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Cloud technology offers significant advantages; however, its high implementation
costs and high hardware requirements pose barriers to small-scale deployments and
educational institutions. This study addresses these challenges by investigating the
performance of OpenStack deployed via DevStack on a single-node server equipped
with an Intel Core i7 processor, 16 GB of RAM, and a 500 GB solid-state drive
(SSD) under resource-constrained conditions. We implemented a resource tuning
approach by turning off non-essential services (including Cinder, Heat, and
Tempest) and adjusting Nova's memory configurations to minimize overhead. Real-
time system monitoring was performed using Prometheus and Grafana to examine
trends in CPU, memory, and swap utilization across three configurations: default,
optimized (RAM=1024 MB), and minimalist (RAM=512 MB). Our empirical results
show that the optimized setup enhances system efficiency, decreasing CPU use and
memory usage from 86% to 70.90% while maintaining the ability to run up to ten
virtual machines with varying operating systems (e.g., CirrOS, Ubuntu 24.04 Server
LTS). However, the minimalist configurations, which aim for aggressive swap
utilization and reach 100% swap saturation when running 8 VMs under idle
workloads, consequently compromise overall system responsiveness despite lower
CPU usage. Efficiency in this context is defined as conserving RAM and CPU usage
without degrading basic system responsiveness. This highlights a critical trade-off
between RAM conservation and overall system responsiveness. This research
provides practical insights into designing cost-effective and lightweight OpenStack
environments. It establishes a crucial threshold for memory optimization, preventing
performance degradation caused by excessive swap usage, particularly in resource-
constrained research settings.

This is an open-access article under the CC-BY-SA license.

l. INTRODUCTION

Cloud technology has evolved swiftly to the present time.
In the era of Digital Transformation 4.0, cloud technology is
rapidly proliferating across multiple domains. The use of cloud
technology in education has become increasingly widespread
due to the growing demand for advanced data processing. The
need to access this data quickly from various locations via the
internet has contributed to the increasing popularity of cloud
technology, especially in educational environments.

The primary challenge institutions face in adopting cloud
computing technology for learning is the high cost of

commercial cloud services. Additionally, it can be difficult
when custom services are required. Additionally, some lecture
concepts, such as how the operating system works, require
demonstration using a server or cloud.

OpenStack is an open-source cloud computing platform
that provides a cloud-based operating system architecture for
private and public clouds.[1] It is also used as an alternative to
a private cloud, which is open-source, to create a virtual local
cloud or public cloud. Due to its open-source nature, users can
develop it as they wish. OpenStack also generally offers
services similar to those of cloud providers today, such as
Amazon Web Services (AWS) and Microsoft Azure [2].
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Many studies utilize OpenStack to construct private cloud
architectures that can be tailored to meet the specific needs of
researchers. In-depth research was conducted by
implementing OpenStack on various architectures to
investigate the optimal environment for OpenStack to operate.
[3]. The study results explain that OpenStack runs optimally
on top of Ubuntu Server. His research on OpenStack also
found that OpenStack works quite optimally in a dynamic and
elastic environment, i.e., new nodes can be added dynamically.
[4].

Several studies related to implementing OpenStack to
optimize computer resources were also conducted. The study
results found that OpenStack has the advantage of being used
for small-scale cloud computing. [5] [6] [7]. OpenStack was
implemented to create a private cloud, and its performance on
the hardware used was monitored. The study results found that
OpenStack can optimize computer hardware and resources.
[8].

Several studies have investigated OpenStack performance
or the implementation in educational institutions. Even fewer
integrate energy efficiency as a factor in system optimization.
Furthermore, the potential of DevStack as a practical
instructional resource for Operating Systems and Cloud
Computing courses is still inadequately examined. This
research suggests and assesses a simple DevStack
configuration on a small desktop server. It evaluates system
performance and resource utilization through real-time
monitoring tools, including Prometheus and Grafana. One
critical insight revealed by this monitoring was the impact of
memory optimization on swap usage. This study demonstrates
that the minimal configuration (512MB per VM) can result in
swap usage exceeding 100%, leading to performance
degradation even under a modest workload. This confirms the
impact of resource tuning on a private cloud setup.

The novelty of this study lies in discovering the
performance-impacting trade-offs between RAM optimization
and swap saturation, a topic that is seldom explored in
lightweight DevStack installations. The combination of
Prometheus and Powertop provides a comprehensive, cross-
layer analysis of resource efficiency, particularly relevant for
educational settings with limited infrastructure.

Unlike typical DevStack deployment studies, this work
investigates explicitly how aggressive RAM allocation
adjustments impact host-level swap usage in constrained
single-node environments. This practical insight highlights the
trade-off  between resource savings and  system
responsiveness, a trade-off rarely discussed in small-scale
OpenStack experimental contexts.

This study's contributions are:
e Implementation and assessment of a very
lightweight DevStack configuration.
o Real-time system surveillance with Prometheus and
Grafana.
e Evaluation of memory optimization threshold based
on swap usage behavior.

The study aims to provide practical insight into resource-
efficient OpenStack development, especially for those with
limited hardware capability.

1. LITERATURE REVIEW

A. Cloud Infrastructure in Education

In universities, especially those that require a lot of
resources related to the operating system, it is not possible to
provide server resources, so it is usually necessary to use
OpenStack by optimizing the laaS services that exist on
OpenStack, as done by [9]. Then, in another study, OpenStack
was implemented using a lab computer. [10] The study's results
indicate that utilizing OpenStack can help optimize the
utilization of computer resources on campus.

Research related to the implementation of OpenStack for
the creation of a private cloud for the needs of the education
world was also carried out by [11]In the research, a
combination of two technologies, OpenStack and Ceph, was
used for educational purposes. The results were quite flexible
and could be used for students' learning purposes.

B. Lightweight cloud deployments and resource
optimization

The use of OpensStack for light-scale clouds is carried out
by [4]The research utilizes OpenStack with full service and is
distributed across five nodes. The study's results found that
PackStack can be a solution when an elastic cloud based on
OpenStack is needed.

Similar research was also conducted by [12] That uses
SDN to run deployments on OpenStack. The study's results
show that OpenStack can be deployed using Software-
Defined Networking (SDN), thereby minimizing the overload
of computing resources. The merging of OpenStack with a
Hadoop Cluster was also carried out to investigate how
distributed computing, including CPU and Memory usage,
affects OpensStack. It was found that OpenStack can also run
well under these conditions. [13].

C. Service Level Optimization with OpenStack

Due to its customizable nature, many researchers utilize
OpenStack for resource optimization purposes, as noted by
[14]. In its research, the study employs an Ubuntu server with
DevsStack installed. The study's results showed that the use of
DevStack did not affect the CPU and RAM usage of the host
0S, indicating that it can be used to run user workloads.

[14] In his research, he used the OpenStack Cinder service

to compare the use of NFS and iSCSI protocols. The study's
results showed that the iSCSI protocol is more suitable for
implementation on OpenStack Cinder.
OpensStack service optimization is also carried out, especially
for neutron services. [15]The research found that the Neutron
OpenStack service can be configured and optimized for simple
configuration only, especially for small-to-medium-scale
clouds.
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OpenStack optimization also incorporates Kubernetes,
OpenStack, and serverless computing. Where the results of the
study optimize the use of GPU resources, support energy
optimization, and support hybrid architectures [16].

D. Infrastructure Monitoring with Prometheus and Grafana

To monitor how OpenStack is being used, you can utilize
monitoring applications such as Prometheus and Grafana. This
is done by [17], by using Prometheus and Grafana to monitor
OpenStack usage. The results show that the use of Prometheus
and Grafana helps in monitoring OpenStack optimization.

OpenStack monitoring can also be used to monitor
OpenStack services and applications. As in research by
[18]The article explains that OpenStack monitoring using
OpenStack Exporter, ceph-exporter, and libvirt services, at
least as presented in the article, demonstrates that the
OpenStack service can be monitored functionally.

E. Energy Efficiency and Green Computing in Cloud

Researchers have increasingly implemented the use of
OpenStack Cloud related to energy efficiency and green
computing. One of them is [19], which combines OpenStack
and Kubernetes for air quality monitoring. The results of the
study indicate that the model's architecture can run efficiently.
Monitoring and evaluation are done by monitoring
Kubernetes performance.

Research related to OpenStack optimization was also
conducted by [20] In his research, he proposed the concept of
ECOSTAR, a model of architectural storage objects for
OpenStack Swift. Development related to energy efficiency
on OpensStack is also carried out by scheduling the allocation
of computing resources on OpenStack. [21] [22].

The studied literature indicates that the majority of
OpenStack performance assessments concentrate on large-
scale or multi-node deployments. Minimal focus is directed
towards swap behavior or lightweight resource optimization
on single-node servers in educational environments. This
study fills that gap by systematically comparing minimum
DevStack installations.

I1l. RESEARCH METHODOLOGY

A. Research Design

This study employs a quantitative experimental
methodology to assess a lightweight, single-node DevStack
setup tailored for instructional purposes. The methodology
encompasses system deployment, monitoring configuration,
and a practical simulation of laboratory utilization. During the
test, the virtual machine used was a combination of Ubuntu
Server 24.04 and Cirros OS.

In this research, the swap configuration uses the default
settings. No custom swap files were specified, and the kernel
vm. The swapiness parameter remained at its default value of
60. The swap size used in this research is 2 GB.

B. System Architecture

This chapter discusses the research methodology and the
architectural design proposed in this study. In this study, the
proposed system architecture uses an assembled server with
the following specifications:

e Processor Intel Core 17
e Memory RAM 16 GB
e SSD500GB

The architecture also supports virtualization. The
DevStack is used for OpenStack because it is a type of
OpenStack private cloud that can be implemented on a single
node. This study employs an experimental approach using
single-node deployment via DevStack.

This study uses a KVM-type hypervisor. Two clients will
try to access the OpenStack server. The architectural design
used is as follows.

Neutron router

4—‘ Cinder Nova

Neutron |
e !
e =
Client1 Client2

Figure 1. System Architecture

Based on Figure 1, some explanations that can be done are
as follows:

e The server is installed on the OpenStack dev stack, where
all the services, namely Nova, Cinder, and Neutron, are
installed.

e Then the server is connected to a MikroTik router
connected to the internet.

e The client then accesses the VM instance from their PCs
and laptops.

So it can be said that the components used in this study are as

follows:

e a Mikrotik router for network connection to the modem
and the internet

e A virtual machine that runs the Ubuntu operating system
with Prometheus and Grafana, for monitoring.

e Devstack Host, which runs Ubuntu Desktop and devstack.

e Client PC for accessing the devstack.
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C. Devstack Configuration

For the DevStack configuration used in this study, a
comparison was conducted among three different types of
configurations. Specifically, these include the general
configuration  (default), the optimized configuration
(detuning), and the green mode configuration. Here are the
various OpenStack configurations that will be tested in this
study.

[[localllocalrc]]

ADMIN_PASSWORD=admin
DATABASE_PASSWORD=admin
RABBIT_PASSWORD=admin
SERVICE_PASSWORD=admin
HOST_IP=192.168.101.253

Figure 2. Devstack Configuration

This research will later lead to changes in the local area.
The configuration file, which contains the configuration, is
shown in Figure 2. Where DevStack will be run with the
default regional settings.conf configuration. Then, continue to
run the devstack with a configuration that has been tuned and
optimized. For the tuning version, configuration changes were
made to two lines, as shown in Figure 3 below.

# Disable heavy services
DISABLE_SERVICE=cinder,heat,tempest

# Optimize VM resource defaults
NOVA_RESIZE_PRESET_MEMORY_MB=1024

NOVA_RESIZE_PRESET_VCPU=1
|

Figure 3. The Change in Devstack Configuration

As seen in the third picture, it is done by turning off the
heat, cinder, and tempest services. Then there was an
adjustment to the
NOVA _RESIZE_PRESET_MEMORY_MB service, which
was lowered to 1024 MB. Additionally, changes were made
to the Nova service to resize the CPU preset, which was
previously set to 1.

For the third configuration, namely the minimalist
configuration, adjustments are made by only turning on the
CLI service. Additionally, the Nova memory settings were
reduced to 512 MB. All three configurations will be tested on
the server and monitored to assess their performance using
Prometheus and Grafana.

D. Data Collecting and Monitoring

For data collection, several types of parameter data will
be monitored in this study. Some of these parameter data are
as follows:

e CPU usage (%)

o RAM usage (%)

e The use of energy consumption is used.
e  The maximum number of VMs is stable.

For improved readability in both print and digital formats,
the original Grafana dashboards were color-corrected and

adjusted to a light background using Photopea. This visual
adjustment does not alter the underlying monitoring data.

E. Research Methodology

The stages of research in this study are as follows:

e Ubuntu Desktop 22.04 installation on the Server.

e Installation of Devstack, powertop, and node
exporter

e Installation of Prometheus and Grafana on virtual
machines to monitor the server.

e Dashbhoard configuration and monitoring on
Prometheus and Grafana.

e VM trialsare running. During testing, the VMs were
booted and left idle.

e  Observation and recording of performance metrics.

IV. EXPERIMENTAL RESULT

This research began by installing the Ubuntu operating
system on the CPU to be tested; the Ubuntu version installed
was Ubuntu 22.04. The next step is to configure the devstack
according to the research scenario. In this scenario, we use the
default VM swappiness value, and the swap size is 2 GB.
Based on the research methodology, this study performed an
OpenStack installation with the default configuration. When
the installation is successful, the OpenStack dashboard is
called, and the following display will appear.

T3 openstack

Overview

Figure 4. Dashboard Horizon

The image from Figure 4 shows the Horizon dashboard
from OpenStack, which has been successfully installed. You
can see how much of the maximum project quota and
instances can be created. We also see a Network tab
containing a list of floating IPs that can be assigned. A special
virtual machine (VM) is prepared to monitor the OpenStack
server, and Prometheus, Grafana, and export nodes are
installed. For Prometheus and Grafana, it is installed on a
virtual machine configured with a single network interface
and a server.

A virtual machine is prepared and connected to the
network in the same subnet to monitor the performance of the
server installed by OpenStack. Then, Prometheus and Grafana
are installed. Monitoring is performed to observe the
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DevStack and server performance, and to capture data from
each configuration DevStack that runs the same 10 VMs with
the same combination (6 CirrOS and 4 Ubuntu Server) using
the flavor combinations listed in Table 1, with a duration of
0.5 hours. Before we delve deeper into virtual machine
creation, we will explore the flavor of the OpenStack machine
used in this research. It is shown in Table 1 as follows:

TABLEI.
DEVSTACK FLAVOR USED IN THIS RESEARCH
No Machine Name RAM - DISK - CPU Core
1. Cirros256 256-1-1VPCU
2. M1.small 2048 -20-1 VCPU
3. M1.medium 4096 — 40 -2 VCPU

This study employed several scenarios, each with different
operating systems, to investigate how OpenStack performs
when running instances. The scenario involves using a Cirros
virtual machine and Ubuntu 24 Cloud OS. Ten virtual
machines and instances are created. In the default
configuration, and only for the idle host, are shown in Figure
5 below:
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Figure 5. Grafana Dashboard for the default configuration with the idle host
Operating System.

The experiments continue with the creation of 10 VMs,
with the combinations of 6 CirrOS and 4 Ubuntu Server
24.04. Monitoring is used with Prometheus and Grafana to
investigate changes in memory usage and CPU Usage. We
also use the powertop commands to monitor the CPU Usage
on our host machine.

Aot 5 Used = Uptie

Figure 6. Grafana dashboard for the default configuration that runs 10 VMs
in idle conditions

jummary: 2579,1 wakeups/second, 8,0 GPU ops/seconds, 0,8 VFS ops/sec and 33,6% CPU use

Usage Events/s  Category Description
7,4 ms/s 1033,9 Timer tick_nohz_highres_handler
100,0% Device Audio codec hwCeD2: Intel
11,7 ms/s 96,2 Process [PID 31356] /opt/stack/data/venv/bir
12,3 ms/s 95,2 Process [PID 31359] /opt/stack/data/venv/bir
11,2 ms/s 95,2 Process [PID 31362] /opt/stack/data/venv/bir
10,5 ms/s 93,3 Process [PID 31299] /opt/stack/data/venv/bir
2,8 ms/s 93,3 Process [PID 1889] /usr/sbin/mysqld
3,5 ms/s 60,0 Process [PID 32003] /opt/stack/bin/etcd --n:
1,0 ms/s 45,7 Process [PID 31268] /opt/stack/bin/eted --n:
1,0 ms/s 42,8 Process [PID 17] [rcu_preempt]
27,2 ms/s 27,6 Process [PID 6u22u] powertop
82,8 ms/s 1,9 Process [PID 146] [kcompactde]
1,6 ns/s 32,4 Kilork handle_update
342,9 ps/s 25,7 Kilork psi_avgs_work
5,1 ms/s 20,0 Process [PID 63478] /usr/bin/qemu-system-x8¢
3,8 ms/s 18,1 Process [PID 62784] /usr/bin/qemu-system—x8¢
3,8 ms/s 16,2 Process [PID 61800] /usr/bin/qemu-system—x8¢
1,7 ms/s 16,2 Process [PID 1534] fusr/lib/erlang/erts-12.:
512,8 ps/s 15,2 Process [PID 1441] fusr/bin/memcached -m 64
4,8 ms/s 12,4 Process [PID 59723] /usr/bin/qemu-system-x8¢
570,1 ps/s 13,3 Interrupt [3] net_rx(softirq)
4,3 ms/s 11,4 Process [PID 57427] /usr/bin/qemu-system-x8¢
3,4 ms/s 18,5 Process [PID 59695] fusr/bin/qemu-system—x8¢

Figure 7. Powertop for the default configuration of openstack that runs 10
VMs in idle conditions

From figures 6 and 7, we can also see that memory usage
increases to 86.5%, and CPU usage on powertop increases to
33.6%. We can also see that the CPU busy metric in
Prometheus and Grafana remains at 3.5%, which is caused by
idle conditions on each VM. The difference between CPU use
in powertop and CPU busy on Prometheus and Grafana is that
CPU usage metrics describe the total CPU usage on the host
server, while CPU busy on Prometheus and Grafana describes
the compute load performed by the CPU, where in this case,
the VM being run is all in an idle condition. The results of the
monitoring of the three different configurations are as
follows:

TABLE II.
EXPERIMENTAL RESULT FOR THREE DEVSTACK CONFIGURATIONS
No Metrics Default | Optimized Minimum
(memory (memory
resize resize=512mb)
=1024MB)
1 Memory | 86.50% | 70.90% 75.30%
Usage
2 Swap 4.40% | 30.40% 100%
Usage
3 CPU 33.60% | 26.60% 22.80%
Usage
5 CPU 3.50% | 2.10% 4.20%
Busy
6 Maximum | 10 10 8
VM run

A study combined measurements from the use of
Powertop, Prometheus, and Grafana. The results of the study
show that, for the default configuration, it can run 10 VMs
with a composition of 6 CirrosOS and 4 Ubuntu servers,
consuming 86.5% of memory, with the lowest swap usage at
4.4%. This indicates that the default DevStack configuration
requires more resources for the idle machine VM.
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Usage Events/s  Category Description
9,1 ns/s 78,8 iner tick_nohz_highres_handler
11,9 nsfs  151,3 Timer hrtiner_nakeup
4,1 nsfs 93,6 Process [PID 17389) fusr/shin/mysqld
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9,9 ns/s 36,2 Process [PID 21526] fopt, ted —name !
9,6 nsfs 31,8 Process [PID 21922] neutron-server: api worker (/opt/stack/datafwenv/bin/
9,3 ns/s 29,8 Pracess [PID 21925] neutron-server: api worker (fopt/stack/data/wenv/bin/
47,8 psfs 31,6 Whlork psd_avgs_worl
7,6 nsfs 27,3 Process [PID 21924] neutron-server: api worker (/opt/stack/data/venv/bin/
10 msfs 20,8 Timer apic_timer_fi
412, ps/s 19,1 Pracess [PID 17385] fusr/shin/nysqld
1,2m 16,4 Procass [PID 21529] fopt/stack/binfetcd —nane openstackserver-HEL6M-K-DD
564, ps/s 16,5 Process [PID 17367] fusr/sbin/nysqld
498,7 ps/s 16,4 Process [PID 17306] /usr/sbin/mysqld
58,4 psfs 14,3 Interrupt [4] block(softirg)
9,3 nsfs 9,0 Process [PID 21708] fopt/stack/d: /pythen3. 18 ta/v
1,u nsfs 12,8 Process [PID 54u21] fusr/bin/gemu- systen x86_60 -name ;uesﬁ instance-0808
2,6 nsfs 19,5 Procass [PID 50675] fust/bin/aq 64 -nama

Figure 8. CPU Usage for Optimized (RAM=1024 MB) Configurations

In the second configuration, we can reduce RAM
consumption by disabling some services, such as Heat,
Cinder, and Tempest. CPU consumption is also affected by
this action, reducing it to 26.6%. There was a significant
decrease in memory usage to 70.9%, as described in Figure 9.
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Figure 9. Grafana dashboard for the Optimized Configurations

There is also a significant improvement in swap usage, as
shown in Figure 9. The increase in swap usage to 30.4% from
4.4% is caused by the reduction of Nova instances to 1024
MB and the kernel VM. swapiness parameters at its default
value of 60. These adjustments, while reducing the overall
RAM consumption, create increased memory pressure in the
host system. Consequently, the kernel tends to proactively
move less frequently used memory pages to swap pages,
freeing up physical RAM, even when the VM is in an idle
state. This represents an initial trade-off where the systems
begin to rely more on swaps as a mechanism for RAM
conservation. For a view of the number of VMs running and
their specifications, see Figure 6.

Figure 10. Total VMs that are running in this Devstack

The most considerable swap increase occurs in the most
minimalist configuration, which sets the
Nova_resize_memory amount to 512 MB. The swap memory
jump becomes 100% when running 8 VMs, because using too

tight Nova memory can cause poor performance on the swap
memory.

Figure 11. Grafana Dashboard for minimum configuration Devstack
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Usage Events/s  Category Description
7,8 ms/s 779,5 Timer tick_nehz_highres_handler
12,2 ms/s 254,6 Timer hrtiner_wakeup

160, 0% Devica Audio codec huC@D2: Intel
11,4 nsfs 8d,4 Process [PID 389332] /opt/stack/data/venv/bin/python3.10 /opt/stack/data/
10,2 ns/s 76,2 Process [PID 393050] /opt/stack/data/venv/bin/python3.18 /opt/stack/data/
8,6 ms/s 65,0 Process [PID 397624] /opt/stack/datafveny/bin/python3.10 /opt/stack/data/
7,5 ms/s 57,6 Process [PID 392309] /opt/stack/data/veny/bin/python3.10 /opt/stack/data/
2,3 ms/s 59,1 Process [PID 348047] fusr/sbin/mysqld
0,8 ms/s 4 4 Process [PID 171 [rcu_preempt]

0,7 ms/s 36,2 Process [PID 350064] /opt/stack/bin/etcd ——name openstackserver-HE1M-K-0
2,7 ms/s 33,5 Process [PID 350063] /opt/stack/bin/etcd —name openstackserver-HG16M-K-0

482,3 ps/s 31,8 kidork psi_avgs_work
0,8 ms/s 25,4 Process [PID 3488B4E] /usr/sbin/mysqld
0,7 ms/s 220 Process [PID 3480441 fusr/sbin/mysqld

620,5 ps/s 22,3 Process [PID 348043] /usr/sbin/mysqld

44,4 ps/s 21,9 Pracess [PID 348045] /usr/sbin/mysqld

122,9 ps/s 28,8 kidork blk_ng_requeue_work

564,6 ps/s 18,6 Interrupt [4] block(softirg)

582,9 ps/s 17,9 Process [PID 351839] /usr/bin/memcached -m 64 —p 11211 -u memcache -1 127
3,4 msfs 16,3 Pracess [PID 419235] /usr/bin/gemu-system-x86_64 —-name guest=instance-808
3,7 msfs 15,8 Pracess [PID uzaevaj /usr/bin/qenu-systen-x86_6U -nane guest=instance-800
1,4 msfs 15,3 Timer apic_tim n

Interrupt [3] net, x-x[sn;tqu

Flgure 12. CPU Usage from Powertop Measurement in Minimalist
Configurations (RAM =512 MB)

Based on Figures 11 and 12, the state of the system when
the minimized configurations are implemented is illustrated.
As detailed in Table I, this setup allowed for running a
maximum of eight stable VMs, a decrease from the default
and optimized configurations. CPU usage is decreased to
22.8%, and CPU busy is at 4.20%; these numbers belie a
significant underlying performance issue. The consumption
of RAM usage increases to 75.30%, and a striking swap
saturation occurs, reaching 100% swap usage. This complete
swap saturation indicates the system is exhausting its
available swap space and is under severe memory pressure,
even though the VMSs are running in idle workloads.

This ostensibly "low" CPU usage of 4.2% (Grafana CPU
Busy) or 22.8% (Powertop) is a false measure of efficiency in
this situation. Rather than carrying out calculations, it
indicates that the CPU spends a significant amount of time
waiting for sluggish disk 1/O operations associated with swap
activities. Despite the nominal CPU metrics, this
phenomenon, known as "thrashing," significantly impairs
overall system responsiveness and the user experience.

This configuration thus clearly shows that efficiency—
which is defined as preserving RAM and CPU usage without
compromising fundamental system responsiveness—was not
attained. Although the raw resource consumption figures may
seem lower (particularly CPU), the adverse effect of 100%
swap saturation on system responsiveness, as well as the
decreased capacity for stable virtual machines (from 10 to 8),
points to an unfavorable trade-off. This discovery is important
because it highlights a critical threshold for memory
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optimization: even for idle workloads, lowering virtual
machine memory below a specific threshold results in an
inefficient reliance on slow swap space, jeopardizing the
performance that memory optimization is meant to improve.
This underscores the need for more intelligent dynamic
scheduling and memory balancing, which will be addressed
in future multi-node implementations.

V. CONCLUSION AND FUTURE WORKS

This study demonstrates that OpenStack can be
implemented on a single-node infrastructure by tuning
components such as Cinder, Heat, and Tempest, as well as by
adjusting the memory allocation of Nova. The results of this
study showed a decrease in memory from 86% to 70.90%
when running eight to ten virtual machines. However, there is
an increase in swap on the OS kernel host to 100% on the most
minimalist configuration (512 MB), even when idle after
booting. This risk impacts the overall system performance.

However, this study has some limitations in the research
methodology employed; the limitations of the network design
cause difficulties in measuring more specific metrics, such as
VM boot time, /O latency, and login time. This inability is
caused by the Mikrotik gateway not supporting routing and
the NAT for floating IPs of the DevStack virtual machine.
This limits the ability to make more specific observations of
the effect of high saturation swap on virtual machine latency,
and subsequently on I/O latency, which cannot be done.
Additionally, since DevStack is not intended for production
use, it is primarily used for experimentation and testing
purposes. This finding still needs to be further tested on a
larger scale.

To address the limitations of this research, the next step that
can be taken is to develop it in the realm of multinode
architecture. Additionally, network redesign settings are
required so that the created virtual machine can be accessed
from outside the DevStack network. Scheduling algorithms
will be developed to avoid excessive swap usage and
bottlenecks on a single node, so it is expected that these
schemes and findings can be implemented at absolute scale,
especially for low-cost private clouds..
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