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Abstract:  The objective of this work is to explore the disturbance rejection capability of 
possible multi-loop control structures for the ALSTOM gasifier benchmark process and 
selecting the appropriate control structure. Generalized Relative Disturbance Gain 
(GRDG) analysis is used for control structure determination. In order to carry out GRDG 
analysis, process models in the form of transfer functions are obtained from the discrete 
time models identified using the Output-Error (OE) method for system identification. 
Models identified with the OE method can provide accurate long range prediction (or 
simulation) performance and, hence, lead to accurate transfer function models. The 
GRDG analysis results clearly show that the baseline controller proposed by Asmar et al. 
(Asmar et al., 2000) is the favoured multi-loop control structure among their initial 
designs. This study provides explanation for the reason behind the impressive 
performance of the ALSTOM baseline controller that is not available before. 
 
Keywords: ALSTOM Gasifier, Relative Disturbance Gain Array, Plantwide Control, 
Process Control. 

 
 
 
 

 
1. INTRODUCTION 

 
In 1997 the ALSTOM Power Technology Centre 
issued an open challenge to the UK academic control 
community, which addressed the control of a 
Gasifier plant (Dixon et al., 2000). The ‘challenge 
information pack’ included three linear models 
(obtained from ALSTOM’s comprehensive non-
linear model of the system). Full detail of this 
challenge can be found in reference (Burnham et al., 
2000; Dixon et al., 2000). 
 
Among the approaches that have been proposed to 
solve this challenging problem, Asmar et al. (Asmar 
et al., 2000) provide a relatively simple controller 
structure but with excellent control performance. It 
only fails in its regulation task during one of the six 
pressure disturbance tests. Later this structure was 
adopted and used as a baseline controller in the 
second round of ALSTOM benchmark challenge 
(Dixon and Pike, 2004), where the nonlinear 
simulation programme for the process is provided. 
Unfortunately, up to now there have been no formal 

analysis on why the baseline control structure gives 
good performance and no theoretical analysis in a 
systematic manner have been given to explain the 
evolution from the initial design towards the final 
solution (baseline controller).  
 
Some other more complex control approaches 
proposed for this benchmark process include multi-
objective optimization (Griffin et al., 2000) and 
multivariable proportional-integral (PI) controller 
tuning methodology based on multi-objective 
optimization (Liu et al., 2000). Taylor et al. (Taylor 
et al., 2000) proposed multivariable proportional-
integral plus (PIP) controllers. Rice et al. (2000) used 
model predictive control to control this process. A 
sequential loop selection technique combined with 
high frequency decoupling is applied to the 
benchmark process (Munro et al., 2000).  
 
This paper is organized as follows. Section 2 gives an 
overview of the GRDG method. Section 3 presents 
model identification of the ALSTOM gasifier using 
simulated process operation data from the nonlinear 



     

simulation programme. Section 4 provides GRDG 
analysis for control structure determination. The 
paper ends with some conclusions. 
 

2. GENERALIZED RELATIVE 
DISTURBANCE GAIN (GRDG) 

 
Based on the process and disturbance transfer 
functions, Stanley et al. (Stanley et al., 1985) 
proposed the relative disturbance gain (RDG) for 
analysing the disturbance rejection capability in 
multi-loop control. The RDG overcomes one of the 
limitations of the RGA (relative gain array) by 
allowing disturbances to be included in an 
operability analysis. 
 
For the following multivariable process: 

  dGuGy d .. +=                           (1) 

where y is the output, u is the manipulated variable 
and d is the disturbance. The ith element of RDG is 
defined as (Stanley et al., 1985) : 
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The term in the numerator denotes the change in the 
manipulated variable ui needed for perfect 
disturbance rejection. The term in the denominator 
represents the change in manipulated variable ui 
when one of the output yi is kept perfect.  Equation 
(2) can be rearranged and the vector of RDG can be 
expressed as: 
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               (3) 
where ∅denotes element by element division. 
 
The concept of RDGA is very similar to RGA 
(Bristol, 1966) except that RDGA emphases on load 
disturbance rejection. Since RDG is pairing 
dependent (

β
i depends on the input-output pairing), 

an n×n array can be constructed after going through 
n possible pairings (forming n vectors). Therefore, an 
augmented version of relative disturbance gain 

β
ij 

can be defined and a matrix can be formed. The 
matrix RDGA (B) is defined as (Chang and Yu, 
1992): 
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The ijth entry, 

β
ij, corresponds to the RDG when the 

ith output is paired with the jth input. Notice that, 
since the vector Gd is involved in the computation of β

ij, corresponding changes in Gd have to be made in 
permutation in the outputs in the matrix G.  
 

In a matrix notation, the B matrix can be promptly 
calculated from: 

 [ ] ( )[ ]dGGdiagGddiagGB 111 .)(. −−−=          (5) 

where diag(.) transforms a vector (.) into a matrix 
with elements put on the corresponding diagonal 
positions, that is, the ith element of a vector (.) is put 
in the iith entry of a matrix. Equation (5) simplifies 
the computation of RDGA. 
 
An interaction measure GRDG is defined to evaluate 
the load effect under a specific controller structure 
(closed-loop load effect) over the open loop load 
effect (Chang and Yu, 1992): 
 
  GRDG = closed-loop load effect          (6) 
        Open-loop load effect 
 

GRDG is a vector which is a function of GG
~

, and 

dG . Mathematically it becomes: 

{ } *,
~

, dd GGGGGRDG == ∅ dG  

              ( )dGGG ..
~ 1−=  ∅ dG         (7) 

where G
~

is the process model in IMC for defining 
the controller structure (detail can be found in 
(Chang and Yu, 1992)). 
 
GRDG is a vector with element ididi gg ,

*
, /=δ  

where *
,idg  is the ith element of *

dG  and idg ,  is 

the ith element of dG . Physically, GRDG measures 

the net load effect of a specific controller structure 
over the open loop load effect. The controller 
structure can take any form of interest except for the 
ratio schemes. 
 
In order to characterize the controller structure, a 
structure election matrix, Γ , is defined as: 
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where the ijth entry ijγ  is defined as: 

ijγ =1, element picked up (for the controller structure) 

ijγ =0, element ignored 

 

If the structure of  G
~

 is specified, the GRDG for the 
ith output of  iδ  is simply the row wise summation 

of RDGA with corresponding structure. 
Mathematically: 
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3. PROCESS MODEL IDENTIFICATION 



     

 
The ALSTOM gasifier benchmark problem as shown 
in Figure 1, has five inputs (coal, limestone, air, 
steam and char extraction) and four outputs (pressure, 
temperature, bed mass and gas quality). In addition, 
there is a disturbance input, PSINK, representing 
pressure disturbances induced as the gas turbine fuel 
inlet valve is opened and closed. 
 
Although a linearised state space model is available 
for the ALSTOM benchmark process, here linear 
models are identified from the simulated process 
operation data using the nonlinear simulation 
programme. This is because that, in practical 
applications, process models are generally not 
available and have to be identified from process 
operation data. 
  
Step tests were performed for input and disturbance 
variables. The complete transfer function expected is 
in the form: 
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where: 
y1 = CVGAS   = fuel gas caloric value (J/kg) 
y2 = MASS   = bed mass (kg) 
y3 = PGAS    = fuel gas pressure (N/m2) 
y4 = TGAS    = fuel gas temperature (K) 
 
u1 = WCHR = char extraction flow (kg/s) 
u2 = WAIR  = air mass flow (kg/s) 
u3 = WCOL= coal flow (kg/s) 
u4 = WSTM= steam mass flow (kg/s) 
u5 = WLS   = limestone mass flow (kg/s) 
  
d = PSINK = sink pressure (N/m2) 

 
Figure 1. ALSTOM gasifier plant 
 
The Output Error (OE) method is used to identify the 
process model of the following form: 
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Second order models are identified and are then 
converted into continuous time transfer functions. 
The OE method is used because it can lead to models 
with good long range prediction (or simulation) 

performance and, hence, accurate transfer function 
models.  
 
For step tests in char flow (u1) as shown in Figure 2, 
the numerators and denominators of the transfer 
functions are summarized in Table 2. Plots of actual 
responses and the simulated values using the 
identified models are shown in Figure 3. It can be 
seen that the models are satisfactory. 

 
Figure 2. Profile of input and disturbance variables  
 for step up and down of char flow (u1). 
 
 

Table 2. Identified models  
    

 y(t) = [B(q)/F(q)]u(t) + e(t)   Transfer Function 
y1   B(q) = 288.4 q-1 - 288.3 q-2                            288.5 s + 0.1317                              
        F(q) = 1-1.999 q-1 + 0.9991 q-2     s2 + 0.0009365 s + 6.404e-7 
 
y2   B(q) = -1.083 q-1 + 1.082 q-2                     -1.083 s - 0.001157      
        F(q) = 1 - 1.999 q-1 + 0.9992 q-2   s2 + 0.0007612 s + 2.081e-7 
 
y3   B(q) = 10.88 q-1 - 10.88 q-2                         10.88 s - 0.001442 
       F(q) = 1 - 1.999 q-1 + 0.9994 q-2    s2 + 0.0006466 s + 6.668e-8 
 
y4  B(q) = 0.06391 q-1 - 0.0639 q-2             0.06393 s + 9.769e-006 
       F(q) = 1 - 1.999 q-1 + 0.9992 q-2    s2 + 0.0007962 s + 3.623e-7 
 

 
Figure 3. Actual process outputs and the simulated 
values from the identified linear model  
 
The same method is applied for the rest of variables 
and the final results of transfer functions are 
presented in Table 3. The magnitude of step tests are 



     

+ 10% and -10% of the corresponding steady state 
values of the manipulated variables at times 500 s 
and 2000 s. For pressure disturbance test, step up and 
down values are ± 0.2 bar.  

 
Table 3. Identified transfer functions 

 
G   Transfer Function 
G11                 288.5 s + 0.1317 
   s2 + 0.0009365 s + 6.404e-7 
 
G21                -1.083 s - 0.001157      
   s2 + 0.0007612 s + 2.081e-7 
 
G31                 10.88 s - 0.001442 
   s2 + 0.0006466 s + 6.668e-8 
 
G41         0.06393 s + 9.769e-006 
  s2 + 0.0007962 s + 3.623e-7 
 
G12                     -6927 s +1.95 
   s2 + 0.04927 s + 6.26 e-5  
 
G22                -0.428 s + 0.000201 
   s2 – 0.0003426 s – 3.039 e -8 
 
G32                                        2444 s + 6.167 
   s2 + 0.2465 s + 0.0003653 
 
G42                               0.04664 s + 1.779 e-5 
   s2 + 0.001197 s + 5.86 e-7 
 
G13        5303 s – 6.382 
                            s2 + 0.03363 s + 4.306 e-5 
 
G23              0.5327 s + 0.001158 
   s2 + 0.001245 s + 2.746 e-7 
 
G33        1039 s – 1.618 
   s2 + 0.2468 s + 0.0003226 
 
G43           -0.05418 s + 1.318 e-5 
   s2 + 0.0005866 s – 9.745 e-8 
 
G14     5035 s – 1.029 
   s2 + 0.02632 s + 8.23 e-6 
 
G24            -0.7753 s – 0.004223 
   s2 + 0.007574 s + 5.086 e-6 
 
G34                4800 s + 0.4871 
   s2 + 0.3032 s + 9.41 e-5 
 
G44       -0.005225 s – 4.671 e-5 
   s2 + 0.00226 s + 9.812 e-7 
 
G15                   -183.3 s + 0.05493 
   s2 + 0.0003089 s – 1.073 e-7 
 
G25             0.219 s + 0.0009288 
   s2 + 0.001592 s + 3.119 e-7 
 
G35                          439.6 s – 0.2743 
   s2 + 0.0958 s + 8.924 e-5 
 

G45          -0.02776 s – 4.475 e-5 
   s2 + 0.001509 s + 1.233 e-6 
 
Gd1                   0.02226 s – 2.345 e-6 
   s2 + 0.06283 s + 0.0001897 
 
Gd2            1.764 e-6 s -1.04 e-9 
   s2 + 6.625 e-5 s – 3.419 e-7 
 
Gd3       0.3813 s + 0.001229 
   s2 + 0.411 s + 0.001331 
 
Gd4        -1.237 e-7 + 9.687 e-12 
   s2 + 0.001347 s + 4.068 e-7 
 
 
The process model identification here is based on the 
simulated process operation data at 100% load case 
and will be used for control operability analysis of 
control structures given in Asmar et al. (2000), which 
are also based solely on 100% load. 
 
 

4. GRDG ANALYSIS FOR THE ALSTOM 
GASIFIER 

 
The steady state gain matrix (based on the identified 
transfer functions) for the ALSTOM gasifier is 
presented below: 
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From the above steady state gain matrix, the 5th 
column is deleted since u5 is set to 10% of u3 in 
closed loop system. This left 4 degree of freedom and 
the matrix is now square matrix. 
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Based on Table 3, the steady state vector disturbance 
can also be calculated: 
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RDGA matrix is calculated by using Equation (5): 
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4247.1321588.1633498.626157.30

3713.01560.08941.06332.0

3339.183807.408234.1071089.50

9180.6673579.3438589.1224189.448

β
 

 
For comparison purposes, the GRDG of the four 
schemes presented in (Asmar et al., 2000) will be 
calculated. 



     

 
Scheme 1: (y1-u3) (y2 – u1) (y3 – u2) (y4-u4) 
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Scheme 2: (y1–u3) (y2-u1) (y3-u4) (y4-u2) 
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Scheme 3: (y1–u2) (y2-u3) (y3-u4) (y4-u1) 
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Scheme 4: (y1–u2) (y2-u3,u1) (y3-u4) (y4-u1) 
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From the IE (integral error) standpoint, a structure 
giving small value in iδ is preferred (Chang and Yu, 

1992). It is obvious that Scheme 4 is the most 
favourable pairing among the 4 schemes. It can also 
be concluded from these GRDG values that Scheme 
2 would be better than Scheme 1 and Scheme 3 
would be better than Scheme 2 in terms of 
disturbance rejection performance. Simulation results 
in (Asmar et al., 2000) and  (Dixon and Pike, 2004) 
confirmed these. 

 
Figure 4. Process response to step pressure 
disturbance at 100% load 

 
Figure 5. Process response to step pressure 
disturbance at 50% load 
 

 
Figure 6. Process response to step pressure  
disturbance at 0% load 
 

 
Figure 7. Process response to sinusoidal pressure 
disturbance at 100% load 
 
 
Figures 4 to 8 show the control performance of 
Scheme 4. As can be seen from Figures 4 to 8, the 
controlled variables under Scheme 4 do not exceed 
their constraints during step disturbance tests at all 
three operating  load and sinusoidal disturbance tests 
at 100% and 50% operating load.  
 



     

 
Figure 8. Process response to sinusoidal pressure  
disturbance at 50% load 
 
 

5. CONCLUSIONS 
 

A systematic method for assessing the disturbance 
rejection performance of different control structures 
for the ALSTOM gasifier using GRDG is presented 
in this paper. The analysis is based on the transfer 
function model identified from the simulated process 
operation data based on the nonlinear simulation 
programme. The OE method is used in identifying 
process models because it can lead to models with 
good long range prediction (simulation) performance 
and, hence, accurate transfer function models. It is 
shown that Scheme 4 is the most favoured control 
structure among the 4 control structures considered. 
Simulation results confirm this finding. Studies in 
this paper also indicate that using RGA analysis is 
not effective in control structure selection for this 
benchmark process. It would be possible to find even 
better control structures using GRDG analysis and 
this is under further investigation.  
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