
JUISI, Vol. 01, No. 02, Agustus 2015 157

Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … ISSN: 2460-1306

Analysis of MapReduce Model on Big Data Processing

within Cloud Computing
Marcellinus Ferdinand Suciadi1

Abstrak— Pada masa kini, komputasi awan menjadi tren

pada pemrosesan data dalam volume besar. Google

menciptakan model MapReduce untuk menyederhanakan

komputasi kompleks yang biasanya menyertai pemrosesan

data bervolume besar, dengan membagi-bagi data menjadi

pasangan kunci/nilai, yang kemudian dapat diproses secara

paralel, biasanya dalam jaringan, untuk kemudian

digabungkan kembali menjadi hasil akhir. Walaupun

demikian, model MapReduce memiliki beberapa

keterbatasan. Peneliti telah berusaha mengembangkan

model MapReduce, menghasilkan beberapa model terbaru,

seperti model Mantri, Camdoop, Sudo, dan Nectar. Tiap

model mengeksploitasi berbagai karakteristik dari model

MapReduce secara unik untuk menghasilkan peningkatan

kinerja pada kasus dan dengan cara tertentu. Walaupun

demikian, tantangan dan peningkatan masih dapat

ditemukan pada model-model ini, yang membuka berbagai

kemungkinan baru untuk area penelitian.

Kata Kunci: komputasi awan, MapReduce, pemrosesan data,

model terdistribusi

Abstract— Nowadays cloud computing is becoming a

trend on big data processing. Google created MapReduce

model to simplify the complex computation of big data

processing by configuring and splitting the data into

key/values pair to be processed in parallel, usually within a

network of computers, then merge the results. However,

MapReduce model has its limitations. Researchers have been

trying to improve the model resulting in some newer models,

such as Mantri, Camdoop, Sudo, and Nectar model. Each

model exploits the different characteristics of MapReduce

model to create improvements in different way and cases.

Challenges and improvements still remain within these

enhanced models, which open new possibilities on area of

research.

Keywords: cloud computing, MapReduce, data processing,

distributed model

I. INTRODUCTION

 Most of the popular applications in the world of today

involve operations on large amounts of data resulting in a

huge demand for cloud computing on the servers. The

concept of cloud computing addresses the efficient usage

of distributed resources coupled with parallel computing

techniques to scale up development and deployment on a

fail-safe infrastructure [12]. Such complex computing has

however been simplified greatly by Google’s MapReduce,

which is a data processing tool that allows processing

huge volume of data over clusters of low-end computing

nodes. The design itself is an abstraction that enables

simple computations to be expressed whilst automatic

distributed computing and fault tolerance are handled in

the backend library [1]. However, the MapReduce has

limitations in its framework where recent approaches have

exposed and presented new designs to overcome such

limitations. In this article, an overview and discussion of

the recent major approaches aimed at enhancing the

MapReduce will be presented. The rest of this article is

organized as follows. Section 2 describes the MapReduce

framework and some of the key features involved. Section

3 presents the details of recent approaches for the

improvements and extensions to MapReduce. Section 4

discusses and overviews the key techniques introduced.

Section 5 explores open issues and challenges. Finally,

Section 6 concludes this article.

II. MAP-REDUCE

Programmers at Google have created and implemented

a distributed model called MapReduce, a model which

consists of two parts: a map function to process key/value

pairs to create intermediate key/values, and a reduce

function to merge all intermediate key/values [1]. Let k1

be set of keys and v1 be set of values. The Map function

takes pairs of k1 and v1 respectively to generate

intermediate key, I, which consists of pairs of another

keys, k2, and values, v2. This intermediate key is then

passed as input for the Reduce function, which will merge

all values to generate a smaller set of values.

A. Implementation

MapReduce computation can be used to count an URL

access frequency, index a document, or even distribute a

sort. Because an input data can be very large, MapReduce

execution can be distributed. A user will start this model

by splitting the input data into M chunks. These chunks

are usually limited in size, typically 16 MB. Copies of

this model are then executed on different machines called

workers, processing M Map functions and R Reduce

functions, controlled by a special copy of the program

called master. To prevent faults, master will ping the

workers occasionally. If a worker does not respond, the

master will mark the task as failed and reassign a new

worker, typically informing other workers that the task is

1 Dosen Jurusan Teknik Informatika Fakultas Teknik

Universitas Surabaya, Jl. Raya Kalirungkut, Surabaya, Jawa

Timur 60293, Indonesia (tlp: 031-298 1395;

email:ferdi@staff.ubaya.ac.id)

158 JUISI, Vol. 01, No. 02, Agustus 2015

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model …

being rescheduled. Since the data from a finished Map

task is stored on local disk of the failed worker, rendering

them inaccessible, this task needs to be re-executed. The

data from a finished Reduce task, in the other hand, is

stored on a global storage system, so if a worker fails, this

task does not need to be re-executed. However, if the

master fails, the whole process will be halted and marked

as failure. Users need to do a recovery task to continue the

task, which can be brought from the last checkpoint before

the master crashes.

B. Refinements

Some refinements can be made to this simple

MapReduce model. If the Reduce function is commutative

and associative, a Combine function can be executed

firsthand before the Reduce function. A Combine function

combines the partially data produced by Map functions

and passes them to the Reduce function. The Combiner

and Reduce function can be implemented with a single

code, however a Combine function will produce an

intermediate file to be sent as an input for the Reduce

function, whereas a Reduce function will produce a final

output file. Another refinement is the ability for a

MapReduce model to detect faulty records and skip

processing them in order to prevent crash. This is

provided because sometimes there might be bugs in user-

defined Map or Reduce functions that will make the

system behave incorrectly or abruptly, halting the whole

process, and sometimes it is impossible to correct the bug

(for example when using third-party modules for

Map/Reduce function). When there is a fault in the Map

or Reduce function, a worker will send a signal to the

master that a particular record causes the function to some

errors. When the master has collected more than one of

these signals, it can conclude that the record itself is faulty

and should be skipped for the next execution of

MapReduce task. This ability can also be used to

intentionally skip some records.

III. IMPROVEMENTS AND EXTENSIONS TO

MAPREDUCE

Despite the refinements made in MapReduce

framework, some of implemented general mechanisms as

described in the above section may have problems in

certain cases and result in poor over performance. As

such, recent approaches have come up with different

strategies to optimize and enhance Map-Reduce.

A. Reining in the Outliers in MapReduce Clusters using

Mantri

There are different phases in the jobs scheduled for data

processing. More often than not, tasks in a particular

phase may require the outputs of previous phases as inputs

to complete the job. Hence, when certain tasks do take a

longer than usual time to finish, the total time for the job

taken will be lengthened greatly. Although MapReduce

duplicates the remaining in-progress tasks when an

operation is near completion to handle issue of stragglers,

such a general mechanism is not ideal. The authors of

Mantri argues that only acting at the end of a phase,

opportunities to achieve lower job reduction time by

dealing with outliers identified early while using fewer

resources will be lost [13].

1) The Outlier Problem

The authors of Mantri [13] first understand the

mechanics of outlier problem before drafting an optimized

design. Their authors observe that duplicating high

runtime tasks that have large of amount of data to process

will not make them run faster hence leading to wasted

resources. On the other hand, high runtime tasks that

cannot be explained by data they process are likely due to

resource contention or bad machines present and they may

result in faster job completed time if scheduled to run on

another location.

Also, the reduce phase will cause high crossrack traffic

as the output of map tasks are distributed across the

network of machines. Hence, when reduce tasks are

simply placed on any machine with spare slots, it may

lead to outliers due to the fact that a network location with

many reduce tasks will likely have its downlink highly

congested with reading of map task results operations.

Lastly, investigations show that the occurrence of

recomputes due to straggling tasks is correlated with

higher usage of resources. The subset of machines that

triggers most of the recomputes is steady over days but

varies over weeks, likely indicative of changing hotspots

in data popularity or corruption in disks. Recomputation

affects jobs disproportionately and they manifest in select

faulty machines and during times of heavy resource usage

[13].

2) Mantri Design

Based on the findings in the section above, Mantri is

designed to act on the outliers identified early for higher

efficiency of outliers handling while conserving additional

resources used. However, there can be cases where

remedy actions may result in longer job completion time

or higher resources wasted should prediction of initial

estimates of threshold be incorrect. Therefore, Mantri uses

real-time progress reports through a Closed-loop to act

optimistically by keep tracking of the cost as the

probabilistic predictions go wrong.

A restart algorithm is written to perform intelligent

restarting of outliers. The main idea is to check if an

outlier that has a long runtime is due to the fact that it has

a large amount of data to process or that it is slowed down

due to its location. A task with real work will not be

restarted. On the other hand, if a task lags because of

reading data over a low-bandwidth path, it will be

restarted only if a more advantageous network location

becomes available or the task will be duplicated instead.

As such, Mantri uses two variants of restart: killing a

JUISI, Vol. 01, No. 02, Agustus 2015 159

Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … ISSN: 2460-1306

running task then restarting it elsewhere and scheduling a

duplicate task. By computing the following two variables

using the task progress reports for each task, , the

remaining time to finish, and , the predicted

completion time of a new copy of the task, Mantri will

perform a restart only when the probability of success,

 is high. If the remaining time to finish a

task is so large that a restart would probably finish sooner

instead, i.e , Mantri will proceed to

kill and restart the task as such a scheme greatly shortens

the job completion time without the need of additional

slots. However, the queuing delay incurred by job

scheduler before restarting a task can be pretty large. On

the contrary, scheduling duplicates does not involve

queuing and can achieve better performance when

duplicate tasks end faster than the original. Nevertheless,

duplicates require additional slots and computation

resources which may result higher job completion time

should there are outstanding tasks. Hence, duplicate is

scheduled only when total amount of computation

resource consumed decreases given that there are

outstanding tasks and no slots is available,

. For stability sake, Mantri ensures

no more than three copies of same time will be running

concurrently. A task will not be reduplicated if a duplicate

has already been launched for it recently and if a copy is

slower than the second fastest copy of the task, it will be

terminated to avoid wasting resources. However, towards

the end of job where more slots are available, Mantri will

schedule duplicates more aggressively than before.

As a rack with many reduce tasks will have its downlink

congested leading to outliers, Mantri will consider both

location of data sources and current utilization of network

when placing a task. Instead of the solving a common and

challenging central placement problem, Mantri uses a

local algorithm which does not require updated network

state information and centralized coordination. The key

idea is that each job manager will allocate tasks in a

manner where load on the network is minimized and self-

interference among its tasks is avoided. From the size

information of map outputs in each rack, two terms will

be computed. First term is the ratio of outgoing traffic and

available uplink bandwidth, and second term

is the ratio of incoming traffic and available downlink

bandwidth, . The local algorithm then finds the

optimal rack location where maximum data transfer time

is minimized for each task by computing all placement

permutations. For non-reduce phases, Mantri will use

Cosmos policy of placing a task close to its data.

Furthermore, Mantri computes the cost of moving data

over low bandwidth links in to avoid the case where

copies are started at a location where it has little chance of

finishing earlier thereby not wasting resources.

Mantri acts by an algorithm which replicates task output

to mitigate the problem where costly recomputations will

stall a job. Task output will be replicated early as Mantri

weighs the cost of recomputation against the cost of

replication. Essentially, the algorithm will consider the

following three scenarios for replication: task output is

very small and replication cost is negligible, tasks run on

possibly bad machines and when cumulative cost of not

replicating successive tasks is high. Mantri also controls

the amount of data replicated to 10% of the data processed

by the job through a token mechanism to avoid too much

replication. On the other hand, pre-computation is carried

out if Mantri estimates that a recomputation may likely

cause future request for data to fail. Both probabilistic

replication and pre-computation are employed to further

enhance the efficiency of Mantri design.

B. In-Network Aggregation

Over the years, many researches have been conducted

to improve the MapReduce model. One attempt is

Camdoop[2], a framework that aims to optimize network

traffics during the shuffling phase in MapReduce, when

data are aggregated over servers. In typical MapReduce

implementation, there are O(N2) flows of traffic data over

participating machines. As [Costa, P. et al] show in their

paper, there is a server link bottleneck, and increasing the

bandwidth does not solve the problem entirely, especially

for small networks. Instead, they reduce the amount of

data transmitted in shuffle phase. A MapReduce-like

system, called Camdoop, is run on a CamCube platform,

that enables the system to reduce the number of Reduce

tasks to be an expected number of outputs, rather than the

usual number of intermediate pairs. CamCube uses a

direct-connect topology to connect every server, as shown

in Figure 1, thus no longer differentiate logical and

physical network with the use of direct-connect topology

and servers that are able to handle package forwarding. By

exploiting these two features, Camdoop results best

performance with help of custom routing and transport

protocol, as well as in-network aggregation.

Figure 1. A CamCube topology

160 JUISI, Vol. 01, No. 02, Agustus 2015

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model …

Camdoop works by splitting input data into chunks that

are uniformly distributed, just like MapReduce model.

Each server is constructed in a tree topology as in Figure

2, where the root will execute the Reduce task, spread

amongst its leaves that will compute the key and value

pairs before sending them back to the root to be

aggregated and stored. Every job has a jobID, job

description, user-defined Map and Reduce functions (or

any other functions where required), and any deterministic

MapReduce parameters such as M and R. The input data is

split into chunks that have their own IDs, chunkID, which

is a 160-bit identifier that is ensure a uniformly-distributed

chunks. Map task is then run on servers to produce

intermediate key values, just as in a typical MapReduce

model. Each output has their own ID, mapTaskID, which

is typically just the same as the chunkID of any input

chunk processed by its task. When all intermediate key

values have been written to disk, shuffle and Reduce task

then commence.

Figure 2. Tree topology in Camdoop

To implement the tree topology, each server has its own

vertexID, which is a 160-bit identifier. The first k bits of

this ID is used to uniquely identify every server on the 3D

coordinate in the CamCube network, while the remaining

bits are a hash value from a job ID. The server that runs a

Reduce task has a rootID which is just its own vertexID.

To determine its parent, each server implements a

getParent(rootID, id) function, where id is either a

vertexID or a mapTaskID. When id is a mapTaskID, this

function takes the first k bits from the ID and returns a

vertexID that generates the same coordinate. When id is a

vertexID, this function returns another vertexID that is one

level higher in the 3D space from the input vertexID. For a

simple case where there is only one Reduce task and

assuming that there are no failures, only one vertexID is

mapped to a server.

To evenly distribute the workload for all trees,

Camdoop creates six disjoint spanning trees with the same

root, as shown in Figure 3. Using this topology, each

physical link is used by one parent and one child in every

direction, in effect of evenly-distributed workload. The

only requirement to keep in mind is that intermediate keys

need to remain in order and consistent for all stripes.

However, this is not feasible when the Reduce tasks are

very large in numbers. Instead, the authors suggest to

create six disjoint spanning tree for each Reduce tasks.

Assuming that there are no failures, each link is shared

amongst R Reduce tasks.

Figure 3. Six disjoint spanning trees

To address with failures, Camdoop recomputes the

shortest path to a working server which is nearest to the

failed server, reroutes the packages to the new path, and

notifies all servers about the failure and the new path.

However, it does not address an issue in MapReduce

model when a server that stores intermediate values

crashes, hence the task need to be restarted.

C. Data Shuffling Optimization

Another approach to optimize MapReduce model is

Sudo model as proposed by Jiaxing Zhang et al [3]. Sudo

exploits data shuffling stages that prepares data for

parallel processing. For example, the intermediate

key/value lists need to be sorted and resplit for

distribution amongst servers before passed into the

Reduce function, then be remerged. This process is known

to be expensive in terms of disk I/O processing and

network bandwidth since it involves all data. Sudo tries to

learn the behavior of resulted data in each phases of

MapReduce model to avoid data shuffling as possible.

TABEL I.
DATA PARTITION IN SUDO

Within-

partition

Cross-

partition

None Contiguous Sorted

None AdHoc - LSorted

Partitioned Disjoint Clustered PSorted

Ranged - - GSorted

It has been observed that data partition has some

properties between another partition and in-between the

partition itself. Six configuration is found and can be seen

in Table 1. The relationship between these properties is

shown in Figure 4, where the topmost property is the

strongest. Normally, data partition occurs in three steps:

sorting records within a partition according to a key,

repartition the records, and remerge the redistributed

records based on a key. Not all property requires all three

steps, as shown in Figure 5. A directed acyclic graph

JUISI, Vol. 01, No. 02, Agustus 2015 161

Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … ISSN: 2460-1306

(DAG) is used to model a data-parallel job, which consists

of three type of vertices: data vertices that are responsible

for input/output, compute vertices that do the

computational phases (map, reduce, or merge), and shuffle

vertices that do the data-shuffling. Sudo tries to optimize

data shuffling by finding a valid execution plan with

lowest cost for each job. The two optimizations are the

use of functional properties of user-defined functions and

redefinition of repartition function.

Figure 4. Relationships between data partition properties

in Sudo

The authors of Sudo observe that in a traditional

MapReduce model, user-defined functions are often

regarded as “black boxes”, which may not preserve the

properties of data-partition of the input and user-required

properties for the output. If it is known that the data-

partition from a previous step already holds all expected

properties, then data-shuffling is no longer necessary dan

may be ignored. These user-defined functions, when

constructed with some properties (functional properties),

can be turned into “gray boxes” that eliminate the need of

data-shuffling. To do this, Sudo executes additional tasks

at the beginning of each job. The first is user-defined

functions analysis to extract their properties and backward

WP-analysis to determine the weakest precondition before

each computational phase and weakest postcondition

(hence the name of WP) after each data-shuffling phase.

The second is a forward data-partition property

propagation to create valid execution plans which have

optimized data-shuffling. Finally, a plan with the lowest

cost is then chosen.

Figure 5. Data partitioning steps for each properties

According to the authors, a functional property defines

the relationship between the inputs and outputs of a

particular user-defined functions. Sudo is only interested

in deterministic functions, where an output is created from

an input of a record. After observations, there are three

interesting functional properties. Let be any

deterministic function. Function is said to be strictly-

monotonic if and only if for any and in the input

data, always preserve the fact, either

 (strictly-increasing) or

(strictly-decreasing). Likewise, function is said to be

monotonic if and only if for any and in the input

data, means either (increasing) or

 (decreasing). Lastly, a function is

said to be one-to-one if and only if for any and in

the input data, means . Sudo also

defines a pass-through function f(x), which is a function

that produces the same output as the input. These

functional properties correspond to data-partition property

in such a way shown in

Figure 6.

162 JUISI, Vol. 01, No. 02, Agustus 2015

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model …

Figure 6. Correspondence between functional properties and data-partition properties

The second optimization Sudo proposes is the

redefinition of repartition function. It is observed that

sometimes user-defined functions do not preserve desired

properties. Sudo allows redefinition of a partitioning key

in order to maintain desired properties. Figure 7 shows an

example on how such an optimization can be done.

However, the authors point out that there are some side

effects on this optimization. The repartitioning process is

slightly more expensive and may result in larger number

of records for the next mapper phase. This can be cured by

a program slicing on the repartitioning function. The other

side effect is the chance to get data skew. Therefore,

before applying this optimization, a cost model is run to

determine whether or not these side effects are tolerable.

Figure 7. Example on partitioning key redefinition

D. Automatic Management of Data and Computation

MapReduce has greatly simplified the development of

large-scale, parallel data processing applications.

However due to a lack of efficient management of data

and computation, large amounts of resources are wasted

through redundant computations and mishandling of

obsolete datasets. The authors of Nectar [14] present a

system that manages the execution environment of a

datacenter and is designed to address the aforementioned

problems. Nectar implements a cache server and a

garbage collector to effectively manage computation

results and derived datasets, thereby providing advantages

like efficient usage of resources through space utilization,

reuse of shared sub-computations, incremental

computations and ease of content management.

1) Nectar Architecture

The DryadLINQ programs are written to perform

computations carried out in a Nectar-managed datacenter.

Nectar can collect information of the program and the data

dependencies as the set of functional operators in LINQ

programs access datasets of .NET objects and transform

the input datasets to new output datasets. Two classes of

data are stored are described in the datacentre. Primary

datasets are created once and accessed and derived

datasets are the results from computations of primary or

other derived datasets. It is important to note that Nectar

can reproduce the derived dataset even when they are

deleted automatically in the future, as Nectar keeps a

mapping between a derived dataset and the program that

creates it. Primary datasets however, are not deleted as

they are referenced by conventional pathname and cannot

leverage on the mapping property.

As shown in Figure 8, these DryadLINQ program

begins as input and is handled by a program rewriter

JUISI, Vol. 01, No. 02, Agustus 2015 163

Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … ISSN: 2460-1306

inside a Nector Client-Side Library. The program rewriter

will consult the cache server for cache hits in rewriting a

more efficient program, which will be given back to

DryadLINQ to be compiled into a Dryad Computation to

be run in the cluster. Both input and output of DryadLINQ

are stored as streams in TidyFS, an in-house distributed

and fault tolerant file system.

Figure 8. Overview of Nectar Architecture

The program store keeps all DryadLINQ programs that

have ever executed successfully and the data store keeps

all derived streams from the programs. A replacement

policy is included in the cache server, where cache entries

that have little value are deemed to be garbage and is

deleted permanently by the garbage. Oh the other hand,

programs in the program store will not be deleted as they

are necessary for the recreation of derived datasets where

required in the future.

2) Caching Computations

A cache entry records the result of executing a

program on some given input and is of the form: <FPPD,

FPP, Result, Statistics, FPList>, where FPPD is the

combined fingerprint of the program and its input datasets,

FPP is the fingerprint of the program only, Result is the

location of the output, and Statistics contains execution

and usage information of this cache entry. The last field

FPList contains a list of fingerprint pairs each

representing the fingerprints of the first and last extents of

an input dataset [14]. The finger of inputs is formed by

combining the fingerprints of actual content in the dataset.

However, computation of program fingerprint may be an

issue as the program can contain user-defined functions

that call into library code. As such, Nectar implements a

static dependency analyzer to capture all dependencies of

an expression and computes all the code necessary in a

program to form the fingerprint. The statistics information

in the cache entry will be used to find an optimal rewriting

execution plan, the cache insertion and eviction policy.

In general, the process of rewriting programs to

equivalent but more efficient one involves the

identification of all sub-expressions of the expression and

checking the cache server for cache hits on these sub-

expressions. A set of equivalent expressions are written

using the cache hits optimally using cost estimation to

calculate maximum benefit.

Only cache hits on prefix sub-expressions on segments

of the input dataset are taken care of as considering all

possible sub-expression and subset of input dataset is not

feasible. The rewriting algorithm involves simple

recursive procedure, starting from obtaining all the

possible hits from the cache server, H, on the largest

prefix sub-expression which is the entire expression, E. If

there is a hit on the entire input, the hit will be used for

rewrite as it gives the most savings in terms of cumulative

execution time, otherwise the best execution plan will be

computed for E [14]. Performing this procedure through

brute force search will not be efficient. Hence, Nectar

stores fingerprints of the first and last extents of the input

dataset in the cache entry and thereby computing H in

linear time with the information.

Nectar also implements a cache insertion policy for

decision making since it is not practical to cache every

successful candidate for caching determined. The final

result of a computation is always cached as it is

considered free to obtain, while sub-expression candidates

164 JUISI, Vol. 01, No. 02, Agustus 2015

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model …

are cached only if they are deemed to be useful. Number

of lookups and runtime information from the execution of

sub-expressions are used for making that caching decision

based on a benefit function. At the same time, the cache

insertion policy is adaptive to storage space pressure,

where if space is available, candidates will be cached

more easily.

3) Nectar Architecture

All the derived datasets will consume large amount of

storage space if left alone. Due to the nature of TidyFS,

the programmers are not able to access actual location of

derived datasets and are required to obtain necessary

information from the cache server instead. As such, all the

usage history and statistics can be collated at this single

point and Nectar will perform monitoring for the

automatic garbage collection of derived datasets deemed

to have the lease value. At the same time, it is necessary to

remove cache entries which are not useful as datasets

referenced by these entries cannot be deleted. The cache

eviction policy includes a cost-benefit analysis to

determine which entries to remove as follows:

, where S is the of the

resulting derived dataset, ∆T is the elapsed time since it

was last used, N is the number of times it has been used

and M is the cumulative machine time of the computation

that created it.

IV. DISCUSSIONS

This section will discuss MapReduce performance,

handling stragglers, optimizing network topology, and

optimizing data shuffle.

A. MapReduce Performance

The original MapReduce model itself is not without

controversy. Michael Stonebraker et al. [8, 9] strongly

argues with their benchmark results for MapReduce

model against traditional parallel-RDBMS model that

MapReduce does not offer significant better performance

than the later. Although parallel-RDBMS model loads

data slower than MapReduce model, the task was done

faster in parallel-RDMBS model. It is observed that doing

the task using traditional RDBMS, in addition to SQL, is

much easier than writing user-defined functions for

MapReduce, however MapReduce is easier to install and

setup on parallel computing environment. The

MapReduce model used in the benchmark is Apache

implementation, Hadoop[5], however the authors believe

that Google’s MapReduce also suffers the same problem.

Although this benchmark argues over the effectiveness of

MapReduce model, the authors believe that in some

applications, MapReduce is feasible to use [8]. Such

applications may include complex analytics jobs (as

Google uses MapReduce in order to index websites [10])

and quick-and-dirty analysis jobs (as MapReduce is easier

and faster to install and configure).

B. Handling Stragglers

Google MapReduce has a general mechanism to handle

stragglers by using backup tasks. Although this

mechanism has been tuned to control the usage of

additional computational resources and significantly

reduces the job completion times of large MapReduce

operations, there may be some problems such as backup

task placement and unnecessary duplication and resources

incurred. Mantri [13] is designed around such cons as it

attempts to understand the causes of outlier and find out

the best course of action to alleviate the issue of

stragglers. The decision is based on resources available

and opportunity costs considerations as Mantri identifies

and acts on outliers early in order to release resources for

usage by other task and speed up job completion time

resulting in an improvement over MapReduce

implementation that only duplicates the in the progress

tasks near the end of operation. The performance of

Mantri has been shown to be practically feasible where

Mantri sped up the median job by 32% in the live

deployment of BING in the production cluster and 55% of

the jobs experienced a net reduction in resources used.

The network-aware placement of tasks also speeds up half

of the reduce phases by at least 60% each and completion

times due to recomputation of jobs are reduced by at least

40% [13]. Nevertheless, an assumption is made where the

cluster involved is homogenous where every available

machine will have resources to perform the recomputation

of a particular assigned task by Mantri. Therefore, a

specialized cluster software will be necessary to manage

the cluster of machines to enable load-balancing for

Mantri’s performance to be stipulated above.

C. Optimizing Network Topology

On the other hand, Camdoop optimizes MapReduce

model over the network topology. We find that this is not

really a breakthrough over the original MapReduce model,

but is only a minor tweak of the network topology,

although the tweak improves the runtime. Camdoop also

makes use of CamCube platform, requires the current

network topology to be re-setup. This might not a feasible

workout for current environment, but is doable for fresh

environments. Also, as CamCube is part of Microsoft

Research project that is still ongoing, we suggest that

CamCube is not used in a productive environment, but

instead in a research environment to exploit the

opportunities further and finalize the topology. Although

the authors of Camdoop specify that their model is

beneficial, the side effects are yet to be seen.

D. Optimizing Data Shuffle

The four model discussed in this report optimize the

original MapReduce in different ways. Sudo optimizes on

user-defined functions and data-shuffling stage. We think

that this optimization is good that it works on low-level

MapReduce model; although the authors of Sudo test the

model based on SCOPE programming model and make

JUISI, Vol. 01, No. 02, Agustus 2015 165

Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … ISSN: 2460-1306

some adjustments, it is not difficult to implement Sudo

model into existing MapReduce model using any high-

level programming languages. The authors believe that

Sudo will open many ways of further optimizations on

parallel-computing world that not only learns the data

from databases or distributed system, but also

programming languages and system analysis. Therefore,

we argue that Sudo is one of the feasible technique to

develop optimal MapReduce model. However, Sudo

model has some issues, that are discussed in the last

section of this article.

E. Redundant Computations and Data Management

The MapReduce framework while simplifying large

distribute data intensive applications, still lacks a scheme

integrated to optimize data resources management. Hence

Nectar aims to extend such functionality by avoiding

redundant computations and removing datasets that are

deemed to be not useful [5]. Nectar caches immediate

results as well as programs that produced these derived

results and hence cached results can be reused and if data

that are removed and needed in the future, the programs

can be rerun to provide for the results. Similarly, Nectar

has been shown practical results through live deployment

on 240-node research cluster as well as analytic results of

execution logs from 25 large production clusters and on

average across all clusters, more than 35% of the jobs

benefit from caching [5]. However, Nectar only presents

data management for derived datasets while primary

datasets are not automatically deleted due to an inherent

property of LINQ program [5]. As the operations scale

accordingly, the condition of primary datasets growth

which is not really taken care of in a comparable

performance level relative to derived dataset may result in

undesirable issues as well.

V. CHALLENGES

This section will discuss challenges on MapReduce as

well as other improvement models already discussed in

this article.

A. MapReduce

Since its publication, many researches and new

products have been created in complement of MapReduce

model. Google has developed and published Dremel in

2010 to further reduce the execution time of MapReduce

by a fraction [7]. As data tends to get bigger and bigger

and computation gets more complicated, it is interesting to

see whether the optimizations described in this report are

still applicable.

B. Sudo and Camdoop

The authors of Sudo mention out some issues that they

call “interesting and somewhat negative” results. First,

SCOPE programming model is different from the

traditional MapReduce model; this model allows changing

the key for reduce and merge tasks. They only study this

property on SCOPE model, thus we think there is still

room for optimization for studies that exhibit similar

optimization but on a more general environment (i.e. the

MapReduce model itself). Second, for quite a few jobs,

loading input data incurs the most I/O cost. This is due to

loading more data than necessary. Since the occurrence

are very small, we think that this is not an issue. Third, for

some jobs, the first shuffling-phase dominates the

shuffling cost. This is due to the fact that the output is

significantly smaller in number than the input. The

authors mention a pipeline opportunity to be sought.

Fourth, the rule-based deduction can be improved by

making the analysis context- and path-sensitive.

Nevertheless, this model gives quite an improvement to

the original MapReduce model. If it is applicable to any

high-level programming language, distributed systems

will gain more benefit from it.

Meanwhile, the authors of Camdoop have tested that

Camdoop over CamCube topology has a very significant

improved performance over traditional MapReduce

models, such as Apache Hadoop and Dryad (now known

as LINQ to HPC [4]). They show that in every case, even

with small input data, Camdoop over CamCube

outperforms both platforms in terms of shuffle and reduce

times. However, there are newer versions of these two

platforms (at the time of writing, there are multiple newer

versions of Apache Hadoop [5] and Microsoft now

focuses to bringing Apache Hadoop into Windows

Servers and Azure [4, 6]), so a reevaluation might be

needed to see whether the Camdoop optimization over

traditional MapReduce still holds. The authors also note

out that currently Camdoop is not open for some

optimizations on traditional MapReduce model, such as

support for iterative jobs, incremental computations, and

pipelining of Map or Reduce phase. However, they

believe that these optimizations are quite non-trivial and

may be incorporated into Camdoop model in the future.

C. Mantri and Nectar

Based on the way that Mantri is structured, it can be

seen as another layer over MapReduce which performs

this detection and handling of stragglers. Perhaps, with

such enhanced understanding of the stragglers problem,

the next step can to deviate from enforcing a layer of

“policy” and to change some inherent properties of

MapReduce to better mitigate the problem of stragglers

across production clusters.

A common observation is that the caching mechanism

of Nectar is dependent on the nature of the computation

and hence an assumption made would be that the results

of DryadLINQ applications are deterministic. Therefore,

computations do not produce the same result all the time

may cause a failure of the caching operations. This will

definitely introduce increased complexity should the

algorithm be modified and improved upon to cater for

such computations.

166 JUISI, Vol. 01, No. 02, Agustus 2015

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model …

D. Real Time Woes

MapReduce excels when general query mechanism is

carried out on large volume of data. However, it will fail

to perform as well on applications which require real-time

processing [15]. As described in section 2, MapReduce

programming model involved a Map pre-processing step

and a Reduce data aggregation step. While Map step can

be applied on real-time streaming data, Reduce step may

not be able to work properly as all input data for each

unique data key are required to be mapped and collated

first. Although there are techniques to overcome this

limitation, there will be a new set of problems brought

forth to the table.

VI. CONCLUSION

In this article, we have discussed MapReduce as a data

processing tool used in Cloud Computing for the big data

involved in applications of today. MapReduce is no doubt

an excellent tool which provides great scalability and fault

tolerance with simplicity. However, it does come with a

set of limitations in its framework, and we have studied in

details some optimization and extensions to overcome

these limitations as presented in recent approaches.

Nonetheless, challenges and improvements remain for

these enhanced models, and the paradigm that MapReduce

governed by more new and upcoming complicated

policies could possibly a step backwards remains an

interesting one.

VII. REFERENCES

[1] Dean, J., and Ghemawat, S. MapReduce: Simplified Data Processing

on Large Clusters. Comm. of ACM 51, 1 (2008).

[2] Paolo Costa, Austin Donnelly, Ant Rowstron, Greg O'Shea.

"Camdoop: Exploiting In-network Aggregation for Big Data
Applications". Proceedings NSDI, April, 2012

[3] Jiaxing Zhang, Hucheng Zhou, Rishan Chen, Xuepeng Fan, Zhenyu

Guo, Haoxiang Lin, Jack Y.Li, Wei Lin, Jingren Zhou, and Lidong Zhou,
“Optimizing Data Shuffling in Data-Parallel Computation by

Understanding User-Defined Functions”, in Proceedings of the 9th

Symposium on Networked Systems Design and Implementation (NSDI
'12), USENIX, 25 April 2012.

[4] MSDN: LINQ to HPC. http://msdn.microsoft.com/en-

us/library/hh378101.aspx. Retrieved 12 November 2012.
[5] Apache Hadoop Release Notes.

http://hadoop.apache.org/releases.html#News. Retrieved 12 November
2012.

[6] Foley, Mary Jo. Microsoft to develop Hadoop distributions for

Windows Server and Azure. ZDNet.
http://www.zdnet.com/blog/microsoft/microsoft-to-develop-hadoop-

distributions-for-windows-server-and-azure/10958. Retrieved 12

November 2012.

[7] Sergey Melnik, Andrey Gubarev, Jing Jing Long, Geoffrey Romer,

Shiva Shivakumar, Matt Tolton, Theo Vassilakis, “Dremel: Interactive

Analysis of Web-Scale Datasets”, in Proceedings of the 36th
International Conference on Very Large Data Bases (2010), pp. 330-339.

[8] M. Stonebraker, D. Abadi, D. J. DeWitt, S. Madden, E. Paulson, A.

Pavlo, and A. Rasin, "MapReduce and Parallel DBMSs: Friends or
Foes?," Communications of the ACM, vol. 53, iss. 1, pp. 64-71, 2010.

[9] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden,

and M. Stonebraker, "A comparison of approaches to large-scale data
analysis," in SIGMOD ’09: Proceedings of the 35th SIGMOD

international conference on Management of data, New York, NY, USA,

2009, pp. 165-178.

[10] David F. Carr. How Google Works.

http://www.baselinemag.com/c/a/Infrastructure/How-Google-Works-1/.

Retrieved 12 November 2012.

[11]. Ant Rowstron. Rethinking the Data Center: CamCube and beyond.
http://research.microsoft.com/en-

us/um/people/antr/borgcube/borgcube.htm. Retrieved 12 November

2012.
[12] Rimal. P, E. Choi, and I. Lan, “A Taxonomy and Survey of Cloud

Computing Systems”. 2009 Fifth International Joint Conference on INC,

IMS and IDC
[13] A. Ganesh, S. Kandula, and A. Greenberg, “Reining in the Outliers

in Map-Reduce Clusters using Mantri”, 9th USENIX Symposium on

Operating Systems Design and Implementation
[14] P. Gunda, L. Ravin, C. A. Thekkath, Y. Yu, L. Zhuang, “Nectar:

Automatic Management of Data and Computation in Datacenters”

[15] Google's Colossus Makes Search Real-time by
Dumping MapReduce.

http://highscalability.com/blog/2010/9/11/googles-colossus-makes-

search-real-time-by-dumping-mapreduce.html. Retrieved 12 November
2012.

http://msdn.microsoft.com/en-us/library/hh378101.aspx
http://msdn.microsoft.com/en-us/library/hh378101.aspx
http://hadoop.apache.org/releases.html#News
http://www.zdnet.com/blog/microsoft/microsoft-to-develop-hadoop-distributions-for-windows-server-and-azure/10958
http://www.zdnet.com/blog/microsoft/microsoft-to-develop-hadoop-distributions-for-windows-server-and-azure/10958
http://www.baselinemag.com/c/a/Infrastructure/How-Google-Works-1/
http://research.microsoft.com/en-us/um/people/antr/borgcube/borgcube.htm
http://research.microsoft.com/en-us/um/people/antr/borgcube/borgcube.htm
http://highscalability.com/blog/2010/9/11/googles-colossus-makes-search-real-time-by-dumping-mapreduce.html
http://highscalability.com/blog/2010/9/11/googles-colossus-makes-search-real-time-by-dumping-mapreduce.html

