with the APOE‐ε4 allele carrier
in its involvement in Aβ redistribution from the brain to the
vasculature, potentially leading to CAA with reduced hemorrhage
and inflammation in the absence of CLU. However, no direct
association has been reported between CLU variants and CAA
[65]. One study reported a higher occurrence of CAA in in-
dividuals with the CLU rs11136000 T allele [72]. This finding was
further validated, showing that the variant increases CLU ex-
pression and exerts a protective role against AD [73]. The variant
may promote the redistribution of Aβ from the brain to the vas-
culature, which could explain its protective role in AD while being
associated with a higher occurrence of CAA. It may potentially
increase the risk of ARIA‐E while offering protection against
ARIA‐H, similar to what is observed in APOE‐ε4 allele carriers.

Genetic variants are influenced by ethnicity, although not all
variants are exclusive to specific populations. The genetic pro-
file can capture the majority of ethnicity‐dependent variants
and may be used for therapeutic grouping, potentially elim-
inating the need for individual genotyping or related tests.
However, further research is needed to determine whether this
genetic variant profile can be reliably used to assess ethnic
influences, particularly in relation to other genetic variants that
may impact mAb therapy and potentially induce ARIA, as we
propose, which might influence mAb therapy. This approach is
especially relevant for populations where mAbs are commonly
used, such as Caucasians (ABCA7 rs117187003 A allele [74],
TREM2 rs75932628 T allele [75], APP rs201729239 T allele [66],
LINC‐PINT rs10234094 C allele [69] and UNC5C rs28660566 T
allele [71]), APOE‐ε2 [76] (Caucasian, African, and Hispanic),
and APOE‐ε4 [76] (Asian, Caucasian, African, and Hispanic).
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African and Caucasian populations exhibit genetic variants
such as the ABI3 rs616338 T allele and PLCG2 rs72824905 G
allele [77], while Asian and Caucasian populations have var-
iants such as the CD33 rs3865444 T allele [78], CLU rs11136000
T allele [79], and CR1 rs6656401 A allele [80]. Hispanic and
Caucasian populations show the BIN1 rs138047593 C allele
[74]. Although the PLCG2 rs61749044 T allele is found in
Caucasians but lacks statistical significance for this ethnicity
[61]. The genetic variant SORL1 rs772677709 G allele is rare and
has not been linked to a specific ethnicity [62]. Similarly, the
MS4A4A rs1582763 A allele lacks ethnic specificity.

7 | Conclusion

The use of mAbs holds significant promise in the treatment of
AD. However, their clinical application requires careful con-
sideration, not only of the APOE‐ε4 allele carrier but also of
other genetic variants that may influence treatment outcomes.
Clinicians must also be cautious when diagnosing ARIA asso-
ciated with mAb therapy, as distinguishing it from spontaneous
ARIA presents a diagnostic challenge. Further research is
needed to determine whether spontaneous ARIA is exclusively
linked to ARIA‐E or if it may also manifest as ARIA‐H. Addi-
tionally, researchers should investigate the influence of TREM2
on the efficacy of mAbs, as TREM2 is closely associated with
ARIA‐H. In this review, we first introduce spontaneous ARIA,

explore its association with mAbs, examine ARIA based on
genetic profiles, and discuss how the APOE‐ε4 allele influences
the occurrence of ARIA‐E while potentially reducing the risk of
ARIA‐H.
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TABLE 1 | Genetic variants associated with the pathophysiology of ARIA.

Gene SNPs Allele Phenotype Reference

Microglial reactivity

ABCA7 rs117187003 A ↑ [59]

ABI3 rs616338 T ↑ [60]

APOE‐ε2 rs429358 and rs7412 ε2 ↑ [57]

APOE‐ε4 rs429358 and rs7412 ε4 ↓ [57]

PLCG2 rs61749044 T ↓ [61]

PLCG2 rs72824905 G ↑ [61]

SORL1 rs772677709 G ↓ [62]

TREM2 rs75932628 T ↑ [63]

CD33 rs3865444 T ↑ [64]

Aβ redistribution

APOE‐ε2 rs429358 and rs7412 ε2 ↓ [47]

APOE‐ε4 rs429358 and rs7412 ε4 ↑ [47]

CLU rs11136000 T ↑ [65]

Vascular integrity

APOE‐ε2 rs429358 and rs7412 ε2 ↓ [49]

APOE‐ε4 rs429358 and rs7412 ε4 ↑ [49]

APP rs201729239 T ↑ [66]

BIN1 rs138047593 C ↓ [67]

CR1 rs6656401 A ↑ [68]

LINC‐PINT rs10234094 C ↓ [69]

MS4A4A rs1582763 A ↓ [70]

UNC5C rs28660566 T ↑ [71]
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