International Conference on

New Techniques in Pharmaceutical, Biomedical & Analytical Research

Bali, August 21-23, 2006

Editor: B. Kuswandi

Organised by

School of Pharmacy
Universitas Jember
Jl. Kaltimantan I No. 2 Jember 58121 — INDONESIA

in collaboration with

Universiti Teknologi MARA
MALAYSIA

IEEE

Jember University Press
Preface

The 2nd International Conference on New Techniques in Pharmaceutical, Biomedical and Analytical Research (ICPBAR 2006), took place in Sanur Paradise Plasa Hotel, Denpasar Bali Indonesia on 21 – 23 August 2006. This conference, the second series after the first one held in Kuala Lumpur, Malaysia in 2005, is the only one conference focused on all aspects related to pharmaceutical, biomedical and analytical research.

This proceeding contains papers that have been presented at the ICPBAR 2006 as plenary lectures, keynote, oral and poster presentations. About 100 participants attended the conference, with 8 plenary lectures, 22 oral and 24 poster presentations. The proceeding of ICPBAR 2006 has been published in electronic form as *.pdf file for simple and easy publication and to avoid heavy book of proceeding. We hope that this publication can be easily read, handled and transferred to other form. Furthermore, this paperless proceeding can be fruitful for all participants of the conference.

My sincerely thanks go to all the members of Scientific Committee for their valuable help in the review of the submitted papers, and also to the authors for their collaborative attitude. A special mention must go to Tri Kuncoro, our Conference Secretary, who has put in a terrific amount of effort not only in general conference matter but also in the assembly of the papers for this proceeding. Finally, I congratulate the authors of all papers for producing the new and novel idea for research on pharmaceutical, biomedical and analytical developments, which are currently emerging fields of research in South East Asia, particularly in Indonesia.

Jember, August 2006

B. Kuswandi
Editor
ICPBAR 2006 Proceeding
Low Power Memory Design using Latched Pass-transistor Adiabatic Logic for Bio-medical and sensor based applications

Ravi Shekhar1, Achal Kathuria1, Manu Rastogi1 and N. Vinod Reddy1

Health Effect Analysis of Ginger (Zingiber officinale Roscule) Bioactive Compounds Human Lymphocyte Function In Stress Oxidative Conditions In Vitro

Tejasari

Larvaside Effect of Ethanolo Extract of Myristica fragrans Houtt. Arilus Against Aedes aegypti Linn. Larvae

Sajekti Palupi1, Inez1, Sri Subekti2

Nutrition Education and Sun Exposure Increases Vitamin D Status Among Postmenopausal Malaysian Women

Ari Istiany1,2, AR Suriah1, MY Zaitun1, WSS Chee2, YM Chan1 & MP Asmaa 2

Effect Of Calcium Supplementation On Serum Calcium, Phosphorus and Magnesium Changes In Malay Postmenopausal Women

MF Fazlin1, AR Suriah1, Y Zaitun3, WSS Chee1, K Mirnalini 2, YM Chan2,O Sofiah2 & SP Chan4

Effect of GCM1 from Gracilaria changii on the activation of p38 and pp38 mitogen – activated protein kinases (MAPKs) in CaOV-3 cells

Norazfa Johari and Hasidah Mohd Sidek

Sequential Determination of Iron Species (Fe(11)/Fe(III)) Using Flow Injection Analysis

aZainiharyati Mohd Zain*, bWoo Sin Yee, bWan Tat Wai and bBahruddin Saad

Method Validation Analysis of Captopril in Human Plasma in vitro by HPLC

Yahdiana H*, Harmita, Maryati K

Heavy Metals Concentrations in the Sediment in Rivers and Sea Around Estuary River’s of Kenjeran Surabaya

Ririn Sumiyani*, Soediatmoko Soediman* and Atiek Moesriati**

A Simple Fiber Optic Sensor for CO2 Measurement Utilizing Indicator Dye

Faiz Bukhari Mohd Suah *, Narlia Tajri1 and Mohd Nasir Taib2

An Optical Biochemical Sensor for Phenolic Compounds Based on Steaked Films Containing Horseradish Peroxidase and MBTH

Jaafar Abdullah, Musa Ahmad2, Lee Yook Heng2, Nadarajah Karuppih2 and Hamidah Sidek2

Optimum Sensor-Array Selection Method for Electronic-Nose using MLR and RMSE Analysis

K. R. Kashwan*1 and M. Bhuyan2

Determination of ciprofloxacin in human plasma by high performance liquid chromatography - fluorescence

Yahdiana Harahap*, Budi Prasaja**, Ega Indriati**, Windy Lusthom**

Preliminary Study on Application of Aptamer-Modified Magnetic Beads for Thrombin Measurement

Siswoyo1, M. Mascini2, G. Marrazza2, and F. Lucarelli2

Optical Reflectance Cu (II) Sensor Based on Immobilized Chrom Azurol S on XAD 2

Afinidar1, Musa Ahmad2, Lee Yook Heng2, Rita Sundari2
Heavy Metals Concentrations in The Sediment in Rivers and Sea Along Estuary of Kenjeran River in Surabaya

Ririn Sumiyani* Soediatmoko Soediman* and Atiek Moesriati**

*Faculty of Pharmacy, University of Surabaya (UBAYA).
**Department of Environmental Engineering, Institute Technology of Sepuluh Nopember (ITS)

Abstract

Concentration analysis of heavy metal (Cd, Cr, Cu, Hg and Pb) in the sediment in Tambakwedi, Jeblokan and Kenjeran rivers and sea along Kenjeran river Surabaya using Grab sampling have already done. Samples preparations conducted using Toxicity Characteristic Leaching Procedure (TCLP).

It was found that concentrations of Cadmium (Cd) in Tambakwedi, Jeblokan and Kenjeran rivers sediment are 0,710 ; 0,030 and 0,047 mg/L respectively; concentrations of Chromium (Cr) are 0,533 ; 0,165 and 0,264 mg/L respectively; Copper (Cu) concentrations are 1,144 ; 0,155 and 0,419 mg/L respectively; Mercury (Hg) concentrations are: 0,931 ; 0,699 and 0,822 mg/KL whereas Lead (Pb) concentrations are: 4,545 ; 3,477 and 4,141 mg/L in wet samples respectively.

The research result for heavy metal concentrations in the sediment along estuary of Tambakwedi, Jeblokan and Kenjeran Rivers (representatively of the sea) are: for Cd concentrations 0,008 ; 0,025 and 0,028 mg/L respectively; Cr concentrations are 0,319 ; 0,096 and 0,115 mg/L respectively; Cu concentrations are 0,004 ; 0,009 and 0,113 mg/L; Hg concentrations are 0,049 ; 0,415 and 0,507 mg/L and for Pb concentrations are: 0,288 ; 2,516 and 2,887 mg/L in wet samples respectively.

Some of the value of heavy metal concentrations results lower than the requirement of TCLP Standard Value of Government Regulation No.85, 1999 which it’s concerning in Management of Dangerous and Poisonous Material, except Hg concentration. Indeed, the standard concentrations value of Cd, Cr, Cu, Hg and Pb are1,0; 5,0; 10,0; 0,2 and 5,0 mg/L. Mercury pollution probably happened because of the presence of plants industry along the Tambak Wedi, Jeblokan and Kenjeran river.

Key words: Kenjeran, sediment, heavy metals

Introduction

Heavy metal pollution in the seashore area is depending on river content which is estuary in thus sea. Ririn et al. (2000) reported, in Tambak Wedi’s estuary, Surabaya, concentration of Cd (Cadmium) and Pb (Lead) was 0,035 and 2,536 ppm respectively, whereas 0,075 and 0,390 ppm was reported for the Cd and Pb concentration in the sea water. Clams were used as bioindicator, they are Mytilus viridis L. and Solen grandis. It was found that Cd and Pb content are 0,7839 μg/g and 0,4016 μg/g respectively. And 3,7 μg/g and 1,2 μg/g was reported for wet weight [1]. For food requirements according to WHO/FAO are, Cd content 1 μg/g and 2 μg/g for Pb content. It concluded that Mytilus viridis L. while Solen grandis beyond the requirement. Prigi, A. reported that Cu (Cuprum) and Hg (Mercury) content in human blood in Kenjeran/Sukolilo area are 511,07 ppb and 2,48 ppb respectively [2]. Thus heavy metal concentration beyond the limit values which is WHO/FAO defined. Prigi, A. also reported that mother breastfeeding (ASI) and mothers blood in Kenjeran area were content heavy metals such as Pb, Cd and Hg in high concentration beyond the limit values. Thus phenomena are happened, probably, because of the sea biota which is content heavy metal are eaten by mothers. Atiek, 1995 reported that fishes and clams on Kenjeran area are polluted by Cd, so do the human blood in thus area [3]. The phenomena which is Prigi, A. reported also happened in Kenjeran area.

Ririn et. al. (2005)[4] reported Cd, Cr, Cu, Hg and Pb content on river water and Kenjeran sea by doing river and sea water sampling around the Tambak Wedi estuary, Jeblokan duct and Kenjeran river respectively. The results are: Cd content: 0,008; 0,024 dan 0,028 mg/L; Cr: 0,062; 0,097 and 0,135 mg/L; Cu: 0,479; 0,648 and 0,366 mg/L; Hg: 2,479; 0,648 and2,004 mg/L, while Pb content: 12,196; 1,760 and 9,368 mg/L. Cd, Cr, Cu, Hg and Pb contents on river water were beyond the water quality requirement (class III), Regulation of Surabaya City Area No.02, 2004 [5]. Thus regulation required 0,01; 0,05; 0,02; 0,002 and
Sea water concentrations of Cd around Tambak Wedi river estuary, Jeblokan canal and Kenjeran river are 0.064; 0.007 dan 0.097 mg/L respectively. Cr concentrations are 0.530; 0.135 and 0.473 mg/L, Cu concentrations are 0.238; 0.024 and 0.389 mg/L. Hg concentrations are 1.028; 0.81 and 2.119 mg/L, while Pb concentrations are 6.082; 2.611 and 9.656 mg/L. Cd, Cr, Cu, Hg and Pb concentration in sea water are over the limit value which is stated by Ministry of Environmental No. 51, 2004 [6]. Maksimum concentrations for Cd, Cr, Cu, Hg and Pb are limited on 0.01; 0.05; 0.02; 0.002 and 0.03 mg/L respectively.

Wherein an area has been polluted by heavy metal in high concentration, sea and river sediment probably contain heavy metal in high concentration, thus phenomenon will be effect on the sea biota. Sea biota will be have high probability on having high concentration of heavy metal. Depend on this phenomenon, this research conducted to knowing the heavy metal concentration (Cd, Cr, Cu, Hg and Pb) in sediment on Kenjeran seashore, Surabaya. Quality standard value, especially, for sediment sample are not present, because of it we used quality standard value TCLP pollution compounds based on Indonesia Government Regulation No.85, 1999 [7]. This research also collect data industries which drainage his waste water along Tambak Wedi river, Jeblokan canal and Kenjeran river, and analyzed metals which is potentially as a source of pollutant.

Heavy metal concentration determined using Inductively Coupled Plasma Spectrometer (ICPS). Validation method (parameter selectivity, linearity, limit detection value, limit quantitation value, precision and accuracy) was done prior sample analyzed.

Experimental Method

Materials

River and sea sediment (sludge) around Tambak Wedi river, Jeblokan canal and Kenjeran river was sampled. Sample was taken on 03 October 2005, start at 09.00 AM using Grab sampling method in order to get representation of concentration of heavy metal (Cd, Cu, Cr, Hg and Pb). Sampling area showed in ANNEX I.

Chemical Reagent

Standard using Cd, Cr, Cu, Hg and Pb in HNO₃ 0,5 Mol/L. Chemical reagents are HNO₃, H₂SO₄, HCl, H₂O₂ reagent grade; filter paper Whatman No. 41 and 42; and aquademineralisata.

Devices

Inductively Coupled Plasma Spectrometer (ICPS) ARL-3410+ Fisons, glass laboratory apparatus; glass filter crucible, salimeter (Atago), and GPS (Geo Positioning System).

Results and Discussion

Trade and Industrial Department (Disperindag) Kotamadya Surabaya reported, they are several industries along Tambak Wedi river, Jeblokan canal and Kenjeran river which is drainage his wastewater into them. Industries’s wastewater potential represented in Table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Kind of Industry</th>
<th>Drainage area</th>
<th>Wastewater potential content</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jewelry (metal)</td>
<td>Tambak Wedi 1</td>
<td>Hg, Cr, Cu</td>
</tr>
<tr>
<td>2</td>
<td>Plastic</td>
<td>Jeblokan duct 4</td>
<td>Cd, Pb, Sb, Sn, Zn</td>
</tr>
<tr>
<td>3</td>
<td>Cosmetic</td>
<td>Kenjeran river 5</td>
<td>Zn</td>
</tr>
<tr>
<td>4</td>
<td>Sablion</td>
<td>-</td>
<td>Pb</td>
</tr>
<tr>
<td>5</td>
<td>Thiner-Paint</td>
<td>3</td>
<td>As, Ba, Cd, Cr, Pb, Hg, Ag, Zn, Se</td>
</tr>
<tr>
<td>6</td>
<td>Printing</td>
<td>12</td>
<td>Cr dan Pb</td>
</tr>
<tr>
<td>7</td>
<td>Motor components vehicle</td>
<td>-</td>
<td>As, Ba, Cd, Cr, Pb, Ag, Hg, Cu, Ni</td>
</tr>
<tr>
<td>8</td>
<td>Housewares (metal)</td>
<td>12</td>
<td>Zn, Se, Sn</td>
</tr>
<tr>
<td>9</td>
<td>Electronic components</td>
<td>-</td>
<td>As, Ba, Cd, Cr, Pb, Ag, Hg, Cu, Ni, Zn, Se, Sn, Sb</td>
</tr>
<tr>
<td>10</td>
<td>Bottle welding</td>
<td>-</td>
<td>Pb, Cd, Cr, Co, Ni, Ba</td>
</tr>
<tr>
<td>11</td>
<td>Colouring</td>
<td>1</td>
<td>Cr, Zn, Pb, Hg, Ni, Sn, Cu, Sb, Ba</td>
</tr>
<tr>
<td>12</td>
<td>Others</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>30</td>
<td>35</td>
</tr>
</tbody>
</table>
Table 1 above showed, that wastewater which is drainage to the river was content heavy metal, thus metal content make the river polluted and so does the seashore. Because of thus reason, the sediment sample was taken first from river and sea water. Before sample analysed, validation method (parameter: selectivity, linearity, limit detection value, limit quantitation value, precision and accuracy) was done. Selectivity done on wavelength which are metal are not interference each other. They are: \(\lambda_{\text{Cd}} = 228,802\) nm; \(\lambda_{\text{Cr}} = 283,563\) nm; \(\lambda_{\text{Cu}} = 327,396\) nm; \(\lambda_{\text{Hg}} = 253,652\) nm and \(\lambda_{\text{Pb}} = 283,306\) nm. The other parameters (selectivity, linearity, limit detection value, limit quantitation value, precision and accuracy) are fulfill the requirements.

Sediment samples from river and sea around the Tambak Wedi estuary, Jeblokan canal and Kenjeran river was taken on several position area as follows:

a. River estuary is position 1, and next location of sampling is 1 km from position 1 to the river (position 2). Thus positions represent river water.

b. 1 km from position 1 to the north of the seashore is position 3, and next location (position 4) is 1 km from the left side of position 3, while 1 km from the right side of position 3 is position 5. Position 3, 4, and 5 represent sea water.

Heavy metal analyzed results presented on Table 2.

<table>
<thead>
<tr>
<th>Sampling location</th>
<th>Concentration (mg/L)</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>River sediment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cd</td>
<td>Cr</td>
<td>Cu</td>
<td>Hg</td>
<td>Pb</td>
<td>Cd</td>
<td>Cr</td>
<td>Cu</td>
<td>Hg</td>
</tr>
<tr>
<td>Tambak Wedi river</td>
<td>0,71</td>
<td>0,533</td>
<td>1,144</td>
<td>0,931</td>
<td>4,545</td>
<td>0,008</td>
<td>0,319</td>
<td>0,004</td>
<td>0,049</td>
</tr>
<tr>
<td>Jeblokan duct</td>
<td>0,030</td>
<td>0,165</td>
<td>0,155</td>
<td>0,699</td>
<td>3,477</td>
<td>0,025</td>
<td>0,096</td>
<td>0,009</td>
<td>0,415</td>
</tr>
<tr>
<td>Kenjeran river</td>
<td>0,047</td>
<td>0,264</td>
<td>0,419</td>
<td>0,822</td>
<td>4,141</td>
<td>0,028</td>
<td>0,115</td>
<td>0,113</td>
<td>0,507</td>
</tr>
<tr>
<td>Quality standard of TCLP</td>
<td>1,0</td>
<td>5,0</td>
<td>10,0</td>
<td>0,2</td>
<td>5,0</td>
<td>1,0</td>
<td>5,0</td>
<td>10,0</td>
<td>0,2</td>
</tr>
<tr>
<td>Baluran National Park</td>
<td>0,031</td>
<td>0,189</td>
<td>0,080</td>
<td>0,269</td>
<td>6,360</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pagerungan Seashore</td>
<td>0,321</td>
<td>5,792</td>
<td>1,873</td>
<td>0,873</td>
<td>36,730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*results are average value from triplicate sample analyzed

Sediment from Baluran National Park and Pagerungan seashore, Madura were used as the comparison. The results showed that Hg and Pb content on Baluran National Park’s sediment were beyond the quality standard value, while Pagerungan seashore’s sediment beyond the quality standard value for all heavy metals which are analyzed (Table 2). In order that results, we couldnot used thus sediment as a comparison.

Some of the value of heavy metal concentrations results lower than the requirement of TCLP Standard Value of Government Regulation No.85, 1999 which it’s concerning in Management of Dangerous and Poisonous Material, except Hg concentration. Indeed, the standard concentrations value of Cd, Cr, Cu, Hg and Pb are 1,0; 5,0; 10,0; 0,2 and 5,0 mg/L.

Table1 showed, Tambak Wedi river passed by 4 industriy are potential as a Mercury pollutant sources. Jeblokan canal also have 17 industries wich have a drainage and Kenjeran river have 16 industries. All of that industriy are potential as a Mercury pollutant sources.

Mercury pollution probably happened because of the presence of plants industry along the Tambak Wedi, Jeblokan and Kenjeran river.

Conclusions

1. Cd, Cr, Cu and Pb content on sediment of Tambak Wedi river, Jeblokan canal, and Kenjeran river were below the quality standard of TCLP on Indonesia Government Regulation No 85 ,1999, except Hg.
2. Mercury (Hg) content on water and sea sediment, mainly, because of the waste water industries drainage along the river/canal.

Rereferences

1. Ririn S, dkk., Kadar logam Cd dan Pb dalam air sungai, air laut, kerang hijau (Mytilus viridis L) dan kerang lorjuk (Solen grandis) di daerah Tambak Wedi Surabaya. Makalah pada

Acknowledgement

The authors express their gratitude to Enviromental Impact Control (BAPEDAL), East Java Province for their fund of this research.

ANNEX

Map of Sampling Location