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Anticancer activity prediction of Curcuma longa and 
Phyllanthus urinaria through computational analysis

Abstract

Traditional Indonesian medicine has long been recognized for its curative qualities, 
although concerns remain over the efficacy and safety of medicinal herbs. The application 
of computational methods in novel drug discovery is one of the promising new insights 
offered by recent technical advancements. This study attempts to find putative anticancer 
chemicals in two extensively used plants in Southeast Asia, Curcuma longa and 
Phyllanthus urinaria, using a computational technique. AKT1, a model protein implicated 
in the development of cancer cells, was used in this investigation. In these two plants, 
28 different chemicals were found. We use strict selection standards, like Lipinski’s rule 
of five, to ensure the identification of potential candidates. The findings demonstrated 
that 24 compounds had comparable binding affinities to the reference ligands, indicating 
encouraging therapeutic potential. Subsequent investigation showed that the compounds’ 
chemical structures differed and that their similarities to the reference ligand were <10%. 
However, for both plant‑derived drugs, the amino acid binding patterns revealed 
remarkable similarities that went above 50% similarity, suggesting that both may be useful.
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INTRODUCTION

Cancer is a disease whose rates of morbidity and death are 
constantly rising. Cancer lowers a patient’s quality of life, 
productivity, and financial standing as well as that of their 
family, the community, and finally, a whole nation.[1] Almost 
two‑thirds of cancer cases worldwide occur in low‑ and 
middle‑income countries.[2]

In cancer cases, the phosphatidylinositol 3‑kinase 
(PI3K)/Akt pathway and the mammalian target of 

rapamycin (mTOR) pathway are implicated. Numerous 
aspects of cell growth and survival in both healthy and 
sick conditions depend on the PI3K‑Akt‑mTOR signaling 
pathways. This method aids in the regulation of survival 
during cellular stress since tumors grow in an environment 
that is stressful by nature, marked by low pH, inadequate 
oxygen and nutrition supply, and both.[3] Akt is identified as 
a central driver of oncogenesis, necessitating its inhibition 
to hinder cancer progression.[4]

Cancer therapy is often an intriguing area of research, 
especially alternative therapy using herbal medicine. 
Indonesian people have relied on herbal medicine to 
treat illnesses and maintain health.[5] Curcuma longa 
and Phyllanthus urinaria are two plants believed to 
have anticancer activity. Curcuma longa is known as an 
anti‑inflammatory, antioxidant, and anticancer traditional 
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herbal remedy.[6‑8] Phyllanthus urinaria, popularly known as 
“meniran” in Indonesia, is another plant that demonstrates 
antiproliferative potential.[9] Various publications cite 
Phyllanthus urinaria as a plant exhibiting anticancer action.[10] 
Phyllanthus urinaria compound action includes activation of 
PI3K/Akt, MAPKs, and NF‑κB signaling.[11]

Continued research into these two plants’ potential is 
necessary to ensure both their safety and efficacy as anticancer 
medications. “Computational pharmaceutics,” a novel 
discipline, has incorporated big data, artificial intelligence, 
and multiscale modeling techniques into pharmaceutics, 
thereby presenting a significant opportunity to revolutionize 
the delivery of medicine.[12] With this background in mind, 
this study uses a variety of in silico computational approaches, 
molecular docking research, and machine learning techniques 
to find putative anticancer compounds in Curcuma longa and 
Phyllanthus urinaria. It also cites protein Akt1 as a critical node 
in the division of cancer cells.

METHODS

Data mining and the extraction of fingerprints
A machine learning algorithm predicted Akt1 protein 
inhibitors in Curcuma longa and Phyllanthus urinaria using 
compound data from the KNApSAcK database.[13] RDKit 
software extracted molecular structures to generate 
PubChem fingerprints, consisting of 881 substructures 
scored binary. Dudedocking compiled a dataset of known 
Akt1 protein inhibitors and decoy compounds.[14] A machine 
learning model was trained using active and inactive 
compounds, with each substructure extracted using RDKit’s 
fingerprint extractor.

Development of machine learning models
Machine learning models were constructed using 
scikit‑learn, a Python toolkit, and code creation and 
implementation were made with Jupyter Notebook. The 
receiver operating characteristic (ROC) curve’s area under 
the curve (AUC) was used to assess the models’ efficacy. 
After comparing the random forest  (RF), support vector 
machine, and logistic regression techniques, the model with 
the highest AUC/ROC score was selected to predict the 
active chemicals in Phyllanthus urinaria and Curcuma longa.

Molecular docking and interaction analysis
The PLANTS 1.1 program evaluates each component’s 
possible binding affinities through a molecular docking study. 
This application finds the lowest energy conformation of the 

ligand in the binding pocket of the protein using an artificial 
ant colony. The binding affinity (ΔG) is then determined using 
Prodigy software, which leverages protein‑ligand principles 
and modifies tiny ligand prediction methods to use atomic 
interactions rather than residue contacts (https://bianca.science.u 
u.nl/prodigy/lig).[15]

Druglikeness and absorption, distribution, metabolism, 
excretion, and toxicity analysis
A commonly used metric for assessing druglikeness is 
Lipinski’s rule of five, which considers four key properties: 
a maximum of five hydrogen bond donors, 10 or fewer 
hydrogen bond acceptors, a molecular weight <500 Daltons, 
and a Log P value not exceeding 4.15.[16] To assess the toxicity 
of each compound, Toxtree software is employed. Toxicity 
studies are occasionally integrated with assessments 
of the blood–brain barrier  (BBB) and human intestinal 
absorption to determine the quantity of substances that the 
gastrointestinal (GI) tract can absorb.

Tanimoto similarity for calculating binding site 
similarity and chemical structure
The potential compounds are fingerprinted for structural 
similarity assessment with the reference ligand using RDKit 
in Jupyter Notebook. Molecular docking results involve 
interaction with protein amino acids, comparing active 
residue interactions with the reference ligand to gauge 
similarity using BIOVIA Discovery Studio.

RESULTS

Data mining and the extraction of fingerprints
A total of 180 compounds were obtained from the 
KNApSAcK database using the keyword Curcuma longa, 
along with 21 compounds from the keyword Phyllanthus 
urinaria. To build a model, a dataset was created from 
Dudedocking, consisting of 292 active compounds and 
800 decoy compounds. After extracting fingerprints 
using PubChem, the dataset comprised 1092 compounds. 
Approximately 75% of the dataset was used for training, 
with the remaining 25% reserved for testing purposes.

Development of machine learning models
After calculating sensitivity, specificity, accuracy, and AUC/
ROC score, the RF model is found to be the best fit for the 
Akt1 dataset.

After developing several machine learning models, a 
rigorous evaluation process ensued. The RF model emerged 

Table 1: The score of each of the three models for Akt1 protein
Model Accuracy Sensitivity Specificity AUC/ROC score Cv mean training score Cv mean testing score
LR 0.985 0.982 0.986 0.9993 1.000 0.978
SVM 0.992 1.000 0.990 0.9997 0.990 0.978
RF 0.992 1.000 0.990 0.9999 1.000 0.979
AUC: Area under the curve, ROC: Receiver operating characteristic curve, RF: Random forest, SVM: Support Vector Machine, LR: Logistic regression, Cv: Cross validation
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as the most effective, supported by its superior performance 
on the training data. To validate this, k‑fold cross‑validation 
was utilized, consistently demonstrating strong results for 
the RF model [Table 1]. The model identified 19 compounds 
from Curcuma longa and 13 from Phyllanthus urinaria with 
potential Akt1 protein inhibitory activity

Molecular docking and interaction analysis
All compounds predicted to inhibit the Akt1 protein 
underwent analysis using molecular docking software to 
evaluate their potential binding within the protein’s binding 
pocket. The protein structure of Akt1  (PDB: 3CQW) was 
utilized, including a reference ligand  (PubChem code: 
24798742) bound to the protein. Before analyzing the predicted 
compounds, a redocking process validated the molecular 
docking software. This involved redocking the reference 
ligand to the Akt1 protein for 1000 repetitions and 
calculating the root mean square deviation (RMSD). This 
step ensured the software accurately replicated, with an 
ideal RMSD value below or similar to 2 Å.[17]

The redocking process consistently produced RMSD values 
below 2 Å compared to the reference pose. This confirms 
the accuracy of the software PLANTS 1.1. Following 
accuracy validation, the predicted active compounds from 
the machine learning model underwent molecular docking 
simulations. The docking score and binding affinity score 
of selected compounds from Curcuma longa and Phyllanthus 
urinaria are presented in Tables 2 and 3.

The results of molecular docking analysis revealed interesting 
binding affinity trends. Gallic acid from Phyllanthus urinaria 
exhibited a higher binding affinity score compared to the 
reference ligand. Similarly, in Curcuma Longa, caffeic acid, 

vanillic acid, and vanillin displayed higher binding affinity 
scores than the reference ligand. Lower scores in this context 
indicate stronger binding interactions, implying that these 
specific compounds from Curcuma longa may possess 
enhanced activity. Furthermore, the remaining analyzed 
compounds demonstrated binding affinity scores lower 
than the reference ligand, indicating potentially stronger 
binding interactions.

Druglikeness and absorption, distribution, metabolism, 
excretion, and toxicity analysis
The findings of the analysis of five Lipinski compounds 
found in both plants are shown here. Two compounds 
from both of plants were found to fail in Lipinski’s rule 
of five. Quercetin 3‑O‑alpha‑L‑rhamnoside and quercetin 
3‑rutinoside from Phyllanthus urinaria [Figure 1]. D‑sucrose 
and trehalose from Curcuma Longa [Figure 2].

According to research, some compounds were predicted 
to demonstrate high GI absorption and BBB permeation. 
High GI absorption suggests good oral bioavailability. 
Similarly, good BBB permeability indicates the ability of 
drugs to penetrate the BBB and reach their target sites 
within the brain.[17] Gallic acid was the sole compound from 
Phyllanthus urinaria identified as exhibiting low  (Class  I) 
toxicity [Table 4].

Analysis classified three compounds, gitoxigenin, 
cyclocurcumin, and curcumin, from the Curcuma longa 
group as having high  (Class  III) toxicity. The remaining 
compounds were assigned low (Class I) toxicity [Table 5].

Tanimoto similarity for chemical structure and binding 
site similarity calculation
Tanimoto similarity calculations using Morgan 
fingerprint did not find any compounds in Curcuma 
longa or Phyllanthus urinaria with a structural similarity 
exceeding 10% to the reference ligand  (pubChem id: 
24798742) [Tables 6 and 7]. However, amino acid analysis 
involved in compound binding revealed that at least 50% of 
the amino acids in selected Phyllanthus urinaria compounds 
exhibited similarity to the amino acid binding site of 
the reference ligand  [Table  6]. Virgatusin displayed the 
highest binding site similarity (70%) within the Phyllanthus 
urinaria group, while curcumin showed the lowest (20%) 
in Curcuma longa, and vanillin and vanillic acid exhibited 
70% similarity  [Table  7]. The remaining Curcuma longa 
compounds also showed at least 50% similarity in their 
binding site amino acids compared to the reference ligand.

Amino acids used in docking poses for selected compounds 
from Phyllanthus urinaria and Curcuma longa were about 50% 
similar to the reference ligand, as shown in Figures 3 and 4. 
Lintetralin, urinatetralin, virgatusin, phyllanthurinolactone, 
and phyllanthin in Phyllanthus urinaria had higher total 
hydrogen bond interactions with the protein compared 

Table  2: Docking and binding affinity scores 
(ΔG) for the predicted compounds as inhibitors 
for Akt1 protein from Phyllanthus urinaria
Compound Docking 

score
Binding affinity 
(ΔG) (kcal/mol)

Lintetralin −60 −9.2
Urinatetralin −78 −9.8
Virgatusin −78 −9.8
Gallic acid −62 −7
Kaempferol −67 −8.6
Quercetin −72 −8.58
Quercetin 3‑O‑alpha‑L‑rhamnoside −65 −9.73
Quercetin 3‑rutinoside −55 −10.7
Phyllanthurinolactone −83 −8.34
Dextrobursehernin −75 −9.65
Heliobuphthalmin lacton −88 −9.41
Methyl brevifolincarboxylate −75 −8.59
Phyllanthin −71 −9.92
Reference ligand  
(pubChem id: 24798742)

−79 −7.6
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Figure 1: Lipinski rule of five for selected compound from Phyllanthus urinaria. HBA: Hydrogen bond acceptor, HBD: Hydrogen bond 
donor, logP: Partition coefficient

Figure 2: Lipinski rule of five for selected compound from Curcuma longa. HBA: Hydrogen bond acceptor, HBD: Hydrogen bond donor, 
logP: Partition coefficient

Table  3: Docking and binding affinity score (ΔG) for the predicted compounds as inhibitors for Akt1 
protein from Curcuma longa
Compound Docking score Binding affinity (ΔG) (kcal/mol)
D‑Sucrose −74 −7.9
Trehalose −77 −8.0
Caffeic acid −72 −7.5
Vanillic acid −61 −7.3
Vanillin −60 −7.3
3‑Hydroxy‑1,7‑bis (4‑hydroxyphenyl)‑6‑heptene‑1,5‑dione −88 −9.15
3,6‑Dihydroxy‑p‑menth‑1‑en‑8‑oic acid −62 −7.67
Gitoxigenin −72 −10.18
p‑Cymene −61 −7.79
(R)‑(‑)‑alpha‑Curcumene −72 −8.8
(+)‑ar‑Turmerone −71 −8.8
p‑Cymen‑8‑ol −65 −7.7
(+)‑ar‑Dihydroturmerone −66 −8.8
alpha‑Curcumene −72 −8.8
Cyclocurcumin −79 −9.5
(E)‑Nuciferol −80 −8.9
4‑[(1S)‑1,5‑Dimethyl‑3‑oxo‑4‑hexen‑1‑yl]‑benzaldehyde −76 −8.8
beta‑Turmerone −74 −8.9
Curcumin −74 −9.3
Reference ligand (pubChem id: 24798742) −79 −7.6
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Table 4: Absorption, distribution, metabolism, excretion and toxicity prediction of predicted ligand 
inhibitor for Akt1 protein from Phyllanthus urinaria
PubChem_id Compound name GI absorption BBB Creamer Carcinogenicity
11361584 Lintetralin High Yes High (Class III) Alert for nongenotoxic carcinogenicity
11760779 Urinatetralin High Yes High (Class III) Alert for nongenotoxic carcinogenicity
10549813 Virgatusin High Yes High (Class III) Alert for nongenotoxic carcinogenicity
370 Gallic acid High No Low (Class I) Negative
5280863 Kaempferol High No High (Class III) Negative
5280343 Quercetin High No High (Class III) Negative
5280459 Quercetin 3‑O‑alpha‑L‑rhamnoside High No High (Class III) Negative
5280805 Quercetin 3‑rutinoside Low No High (Class III) Negative
10957981 Phyllanthurinolactone Low No High (Class III) Negative
15941633 Dextrobursehernin High Yes High (Class III) Alert for nongenotoxic carcinogenicity
11002708 Heliobuphthalmin lactone High Yes High (Class III) Alert for nongenotoxic carcinogenicity
441161352 Methyl brevifolincarboxylate High No High (Class III) Negative
358901 Phyllanthin High Yes High (Class III) Alert for nongenotoxic carcinogenicity
GI: Gastrointestinal, BBB: Blood–brain barrier

Table 5: Absorption, distribution, metabolism, excretion, and toxicity prediction of predicted ligand 
inhibitor for Akt1 protein from Curcuma longa
PubChem_id Compound name GI absorption BBB Creamer Carcinogenicity
689043 Caffeic acid High No Low (Class I) Negative
8468 Vanillic acid High No Low (Class I) Negative
1183 Vanillin High Yes Low (Class I) Alert for genotoxic 

carcinogenicity
91307775 3‑Hydroxy‑1,7‑bis‑(4‑hydroxyphenyl)‑6‑heptene‑1,5‑dioneHigh No Low (Class I) Negative
91451640 3,6‑Dihydroxy‑p‑menth‑1‑en‑8‑oic acid High No Low (Class I) Negative
348482 Gitoxigenin High No High (Class III) Negative
7463 p‑Cymene Low Yes Low (Class I) Negative
442360 (R)‑(‑)‑alpha‑curcumene Low No Low (Class I) Negative
160512 (+)‑ar‑Turmerone High Yes Low (Class I) Alert for genotoxic 

carcinogenicity
14529 p‑Cymen‑8‑ol High Yes Low (Class I) Negative
1.63E+08 (+)‑ar‑Dihydroturmerone High Yes Low (Class I) Negative
92139 alpha‑Curcumene Low No Low (Class I) Negative
69879809 Cyclocurcumin High No High (Class III) Alert for genotoxic 

carcinogenicity
6429177 (E)‑Nuciferol High Yes Low (Class I) Negative
73318873 4‑[(1S)‑1,5‑Dimethyl‑3‑oxo‑4‑hexen‑1‑yl]‑benzaldehyde High Yes Low (Class I) Alert for genotoxic 

carcinogenicity
11063457 beta‑Turmerone Low No Low (Class I) Negative
969516 Curcumin High No High (Class III) Negative
GI: Gastrointestinal, BBB: Blood–brain barrier
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Figure 5: Calculated total interaction between selected ligand in Phyllanthus urinaria compared to reference ligand with protein Akt1

to the reference ligand despite showing lower total 
hydrophobic interactions. Dextrobursehernin showed 
a similar total number of hydrogen bond interactions 

with the reference ligand  [Figure  5]. Conversely, no 
compounds in curcumin exhibited higher total hydrogen 
bond interactions with the ligand compared to the reference 
ligand. However, after calculating hydrophobic interactions, 
beta‑turmerone, (+)‑ar‑Dihydroturmerone, alpha‑curcumene, 
and (R)‑(‑)‑alpha‑curcumene showed higher total hydrophobic 
interactions compared to the reference ligand [Figure 6].

The reference ligand may possess a lower number of 
hydrogen or hydrophobic bonds. However, it compensates 
with three pi‑sulfur interactions, the strongest type of 
interaction listed. While some compounds in Phyllanthus 
urinaria and Curcuma longa also exhibit pi‑sulfur interactions, 
the number is lower compared to the reference ligand. 
This suggests that natural compounds might have fewer 
pi‑sulfur interactions. However, Lintetralin from Phyllanthus 
urinaria and vanillic acid, cyclocurcumin, and curcumin 
from Curcuma longa exhibit electrostatic interactions, the 
second strongest interaction type. These electrostatic 
interactions could potentially contribute to tight binding 
of the natural compounds to the protein target.[18]

Table 6: Tanimoto similarity and Interaction 
fingerprint similarity of structure selected 
compound from Phyllanthus urinaria with 
reference ligand (pubChem id: 24798742)
Compounds_ID Tanimoto 

similarity (%)
Interaction fingerprint 

similarity (%)
358901 3 50
11361584 5 50
11760779 5 60
10549813 5 70
370 4 60
5280863 6 50
5280343 6 50
10957981 6 60
15941633 5 60
11002708 6 50
441161352 8 50
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DISCUSSION

This study highlights the widespread use of traditional 
medicine in Indonesian civilization for health management 
and treatment, revealing a critical knowledge gap in the 
safety and efficacy of medicinal plants. This lack hinders 
evidence‑based practices and raises concerns about potential 
adverse effects. Curcuma longa and Phyllanthus urinaria 
exemplify this gap, with their precise beneficial compounds 
unidentified. Using a machine learning approach, potential 
AKT1 protein inhibitors were predicted from Curcuma longa 
and Phyllanthus urinaria. In silico methods were employed 
for investigation, with compound selection from public 
databases and fingerprint generation using RDKit. The 

RF model proved the most effective in predicting active 
compounds.[19,20]

The predicted active compounds underwent molecular 
docking analysis to evaluate their binding interactions 
with target proteins. However, interpreting the results 
requires caution, as higher binding affinity scores may 
signify weaker interactions. Gallic acid from Phyllanthus 
urinaria and certain compounds (caffeic acid, vanillic acid, 
and vanillin) from Curcuma longa showed particularly high 
scores, warranting further investigation as potential drug 
candidates.

The adherence of identified compounds to Lipinski's 
rule of five provided valuable insights.   However, 
several compounds from both plants violated the 
rule (e.g., quercetin derivatives, D‑sucrose, and trehalose), 
potentially limiting their oral bioavailability.[16] Future 
studies could explore alternative administration routes 
or structural modifications to enhance their drug‑like 
properties. Phyllanthus urinaria compounds, including 
lintetralin, urinatetralin, virgatusin, dextrobursehernin, 
heliobuphthalmin lactone, and phyllanthin, were predicted 
to have good GI absorption and BBB permeability, crucial 
for oral drugs to reach target sites.[18]

This study explored the binding mechanisms of natural 
products from Phyllanthus urinaria and Curcuma longa 
in comparison to a reference ligand. While the reference 
ligand showed a profile with more pi‑sulfur interactions, 
the natural compounds revealed alternative binding 
strategies, showcasing the complexity of protein‑ligand 
interactions. Interestingly, natural products compensated 
for the lack of pi‑sulfur bonds with electrostatic interactions, 
suggesting tight binding with the protein target. These 
findings emphasize the importance of considering various 
intermolecular interactions in protein‑ligand binding 
evaluation. Despite the insights provided, the study’s 

Table 7: Tanimoto similarity and Interaction 
fingerprint similarity of structure selected 
compound from Curcuma longa with reference 
ligand (pubChem id: 24798742)
Compounds_
ID

Tanimoto 
similarity (%)

Interaction fingerprint 
similarity (%)

689043 3 60
8468 3 70
1183 3 70
91307775 3 40
442360 3 60
160512 3 50
163103560 3 60
92139 3 60
6429177 3 50
73318873 3 60
11063457 3 50
14529 4 60
969516 4 20
91451640 4 70
348482 5 60
69879809 5 50
7463 6 60

0
2
4
6
8

10
12
14
16

96
95

16

11
06

34
57

73
31

88
73

64
29

17
7

69
87

98
09

92
13

9

16
31

03
56

0

14
52

9

16
05

12

44
23

60

74
63

34
84

82

91
45

16
40

91
30

77
75

11
83

84
68

68
90

43

re
f_

lig
an

d

To
ta

l a
to

m
 in

te
ra

ct
io

n

Compounds code

Hydrogen Bond Hydrophobic Electrostatic Pi-Sulfur

Figure 6: Calculated total interaction between selected ligand in Curcuma longa compared to reference ligand with protein Akt1
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reliance on computational methods presents limitations, 
necessitating validation through in vitro and in vivo studies. 
Nonetheless, this research contributes to understanding 
natural product binding strategies and encourages further 
investigation for evidence‑based natural therapies.

CONCLUSION

This study explored natural products from Phyllanthus 
urinaria and Curcuma longa as Akt1 protein inhibitors, 
addressing their limited scientific understanding despite 
extensive traditional use. Using an in silico approach, 
promising compounds were identified through machine 
learning and molecular docking. However, interpreting 
docking results is crucial, as higher affinity scores may 
indicate weaker protein interactions. Lipinski’s rule of 
five analysis highlighted potential limitations for some 
compounds, suggesting oral bioavailability challenges. 
Understanding alternative binding strategies of natural 
products compared to traditional drugs is vital for 
evaluating protein‑ligand interactions. This study lays 
the groundwork for further research, prioritizing in vitro 
and in vivo assays to validate activities and safety profiles, 
contributing to evidence‑based natural therapies, and 
enhancing our understanding of protein‑ligand interactions.
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