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This paper reports a new signal classification tool, a modified wavelet network called
Thresholding Wavelet Networks (TWN). The network is designed for the purposes of
classifying signals. The philosophy of the technique is that often the difference between
signals may not lie in the spectral or temporal region where the signal strength is high.
Unlike other wavelet networks, this network does not concentrate necessarily on the
high-energy region of the input signals. The network iteratively identifies the suitable
wavelet coefficients (scale and translation) that best differentiate the different signals
provided during training, irrespective of the ability of these coefficients to represent the
signals. The network is not limited to the changes in temporal location of the signal
identifiers. This paper also reports the testing of the network using simulated signals.
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1. Introduction

Pattern recognition and classification of signal and data are essential for our com-
puterised society for automating the process of identifying a person, an object or
an event. Pattern recognition consists of at least three phases: feature extraction,
feature selection and classification.1

Feature extraction gives condensed representation of the input signal. Appro-
priate representation of the signal must contain all the important features that can
be used to discriminate the signal pattern from the other signals. The purpose of
representation is to reduce the complexities of the signal, while highlighting the
properties that are suitable to recognize the pattern. Feature extraction involves
transforming the signal while maintaining its completeness. The transformed data
contain discriminative and other information. Selection of the transformation to be
used is determined by initial knowledge of the discriminative pattern and space of
the transformation.

To make the process of recognition more efficient, it is necessary to select suitable
features that best identify the different patterns. Feature selection phase is necessary
to separate the meaningful features that can best represent the input pattern with
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minimum redundancy. The optimisation of the feature selection is controlled by its
cost function.

The classification phase is the process to modify and map the selected features
to the desired output format.

The development of Wavelet Transform has opened more opportunities in signal
classification. Wavelet transform provides the temporal and spectral perspectives.
It also provides the flexibility of choice of a wide variety of wavelet functions with
properties well matched with the signal.

Wavelet transform has been widely used in the computation of many signal
properties such as instantaneous frequency, detection of singularities, regularity
measurement and fractal structures.2–11 All these properties are significant in order
to determine patterns of a class of signal.

The flexibility offered by the wavelet transform comes at the cost of having to
select or adjust several number of input parameters. For suitable representation,
the wavelet function, range of scale and translation have to be selected properly.
This requires either prior knowledge of the signal and wavelet properties or exper-
imentally determining the most suitable parameters. The latter is difficult due to
computational complexity.

To overcome the problem, the efficacy of neural networks has been combined
with wavelet transforms to generate wavelet networks.1 The wavelet networks can
generate wavelet coefficients iteratively to represent and classify the input signal. In
the past few years, many types of wavelet networks have been introduced. Most of
the wavelet networks are designed for the purpose of function approximation.12–24

Some researchers1,25–32 have attempted to use the combination of neural net-
works with wavelet transforms to directly classify the signal. The input signal is
classified by iteratively locating the positions in wavelet’s time-scale space that
best discriminate the input patterns. The inconsistent temporal alignment of the
important events in the input signals often creates problem for this classification
technique.

This paper reports our efforts to develop a new wavelet network that can over-
come the limitations of previous wavelet networks. This wavelet network introduces
an upper-lower thresholding process that allows the network to select the suitable
wavelet coefficients based on signal properties. The selection is not depending on
the temporal alignment of the coefficients.

This paper is organised into six sections. Section 2 reviews the basic concept
of wavelet transform while Sec. 3 reviews the different types of wavelet networks.
Section 4 presents the proposed thresholding wavelet network. Section 5 presents
the simulation of the network, while Sec. 6 concludes the paper.

2. Wavelet Transform

Wavelet transform of a function f ∈ L2(R) is defined as the correlation between f

and a dilated wavelet function ψ.
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Wf(u, s) = 〈f, ψ∗
u,s〉 , (1)

Wf(u, s) =
∫ +∞

−∞
f(t)

1√
2
ψ∗
(
t− u

s

)
dt . (2)

The magnitude of wavelet coefficient |Wf(u, s)| will be higher if the properties
of the function f in the neighbourhood of t = u match the properties of the wavelet
function ψ∗

u,s at scale s. By selecting a wavelet function with a certain proper-
ties (temporal or spectral), one can extract the portion of the analysed signal that
match the properties of the wavelet function being used. The magnitude of wavelet
coefficients contains information related to certain properties in the analysed sig-
nal such as the instantaneous frequency and regularity.2,4 The maxima of wavelet
transform can also be used to approximate signal as well as removing noises.2,33,34

2.1. Instantaneous frequency

Wavelet transform can measure time-frequency variation of spectral components
with a non-constant time frequency resolution.2 The time-frequency atom of a
wavelet function varies according to scale s. A wavelet atom

ψu,s(t) =
1√
2
ψ

(
t− u

s

)
(3)

is centred at t = u with time spreading proportional to scale s. In frequency domain,
the atom is centred at η/s with a size proportional to 1/s. The centre frequency at
scale s = 1 is defined as:

η =
1

2π

∫ +∞

0

ω|ψ̂(ω)|2dw . (4)

The ability of wavelet atom to increase its time resolution in high frequency,
and increase its frequency resolution in low frequency makes it able to follow the
rapid change in spectral component with good resolution.

The instantaneous frequency can be detected from the ridges2 of normalised
scalogram:

ξ

η
PW f(u, ξ) =

|Wf(u, s)|2
s

for ξ =
η

s
. (5)

The ridges (u, ξ(u)) are the maxima points at each translation u. The magnitude
of the normalised scalogram (5) corresponds to the amplitude of the particular
spectral components. If the coefficients were calculated using analytic wavelet, the
phase and amplitude information of the analysed signal are well separated.

2.2. Regularity measurement

Most signals are characterised by their regularity pattern.2 Wavelet coefficients can
be used to calculate pointwise regularity of a signal as well as singularity spec-
trum. A Lipschitz exponent (can be estimated from the slope of wavelet coefficients
maxima towards finest scale.2



September 8, 2003 14:53 WSPC/181-IJWMIP 00022

246 N. D. Pah & D. K. Kumar

A function f is pointwise Lipschitz α ≥ 0 at t = ν if there exist K > 0, and a
polynomial pm of degree m = �α	 such that:

|f(t) − pν(t)| ≤ K|(t− ν)|α . (6)

Wavelet transform estimates the Lipschitz exponent α by using wavelet with
n = �α� vanishing moments. The wavelet transform of the function f = pm + eν

only depends on the singularity eν since a wavelet with n vanishing moments is
orthogonal to any polynomial of degree m ≤ n− 1.

Wf(u, s) = Weν(u, s) . (7)

Lipschitz regularity is related to the decay of the magnitude of wavelet coef-
ficients |Wf(u, s)| and the singularity point is located by finding the abscissa ν

where wavelet modulus maxima converge to at the finest scale.
The global singularity of a signal with many non-isolated singularities can also

be measured from the decay of wavelet modulus maxima.

2.3. Maxima of wavelet coefficients

Sections 2.1 and 2.2 show that the location and the magnitude of wavelet transform
maxima carry information related to the spectral component of the signal as well
as its singularities. Wavelet modulus maxima at scale s0 is defined as any points
(u0, s0) such that |Wf(u0, s0)| satisfy:

∂Wf(u0, s0)
∂u

= 0 . (8)

By modifying wavelet maxima, one can approximate a signal at different level
of approximation, remove noises or extract part of the signal that relates to specific
category. Thresholding wavelet coefficients can effectively select the way a signal is
going to be approximated for a specific purpose.

3. Wavelet Networks

A wavelet network is a class of neural networks that combines wavelet trans-
form with neural network algorithm.1 This combination provides a tool to perform
wavelet transform analysis in a parallel, adjustable and able-to-learn fashion.

Wavelet transform calculates the correlations between f and wavelet function
ψ at various different combination of translation and scale (u, s). The calculation
can be faster if it is done in parallel computation, where each unit calculates only
one wavelet coefficient.

In wavelet analysis, there are many parameters to be adjusted such as the
wavelet function, scale, thresholding level, as well as maxima tracking. Wavelet
network gives the flexibility of adjusting these parameters in parallel computation,
and based on patterns that are not a priori defined. Wavelet networks also remove
the uncertainty by providing an iterative learning based approach where these pa-
rameters can be determined by learning from examples.
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There are many different types of wavelet networks. In general they can be
grouped into two major streams1: approximation wavelet networks and classification
wavelet networks.

3.1. Approximation wavelet networks

Approximation Wavelet Network (AWN)12–24 is based on nonlinear wavelet approx-
imation. The nonlinear approximation of a function f from M wavelet coefficients
indexed with IM is defined as2:

fM =
∑

(j,n)∈IM

〈f, ψ(j, n)〉ψ(j, n) . (9)

The selection of the set of wavelet coefficients {(j, n)m}m∈IM is generally based
on the effort to minimise the approximation error:

ε[M ] =‖ f − fM ‖2 . (10)

A small approximation error can be achieved with a minimal number of wavelet
coefficients if the transformation uses orthogonal wavelets. However, if the network
can maintain the reduction of error and redundancy, it is not necessary to use
orthogonal wavelets. Non-orthogonal wavelets are needed especially in analysing
signals with many non-isolated singularities. It is also possible to use different type
of wavelets in one network to approximate the function f . In this case the wavelet
functions are most likely to be non-orthogonal.

An AWN is commonly implemented as three layers neural network. The output
layer has only one node with a linear transfer function. The hidden layer has M

wavelet nodes with the wavelet function as their transfer function.

fM =
M∑

(j,n)∈IM

Wj,nψj,n + b0 =
M∑

(j,n)∈IM

Wj,nψ

(
t− 2jn

2j

)
+ b0

=
M∑

(j,n)∈IM

Wj,nψ(2−jt− n) + b0 . (11)

The wavelet coefficients are represented by weighting factors Wj,n between hid-
den and output layer.

Wj,n ≈ 〈f, ψj,n〉 . (12)

The weighting factor of the hidden nodes wh determines the scale of the wavelet
function while its bias bh determines the time translation.

Wh = {2jh}h=1,2,...,M and bh = {nh}h=1,2,...,M . (13)

Bias of output node b0 is necessary to approximate function with non-zero aver-
age. Figure 1 shows the basic architecture of wavelet networks for approximation.

During the networks learning process, the value of the weights and biases are
optimised to determine the scale and translation of each wavelet function that best
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Fig. 1. The architecture of approximation wavelet networks.

approximates the function f . Some of the learning algorithms that have been used
in the optimisation of the parameters are gradient descent,18,19,23,24,34 competitive
learning,35 dyadic selection,12 evolutionary computation36 and genetic algorithm.37

The number of wavelet nodes M can be optimised by using an algorithm such as
competitive learning.

Like all approximation processes, the wavelet network optimises its parameters
by minimising the energy of its error ε[M ]. The selection of wavelet coefficient
is therefore, based on the coefficients magnitude. The network tends to prioritise
high-energy regions of f . If the approximation fM is to be used in classification
purposes, it is only effective if the deterministic factors are immersed in the high-
energy regions of the signal. There are number of natural signals where this may
not be the case.

3.2. Classification wavelet networks

Classification Wavelet Network (CWN)1,25–32 uses neural networks algorithm to
select the locations of wavelet coefficient (u, s) that are reliable for categorising the
input signals. The CWN, as shown in Fig. 2, can be seen as a neural network, which
the first layer consists of wavelet nodes followed by some neural network layers. The
wavelet layer acts as a feature extraction layer while the neural network layers are
for feature selection and classifier.

The output of each wavelet node ϕW is defined as the inner product of the input
signal f and a wavelet function at a specific time-scale ψu0,s0 . The output ϕW is
actually a wavelet coefficient at scale s0 and translation u0.

ϕW
0 = 〈f, ψu0,s0〉 = Wf(u0, s0) . (14)

The subsequent layers work as the standard neural network layers. The output
of the neural network ϕN is defined as the response of the transfer function of the
neural network, fT , to the correlation between the output of the wavelet layer, ϕW
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Fig. 2. The architecture of classification wavelet networks. The first layer consists of wavelet
nodes which calculates wavelet coefficients of the input x(n). The subsequent layers are neural
network layers.

and weighting factors w and bias b.

ϕN = fT

(
b +

K∑
n=1

ϕW
n wn

)
. (15)

During the learning phase, the parameters of wavelet nodes u and s and the
weights and biases of the neural network’s nodes are adjusted by backpropagating
the error of the neural network. The learning process of each wavelet node can be
seen as the movement of a wavelet’s Heisenberg box in time-scale space from its
initial position (ui, si) to its optimum position (u0, s0) as shown in Fig. 3.

The number of nodes in wavelet layer K determines the number of wavelet
Heisenberg boxes. The number of nodes K as well as the initial value of the param-
eters (ui, si) have to be selected carefully for a specific classification problem. The
selection of initial value is significant to ensure that the nodes are not overlapping
each other during the learning phase.

There are two main disadvantages of this wavelet networks; temporal depen-
dence of classification and lack of optimisation for classification. The resultant net-
work have fixed spots in time-scale space {(un, sn)}n=1,2,3,...,K . Consequently, the
input signal must be precisely aligned to ensure the consistent temporal location of
the signals important events. For signals such as biosignals, this is a major hurdle
as the signal is non-stationary and localisation of events is difficult. The effect of
this disadvantage can be observed from the fact that the resultant will have a large
number of wavelet nodes K covering nearly the whole time duration of the input
signal with weak links to the subsequent layer (small |wn|).
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Fig. 3. Learning process in each wavelet nodes is illustrated as the movement of a wavelet Heisen-
berg box from initial position (ui, si) to its optimum position (uo, so).

The second disadvantage is that this network forces the subsequent neural net-
work layers to classify input signal based only on the values of the wavelet co-
efficients Wf(u, s). Processing of these coefficients before classification may help
optimise the classification process and overcome these problems.

4. Thresholding Wavelet Networks

To overcome the above disadvantages of wavelet networks in classifying non-
stationary, semi-random signals, a new type of wavelet network called Thresholding
Wavelet Network (TWN) has been designed. Wavelet thresholding has been widely
used in the past in wavelet signal estimation and de-noising.33,38

The TWN, reported in this paper, uses wavelet thresholding in a different ap-
proach. The TWN was designed for classification purpose. This network selects the
wavelet nodes based on the thresholding of the local maxima in each of the scale
bands of the Continuous Wavelet Transform (CWT).

Wavelet maxima are the wavelet coefficients that satisfy Eq. (8). In discrete
domain this zero derivative is nearly impossible. For that reason, wavelet maxima
are selected where the partial derivation changes sign from positive to negative.

The wavelet maxima are thresholded at the thresholding layer. This process
selects the wavelet maxima based on their magnitude in relation to the thresholding
levels. Maxima with magnitude less than the thresholding level are removed while
maxima with higher magnitude are propagated.

The most commonly used thresholding functions are soft-thresholding function
and hard-thresholding function.33 The soft-thresholding of x is defined as:



September 8, 2003 14:53 WSPC/181-IJWMIP 00022

Thresholding Wavelet Networks for Signal Classification 251

xs = ηs(x, θ)sgn(x)(|x| − θ)+ , (16)

where θ > 0 is the threshold, while hard thresholding of x is defined as:

xh = ηh(x, θ) =

{
x for |x| > θ ,

0 for |x| ≤ θ .
(17)

4.1. The significance of thresholding

Most signals can be characterised by the occurrence of transients such as QRS-
complex in electrocardiography and motor unit action potential (MUAP) in
electromyography.39 These transients can be characterised by their properties such
as magnitude, frequency distribution, regularity and polynomial degree. It is impor-
tant to use these features for the classification of such signals. Wavelet transform
can be used to measure the spectral content, transients, regularity and polynomial
degree of a signal while thresholding extracts these features with respect to the
specific magnitudes and thus are an obvious choice.

To classify the signals, the occurrence of these transients must be detected and
analysed. The temporal locations of the transients are often not necessary in the
classification. By thresholding the wavelet coefficients, the temporal location may
be lost but the features related to the occurrence of the events are extracted.

It is known that the position of wavelet coefficients maxima stores information
about the frequency and singularity point. The question will be, what information
is stored in the magnitude of these maxima?

The magnitude of wavelet coefficients |Wf(u, s)| are related to the magnitude
of spectral components in the analysed signal f . Suppose:

f(t) = a(t) cosφ(t) , (18)

where a(t) is the amplitude and ω(t) = φ′(t) is instantaneous frequency.
The amplitude a(t) recovered from wavelet coefficients when using a nearly

analytic wavelet ψ(t) = g(t)eiηt is calculated as

a(u) =
2
√

s−1|Wf(u, s)|2
|ĝ(0)| , (19)

where u = t− t0 is the time shift and ĝ(0) is the Fourier transform of window g(t)
at ω = 0. If the coefficients are not calculated with analytic wavelet the magnitude
and phase are not well separated. However, the magnitude of wavelet coefficients
are still related to the spectral amplitude a(t).

a(t− t0) ∝ |Wf(u, s)| . (20)

By thresholding the wavelet coefficient, TWN can classify signals based on
the occurrence and magnitude of events or transients that have specific spectral
properties.
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The magnitude of wavelet coefficients is also related to the energy of signal with
specific singularity. Equations (21)–(24) examine this relationship. Regularity α is
measured from the decay of wavelet coefficients towards finest scale.

α ∝ lim
s→0

(
−∂|Wf(u, s)|

∂s

)
. (21)

It is proven in Ref. 2 that if f has Lipschitz regularity α at t = ν and u is in
the neighbourhood of the point t = ν, then

|Wf(u, s)| ≤ Ksα+1/2 . (22)

The magnitude of wavelet coefficient at t = u at a specific scale s0, is related to
the energy of the signal in the temporal region of the singularity. Suppose a function
f has regularity α at t = ν, the function f can be approximated with a polynomial
of degree n = �α	 and an error function ε: f = pν + εν . If the function is then
amplified by a factor of A, its wavelet coefficient at t = ν will also be amplified by
the same amount.

Af = Apν + Aεν , (23)

WAf(ν, s) = 0 + WAε(ν, s)

=
1√
2

∫ +∞

−∞
Aε(t)ψ

(
t− ν

s

)
dt ,

WAf(ν, s) = AWε(ν, s) . (24)

By thresholding the coefficient, the portion of the input signal with a specific
singularity at certain amplification can be selected.

Thresholding of wavelet coefficients has numerous applications. One of the appli-
cations is signal denoising.33 Denoising is a process of estimating a class of function
from its corrupted version. It is based on the assumption that the energy of the
uncorrupted function is concentrated in a small number of coefficients while the
noise is spreading over a large number of wavelet coefficients.34 If d represents the
corrupted version of the original signal f ∈ [0, 1], it is expressed as:

di = f(ti) + σzi for i = 1, 2, 3, . . . , n− 1 . (25)

The noise zi
iid∼ N(0, 1) is approximated by an independent and identically

distributed Gaussian function of level σ.
The other assumption is that the energy of noise is less than the energy of the

uncorrupted function. For this reason, de-noising process is often interpreted as
optimising the mean squared error (E‖di − fi‖2)/n of the estimation.

When thresholding is used for classification, the above assumptions are not
always true. Noise in the classification perspective is the section of the signal or
function that does not contain information suitable to categorise the signal. This
type of noise can often have higher energy content compared to the signal. As the
consequence, the single cutoff thresholding process is not suitable. Thresholding in
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a classification process must include upper–lower threshold to select the coefficients
belonging to the middle range energy. The upper–lower thresholding function is
defined as:

xth = ηth(x, θl, θh) =

{
x for θl < x < θh

0 for x ≤ θl or x ≥ θh .
(26)

4.2. Architecture

Thresholding wavelet networks consist of four blocks of network layer: a wavelet
layer, maxima layer, thresholding layer and neural networks layers (Fig. 4). The
input signal is applied to the wavelet layer. The input to the thresholding layer is
the wavelet maxima at each scale of interest. The thresholds (θl, θh) for all maxima
corresponding to one scale are the same. The scale-dependent-threshold allows the
network to distinguish between scales based on magnitude. The output of wavelet
thresholding node ϕ is the number of wavelet maxima with magnitude between θl

and θh.

ϕ =
N∑

i=1

ηT (|Wf(ui, s)|, θl, θh) . (27)

N is the number of wavelet maxima for that particular scale s, while ηT is the
thresholding function. The output of the thresholding node is the number of wavelet
maxima with magnitude between θl and θh. The output of threshold function ηT in
Eq. (27) equals to one if its input is between θl and θh and equals to zero otherwise.

xT = ηT (x, θl, θh) =

{
1 for θl < x < θh ,

0 for x ≤ θl or x ≥ θh .
(28)

This thresholding function also has to be a continuous function so that the
derivative of the function exists. Thus, a Gaussian function g(x) = e−x2

was used
as the thresholding function as below:

xT = ηT (x) = e−α2(x−β)2 . (29)

The output of the thresholding node is:

ϕ =
N∑

i=1

e−(α(|Wf(ui,s)|−β))2 . (30)

The bias β determines the centre of g(x) while α determines the width of the
function. The combination of α and β determines the upper and lower thresholds.
Figure 5 illustrates the thresholding wavelet node.

Depending on the application and the complexities of the input signals, each
scale may have several thresholding nodes as shown in Fig. 4.
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4.3. Learning process

The parameters of this network (α, β and neural network weights and biases) were
initialised with random value. During the iterative learning process the value of
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these parameters were changed to reduce the classification error. The network was
using a supervised learning algorithm. In the supervised learning algorithm, the
network’s parameters are adjusted to properly relate the inputs f(t) and target
output ϕT provided in the training set {(f1(t), ϕT1), (f2(t), ϕT2), . . . , (fn(t), ϕTn)}.

In each thresholding node, the learning is the process to locate the lower and
upper threshold levels (θl and θl) of each node. Determining the optimum value
of the threshold parameters ensures number of wavelet coefficients with magnitude
θl ≤ |Wf(u, s)| ≤ θh can best categorise the class of input signals.

There are many algorithms currently available that can be used to optimising
these parameters. The TWN reported in this paper was using the gradient descent
algorithm. In gradient descent algorithm, the parameters are optimised to the neg-
ative direction of partial derivation of its cost function SSE to each parameter.

αnew = αold − ρ
∂SSE

∂αold
, (31)

βnew = βold − ρ
∂SSE

∂βold
. (32)

The cost function SSE is defined as the sum-squared of the difference between
target output ϕT and the actual output ϕ.

E =
1
2

(ϕT − ϕ)2 . (33)

The amount of change in each iteration is determined by the partial derivation
of the cost function and a learning rate coefficient ρ.

The partial derivations of the cost function are:
∂SSE

∂α
= 2(ϕT − ϕ)

∑
u,s

α(|Wf(u, s)| − β)2e−(α|Wf(u,s)|−β)2 , (34)

∂SSE

∂β
= −2(ϕT − ϕ)

∑
u,s

α2(|Wf(u, s)| − β)e−(α|Wf(u,s)|−β)2 . (35)

The learning process is repeated until the sum-squared-error SSE falls below a
predefined maximum error ET . At this stage the network is considered as able to
classify the training pattern with an error less than ET .

5. Network Simulation

An experiment was conducted to determine the ability of this network to classify
simulated signals. There were 160 simulated signals created for the experiments. The
length of each signal was 1,000 samples. These signals had the following properties:

(1) Consists of number of transients representing the current distribution of muscle
fibre action potential (MUAP), Im.40,41

Im = CAλ2(λz)[6 − 6λz + (λz)2]e−λz (36)

with A = 96 mV, C and λ are both 1.
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(2) The signals represent two classes each of 80 signals.
(3) Signals in class A (Fig. 6(a)) consist of 100 transients of magnitude 0.1 and 100

transients of magnitude of 0.04. These transients were located randomly.
(4) Signals in class B (Fig. 6(b)) were very similar to signals belonging to class

A. These signals consist of 100 transients of magnitude 0.1, 100 transients of
magnitude of 0.04 and 10 transients of magnitude 0.07. These transients were
located randomly.

The difference between the two classes was not observable in the plot of the sig-
nals (Fig. 6) as well as in their spectrum (Fig. 7) since the difference was determined
by a small (10) number of transient with a low amplification.

The proposed thresholding wavelet network was simulated using graphic user
interface of Matlab 6.1 as shown in Fig. 8. 40 signals of each class were used to
train the network. These signals were scaled by a factor of 100 before being applied
to the network to avoid quantisation error in the network calculation.

The training process was recorded in Fig. 8. It was observed that after 200
epochs the SSE of the network drops from about 10 to 0.1. The graphs on top-left

 

Fig. 6. (a) A signal of Class A consists of 100 wave Im with gain of 0.1 and 100 wave Im with
gain of 0.04. (b) A signal of Class B, similar to that of Class A with extra 10 waves with gain of
0.07.
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Fig. 7. The spectrum of simulated signals from Class A and B.

and bottom-left corner of Figure 11 show that the biases (β) of thresholding wavelet
nodes converged to four values (or ranges): 0.3, 0.59–0.66, 0.91–0.92, and 1.3 and
four of these converged to one point 0.91–0.92. It can also be observed that the
four nodes that converge to a common value have higher weights (α) and thus have
narrower thresholding function.

After completing the training process, the network was tested using the 40 test
signals. The results are presented in Fig. 9. The signals that belongs to group A
are marked with “o” while that of group B are marked with “*”. From the figure
it is observed that the wavelet network is able to converge the thresholding values
to best classify the signals and in this example, 100% classification is achieved.

6. Conclusion

This paper presents a new type of wavelet network, the Thresholding Wavelet Net-
work. It is designed for the purpose of classifying signals based on the magnitude
of wavelet maxima.

The network is a combination of wavelet transform, thresholding process
and neural network. It adaptively adjusts its thresholding level during its learning
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Fig. 8. The learning process of thresholding wavelet network. The network is trained to classify
2 groups of signals (see Fig. 9) each consists of 20 signals. From top left corner clockwise: The
thresholding functions of eight nodes after 200 epochs; the recording of SSE of the entire network;
the recording of learning rate; the recording of bias of each thresholding nodes which indicates the
centre of the thresholding function.

Fig. 9. The testing result of the Thresholding Wavelet Network. The signals that belong to Class
A are marked with “o” while that of Class B are marked with “*”.
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process to select wavelet maxima with certain magnitude that characterised the
input signals.

The paper reports the simulation and testing of the network and the results are
extremely promising. The results demonstrate several advantages of thresholding
wavelet networks.

(1) It classifies the signals irrespective of the difference being in the low or high-
energy region of the signal.

(2) It can extract the features of transients occurs in a signal.
(3) It is dynamic and classification is not affected by the change in temporal loca-

tion of the event.

This network has to be tested with real signals to determine the efficacy of
the network. One shortcoming of this network is that the scale and wavelet basis
function are invariant. The authors intend to include selection of scale and wavelet
basis in its learning process.
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