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Abstrak— Pada masa kini, komputasi awan menjadi tren 

pada pemrosesan data dalam volume besar. Google 

menciptakan model MapReduce untuk menyederhanakan 

komputasi kompleks yang biasanya menyertai pemrosesan 

data bervolume besar, dengan membagi-bagi data menjadi 

pasangan kunci/nilai, yang kemudian dapat diproses secara 

paralel, biasanya dalam jaringan, untuk kemudian 

digabungkan kembali menjadi hasil akhir. Walaupun 

demikian, model MapReduce memiliki beberapa 

keterbatasan. Peneliti telah berusaha mengembangkan 

model MapReduce, menghasilkan beberapa model terbaru, 

seperti model Mantri, Camdoop, Sudo, dan Nectar. Tiap 

model mengeksploitasi berbagai karakteristik dari model 

MapReduce secara unik untuk menghasilkan peningkatan 

kinerja pada kasus dan dengan cara tertentu. Walaupun 

demikian, tantangan dan peningkatan masih dapat 

ditemukan pada model-model ini, yang membuka berbagai 

kemungkinan baru untuk area penelitian. 

 
Kata Kunci: komputasi awan, MapReduce, pemrosesan data, 

model terdistribusi 

 
Abstract— Nowadays cloud computing is becoming a 

trend on big data processing. Google created MapReduce 

model to simplify the complex computation of big data 

processing by configuring and splitting the data into 

key/values pair to be processed in parallel, usually within a 

network of computers, then merge the results. However, 

MapReduce model has its limitations. Researchers have been 

trying to improve the model resulting in some newer models, 

such as Mantri, Camdoop, Sudo, and Nectar model. Each 

model exploits the different characteristics of MapReduce 

model to create improvements in different way and cases. 

Challenges and improvements still remain within these 

enhanced models, which open new possibilities on area of 

research. 

 
Keywords: cloud computing, MapReduce, data processing, 

distributed model 

I. INTRODUCTION 

 Most of the popular applications in the world of today 

involve operations on large amounts of data resulting in a 

huge demand for cloud computing on the servers. The 

concept of cloud computing addresses the efficient usage 

of distributed resources coupled with parallel computing 

techniques to scale up development and deployment on a 

fail-safe infrastructure [12]. Such complex computing has 

however been simplified greatly by Google’s MapReduce, 

which is a data processing tool that allows processing 

huge volume of data over clusters of low-end computing 

nodes. The design itself is an abstraction that enables 

simple computations to be expressed whilst automatic 

distributed computing and fault tolerance are handled in 

the backend library [1]. However, the MapReduce has 

limitations in its framework where recent approaches have 

exposed and presented new designs to overcome such 

limitations. In this article, an overview and discussion of 

the recent major approaches aimed at enhancing the 

MapReduce will be presented. The rest of this article is 

organized as follows. Section 2 describes the MapReduce 

framework and some of the key features involved. Section 

3 presents the details of recent approaches for the 

improvements and extensions to MapReduce. Section 4 

discusses and overviews the key techniques introduced. 

Section 5 explores open issues and challenges. Finally, 

Section 6 concludes this article. 

II. MAP-REDUCE 

Programmers at Google have created and implemented 

a distributed model called MapReduce, a model which 

consists of two parts: a map function to process key/value 

pairs to create intermediate key/values, and a reduce 

function to merge all intermediate key/values [1].  Let k1 

be set of keys and v1 be set of values. The Map function 

takes pairs of k1 and v1 respectively to generate 

intermediate key, I, which consists of pairs of another 

keys, k2, and values, v2. This intermediate key is then 

passed as input for the Reduce function, which will merge 

all values to generate a smaller set of values. 

A. Implementation 

MapReduce computation can be used to count an URL 

access frequency, index a document, or even distribute a 

sort. Because an input data can be very large, MapReduce 

execution can be distributed. A user will start this model 

by splitting the input data into M chunks. These chunks 

are usually limited in size, typically 16 MB. Copies of 

this model are then executed on different machines called 

workers, processing M Map functions and R Reduce 

functions, controlled by a special copy of the program 

called master. To prevent faults, master will ping the 

workers occasionally. If a worker does not respond, the 

master will mark the task as failed and reassign a new 

worker, typically informing other workers that the task is 
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being rescheduled. Since the data from a finished Map 

task is stored on local disk of the failed worker, rendering 

them inaccessible, this task needs to be re-executed.  The 

data from a finished Reduce task, in the other hand, is 

stored on a global storage system, so if a worker fails, this 

task does not need to be re-executed. However, if the 

master fails, the whole process will be halted and marked 

as failure. Users need to do a recovery task to continue the 

task, which can be brought from the last checkpoint before 

the master crashes. 

B. Refinements 

Some refinements can be made to this simple 

MapReduce model. If the Reduce function is commutative 

and associative, a Combine function can be executed 

firsthand before the Reduce function. A Combine function 

combines the partially data produced by Map functions 

and passes them to the Reduce function. The Combiner 

and Reduce function can be implemented with a single 

code, however a Combine function will produce an 

intermediate file to be sent as an input for the Reduce 

function, whereas a Reduce function will produce a final 

output file. Another refinement is the ability for a 

MapReduce model to detect faulty records and skip 

processing them in order to prevent crash. This is 

provided because sometimes there might be bugs in user-

defined Map or Reduce functions that will make the 

system behave incorrectly or abruptly, halting the whole 

process, and sometimes it is impossible to correct the bug 

(for example when using third-party modules for 

Map/Reduce function). When there is a fault in the Map 

or Reduce function, a worker will send a signal to the 

master that a particular record causes the function to some 

errors. When the master has collected more than one of 

these signals, it can conclude that the record itself is faulty 

and should be skipped for the next execution of 

MapReduce task. This ability can also be used to 

intentionally skip some records. 

III. IMPROVEMENTS AND EXTENSIONS TO 

MAPREDUCE 

Despite the refinements made in MapReduce 

framework, some of implemented general mechanisms as 

described in the above section may have problems in 

certain cases and result in poor over performance. As 

such, recent approaches have come up with different 

strategies to optimize and enhance Map-Reduce. 

A. Reining in the Outliers in MapReduce Clusters using 

Mantri 

There are different phases in the jobs scheduled for data 

processing. More often than not, tasks in a particular 

phase may require the outputs of previous phases as inputs 

to complete the job. Hence, when certain tasks do take a 

longer than usual time to finish, the total time for the job 

taken will be lengthened greatly. Although MapReduce 

duplicates the remaining in-progress tasks when an 

operation is near completion to handle issue of stragglers, 

such a general mechanism is not ideal. The authors of 

Mantri argues that only acting at the end of a phase, 

opportunities to achieve lower job reduction time by 

dealing with outliers identified early while using fewer 

resources will be lost [13]. 

1) The Outlier Problem 

The authors of Mantri [13] first understand the 

mechanics of outlier problem before drafting an optimized 

design. Their authors observe that duplicating high 

runtime tasks that have large of amount of data to process 

will not make them run faster hence leading to wasted 

resources. On the other hand, high runtime tasks that 

cannot be explained by data they process are likely due to 

resource contention or bad machines present and they may 

result in faster job completed time if scheduled to run on 

another location.  

Also, the reduce phase will cause high crossrack traffic 

as the output of map tasks are distributed across the 

network of machines. Hence, when reduce tasks are 

simply placed on any machine with spare slots, it may 

lead to outliers due to the fact that a network location with 

many reduce tasks will likely have its downlink highly 

congested with reading of map task results operations. 

Lastly, investigations show that the occurrence of 

recomputes due to straggling tasks is correlated with 

higher usage of resources. The subset of machines that 

triggers most of the recomputes is steady over days but 

varies over weeks, likely indicative of changing hotspots 

in data popularity or corruption in disks. Recomputation 

affects jobs disproportionately and they manifest in select 

faulty machines and during times of heavy resource usage 

[13]. 

2) Mantri Design 

Based on the findings in the section above, Mantri is 

designed to act on the outliers identified early for higher 

efficiency of outliers handling while conserving additional 

resources used. However, there can be cases where 

remedy actions may result in longer job completion time 

or higher resources wasted should prediction of initial 

estimates of threshold be incorrect. Therefore, Mantri uses 

real-time progress reports through a Closed-loop to act 

optimistically by keep tracking of the cost as the 

probabilistic predictions go wrong.  

A restart algorithm is written to perform intelligent 

restarting of outliers. The main idea is to check if an 

outlier that has a long runtime is due to the fact that it has 

a large amount of data to process or that it is slowed down 

due to its location. A task with real work will not be 

restarted. On the other hand, if a task lags because of 

reading data over a low-bandwidth path, it will be 

restarted only if a more advantageous network location 

becomes available or the task will be duplicated instead. 

As such, Mantri uses two variants of restart: killing a 
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running task then restarting it elsewhere and scheduling a 

duplicate task. By computing the following two variables 

using the task progress reports for each task, , the 

remaining time to finish, and , the predicted 

completion time of a new copy of the task, Mantri will 

perform a restart only when the probability of success, 

 is high. If the remaining time to finish a 

task is so large that a restart would probably finish sooner 

instead, i.e , Mantri will proceed to 

kill and restart the task as such a scheme greatly shortens 

the job completion time without the need of additional 

slots. However, the queuing delay incurred by job 

scheduler before restarting a task can be pretty large. On 

the contrary, scheduling duplicates does not involve 

queuing and can achieve better performance when 

duplicate tasks end faster than the original. Nevertheless, 

duplicates require additional slots and computation 

resources which may result higher job completion time 

should there are outstanding tasks. Hence, duplicate is 

scheduled only when total amount of computation 

resource consumed decreases given that there are 

outstanding tasks and no slots is available, 

. For stability sake, Mantri ensures 

no more than three copies of same time will be running 

concurrently. A task will not be reduplicated if a duplicate 

has already been launched for it recently and if a copy is 

slower than the second fastest copy of the task, it will be 

terminated to avoid wasting resources. However, towards 

the end of job where more slots are available, Mantri will 

schedule duplicates more aggressively than before.  

As a rack with many reduce tasks will have its downlink 

congested leading to outliers, Mantri will consider both 

location of data sources and current utilization of network 

when placing a task. Instead of the solving a common and 

challenging central placement problem, Mantri uses a 

local algorithm which does not require updated network 

state information and centralized coordination. The key 

idea is that each job manager will allocate tasks in a 

manner where load on the network is minimized and self-

interference among its tasks is avoided. From the size 

information of map outputs in each rack, two terms will 

be computed. First term is the ratio of outgoing traffic and 

available uplink bandwidth,  and second term 

is the ratio of incoming traffic and available downlink 

bandwidth, . The local algorithm then finds the 

optimal rack location where maximum data transfer time 

is minimized for each task by computing all placement 

permutations. For non-reduce phases, Mantri will use 

Cosmos policy of placing a task close to its data. 

Furthermore, Mantri computes the cost of moving data 

over low bandwidth links in  to avoid the case where 

copies are started at a location where it has little chance of 

finishing earlier thereby not wasting resources.  

Mantri acts by an algorithm which replicates task output 

to mitigate the problem where costly recomputations will 

stall a job. Task output will be replicated early as Mantri 

weighs the cost of recomputation against the cost of 

replication. Essentially, the algorithm will consider the 

following three scenarios for replication: task output is 

very small and replication cost is negligible, tasks run on 

possibly bad machines and when cumulative cost of not 

replicating successive tasks is high. Mantri also controls 

the amount of data replicated to 10% of the data processed 

by the job through a token mechanism to avoid too much 

replication. On the other hand, pre-computation is carried 

out if Mantri estimates that a recomputation may likely 

cause future request for data to fail. Both probabilistic 

replication and pre-computation are employed to further 

enhance the efficiency of Mantri design. 

B. In-Network Aggregation 

Over the years, many researches have been conducted 

to improve the MapReduce model. One attempt is 

Camdoop[2], a framework that aims to optimize network 

traffics during the shuffling phase in MapReduce, when 

data are aggregated over servers. In typical MapReduce 

implementation, there are O(N2) flows of traffic data over 

participating machines. As [Costa, P. et al] show in their 

paper, there is a server link bottleneck, and increasing the 

bandwidth does not solve the problem entirely, especially 

for small networks. Instead, they reduce the amount of 

data transmitted in shuffle phase. A MapReduce-like 

system, called Camdoop, is run on a CamCube platform, 

that enables the system to reduce the number of Reduce 

tasks to be an expected number of outputs, rather than the 

usual number of intermediate pairs. CamCube uses a 

direct-connect topology to connect every server, as shown 

in Figure 1, thus no longer differentiate logical and 

physical network with the use of direct-connect topology 

and servers that are able to handle package forwarding. By 

exploiting these two features, Camdoop results best 

performance with help of custom routing and transport 

protocol, as well as in-network aggregation. 

 

Figure 1. A CamCube topology 
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Camdoop works by splitting input data into chunks that 

are uniformly distributed, just like MapReduce model. 

Each server is constructed in a tree topology as in Figure 

2, where the root will execute the Reduce task, spread 

amongst its leaves that will compute the key and value 

pairs before sending them back to the root to be 

aggregated and stored. Every job has a jobID, job 

description, user-defined Map and Reduce functions (or 

any other functions where required), and any deterministic 

MapReduce parameters such as M and R. The input data is 

split into chunks that have their own IDs, chunkID, which 

is a 160-bit identifier that is ensure a uniformly-distributed 

chunks. Map task is then run on servers to produce 

intermediate key values, just as in a typical MapReduce 

model. Each output has their own ID, mapTaskID, which 

is typically just the same as the chunkID of any input 

chunk processed by its task. When all intermediate key 

values have been written to disk, shuffle and Reduce task 

then commence. 

 

Figure 2. Tree topology in Camdoop 

To implement the tree topology, each server has its own 

vertexID, which is a 160-bit identifier. The first k bits of 

this ID is used to uniquely identify every server on the 3D 

coordinate in the CamCube network, while the remaining 

bits are a hash value from a job ID. The server that runs a 

Reduce task has a rootID which is just its own vertexID. 

To determine its parent, each server implements a 

getParent(rootID, id) function, where id is either a 

vertexID or a mapTaskID. When id is a mapTaskID, this 

function takes the first k bits from the ID and returns a 

vertexID that generates the same coordinate. When id is a 

vertexID, this function returns another vertexID that is one 

level higher in the 3D space from the input vertexID. For a 

simple case where there is only one Reduce task and 

assuming that there are no failures, only one vertexID is 

mapped to a server. 

To evenly distribute the workload for all trees, 

Camdoop creates six disjoint spanning trees with the same 

root, as shown in Figure 3. Using this topology, each 

physical link is used by one parent and one child in every 

direction, in effect of evenly-distributed workload. The 

only requirement to keep in mind is that intermediate keys 

need to remain in order and consistent for all stripes. 

However, this is not feasible when the Reduce tasks are 

very large in numbers. Instead, the authors suggest to 

create six disjoint spanning tree for each Reduce tasks. 

Assuming that there are no failures, each link is shared 

amongst R Reduce tasks. 

 

Figure 3. Six disjoint spanning trees 

To address with failures, Camdoop recomputes the 

shortest path to a working server which is nearest to the 

failed server, reroutes the packages to the new path, and 

notifies all servers about the failure and the new path. 

However, it does not address an issue in MapReduce 

model when a server that stores intermediate values 

crashes, hence the task need to be restarted. 

C. Data Shuffling Optimization 

Another approach to optimize MapReduce model is 

Sudo model as proposed by Jiaxing Zhang et al [3].  Sudo 

exploits data shuffling stages that prepares data for 

parallel processing. For example, the intermediate 

key/value lists need to be sorted and resplit for 

distribution amongst servers before passed into the 

Reduce function, then be remerged. This process is known 

to be expensive in terms of disk I/O processing and 

network bandwidth since it involves all data. Sudo tries to 

learn the behavior of resulted data in each phases of 

MapReduce model to avoid data shuffling as possible. 

TABEL I. 
DATA PARTITION IN SUDO 

Within- 

partition 

Cross- 

partition 

None Contiguous Sorted 

None AdHoc - LSorted 

Partitioned Disjoint Clustered PSorted 

Ranged - - GSorted 

 

It has been observed that data partition has some 

properties between another partition and in-between the 

partition itself. Six configuration is found and can be seen 

in Table 1. The relationship between these properties is 

shown in Figure 4, where the topmost property is the 

strongest. Normally, data partition occurs in three steps: 

sorting records within a partition according to a key, 

repartition the records, and remerge the redistributed 

records based on a key. Not all property requires all three 

steps, as shown in Figure 5. A directed acyclic graph 
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(DAG) is used to model a data-parallel job, which consists 

of three type of vertices: data vertices that are responsible 

for input/output, compute vertices that do the 

computational phases (map, reduce, or merge), and shuffle 

vertices that do the data-shuffling. Sudo tries to optimize 

data shuffling by finding a valid execution plan with 

lowest cost for each job. The two optimizations are the 

use of functional properties of user-defined functions and 

redefinition of repartition function. 

 

Figure 4. Relationships between data partition properties 

in Sudo 

The authors of Sudo observe that in a traditional 

MapReduce model, user-defined functions are often 

regarded as “black boxes”, which may not preserve the 

properties of data-partition of the input and user-required 

properties for the output. If it is known that the data-

partition from a previous step already holds all expected 

properties, then data-shuffling is no longer necessary dan 

may be ignored. These user-defined functions, when 

constructed with some properties (functional properties), 

can be turned into “gray boxes” that eliminate the need of 

data-shuffling. To do this, Sudo executes additional tasks 

at the beginning of each job. The first is user-defined 

functions analysis to extract their properties and backward 

WP-analysis to determine the weakest precondition before 

each computational phase and weakest postcondition 

(hence the name of WP) after each data-shuffling phase. 

The second is a forward data-partition property 

propagation to create valid execution plans which have 

optimized data-shuffling. Finally, a plan with the lowest 

cost is then chosen.  

 

Figure 5. Data partitioning steps for each properties 

 

According to the authors, a functional property defines 

the relationship between the inputs and outputs of a 

particular user-defined functions. Sudo is only interested 

in deterministic functions, where an output is created from 

an input of a record. After observations, there are three 

interesting functional properties. Let  be any 

deterministic function. Function  is said to be strictly-

monotonic if and only if for any  and  in the input 

data,  always preserve the fact, either 

 (strictly-increasing) or  

(strictly-decreasing). Likewise, function  is said to be 

monotonic if and only if for any  and in the input 

data,  means either  (increasing) or 

 (decreasing). Lastly, a function  is 

said to be one-to-one if and only if for any  and  in 

the input data,  means . Sudo also 

defines a pass-through function f(x), which is a function 

that produces the same output as the input. These 

functional properties correspond to data-partition property 

in such a way shown in  

Figure 6. 

 



162 JUISI, Vol. 01, No. 02, Agustus 2015 

ISSN: 2460-1306 Marcellinus Ferdinand Suciadi: Analysis of MapReduce Model … 

 
Figure 6. Correspondence between functional properties and data-partition properties 

 

 

The second optimization Sudo proposes is the 

redefinition of repartition function. It is observed that 

sometimes user-defined functions do not preserve desired 

properties. Sudo allows redefinition of a partitioning key 

in order to maintain desired properties. Figure 7 shows an 

example on how such an optimization can be done. 

However, the authors point out that there are some side 

effects on this optimization. The repartitioning process is 

slightly more expensive and may result in larger number 

of records for the next mapper phase. This can be cured by 

a program slicing on the repartitioning function. The other 

side effect is the chance to get data skew. Therefore, 

before applying this optimization, a cost model is run to 

determine whether or not these side effects are tolerable. 

 

Figure 7. Example on partitioning key redefinition 

D. Automatic Management of Data and Computation 

MapReduce has greatly simplified the development of 

large-scale, parallel data processing applications. 

However due to a lack of efficient management of data 

and computation, large amounts of resources are wasted 

through redundant computations and mishandling of 

obsolete datasets. The authors of Nectar [14] present a 

system that manages the execution environment of a 

datacenter and is designed to address the aforementioned 

problems. Nectar implements a cache server and a 

garbage collector to effectively manage computation 

results and derived datasets, thereby providing advantages 

like efficient usage of resources through space utilization, 

reuse of shared sub-computations, incremental 

computations and ease of content management. 

1) Nectar Architecture 

The DryadLINQ programs are written to perform 

computations carried out in a Nectar-managed datacenter. 

Nectar can collect information of the program and the data 

dependencies as the set of functional operators in LINQ 

programs access datasets of .NET objects and transform 

the input datasets to new output datasets. Two classes of 

data are stored are described in the datacentre. Primary 

datasets are created once and accessed and derived 

datasets are the results from computations of primary or 

other derived datasets. It is important to note that Nectar 

can reproduce the derived dataset even when they are 

deleted automatically in the future, as Nectar keeps a 

mapping between a derived dataset and the program that 

creates it. Primary datasets however, are not deleted as 

they are referenced by conventional pathname and cannot 

leverage on the mapping property.  

As shown in Figure 8, these DryadLINQ program 

begins as input and is handled by a program rewriter 
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inside a Nector Client-Side Library. The program rewriter 

will consult the cache server for cache hits in rewriting a 

more efficient program, which will be given back to 

DryadLINQ to be compiled into a Dryad Computation to 

be run in the cluster. Both input and output of DryadLINQ 

are stored as streams in TidyFS, an in-house distributed 

and fault tolerant file system. 

 

 

Figure 8. Overview of Nectar Architecture

The program store keeps all DryadLINQ programs that 

have ever executed successfully and the data store keeps 

all derived streams from the programs. A replacement 

policy is included in the cache server, where cache entries 

that have little value are deemed to be garbage and is 

deleted permanently by the garbage. Oh the other hand, 

programs in the program store will not be deleted as they 

are necessary for the recreation of derived datasets where 

required in the future. 

2) Caching Computations 

A cache entry records the result of executing a 

program on some given input and is of the form: <FPPD, 

FPP, Result, Statistics, FPList>, where FPPD is the 

combined fingerprint of the program and its input datasets, 

FPP is the fingerprint of the program only, Result is the 

location of the output, and Statistics contains execution 

and usage information of this cache entry. The last field 

FPList contains a list of fingerprint pairs each 

representing the fingerprints of the first and last extents of 

an input dataset [14]. The finger of inputs is formed by 

combining the fingerprints of actual content in the dataset. 

However, computation of program fingerprint may be an 

issue as the program can contain user-defined functions 

that call into library code. As such, Nectar implements a 

static dependency analyzer to capture all dependencies of 

an expression and computes all the code necessary in a 

program to form the fingerprint. The statistics information 

in the cache entry will be used to find an optimal rewriting 

execution plan, the cache insertion and eviction policy. 

In general, the process of rewriting programs to 

equivalent but more efficient one involves the 

identification of all sub-expressions of the expression and 

checking the cache server for cache hits on these sub-

expressions. A set of equivalent expressions are written 

using the cache hits optimally using cost estimation to 

calculate maximum benefit. 

Only cache hits on prefix sub-expressions on segments 

of the input dataset are taken care of as considering all 

possible sub-expression and subset of input dataset is not 

feasible. The rewriting algorithm involves simple 

recursive procedure, starting from obtaining all the 

possible hits from the cache server, H, on the largest 

prefix sub-expression which is the entire expression, E. If 

there is a hit on the entire input, the hit will be used for 

rewrite as it gives the most savings in terms of cumulative 

execution time, otherwise the best execution plan will be 

computed for E [14]. Performing this procedure through 

brute force search will not be efficient. Hence, Nectar 

stores fingerprints of the first and last extents of the input 

dataset in the cache entry and thereby computing H in 

linear time with the information. 

Nectar also implements a cache insertion policy for 

decision making since it is not practical to cache every 

successful candidate for caching determined. The final 

result of a computation is always cached as it is 

considered free to obtain, while sub-expression candidates 
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are cached only if they are deemed to be useful. Number 

of lookups and runtime information from the execution of 

sub-expressions are used for making that caching decision 

based on a benefit function. At the same time, the cache 

insertion policy is adaptive to storage space pressure, 

where if space is available, candidates will be cached 

more easily. 

3) Nectar Architecture 

All the derived datasets will consume large amount of 

storage space if left alone. Due to the nature of TidyFS, 

the programmers are not able to access actual location of 

derived datasets and are required to obtain necessary 

information from the cache server instead. As such, all the 

usage history and statistics can be collated at this single 

point and Nectar will perform monitoring for the 

automatic garbage collection of derived datasets deemed 

to have the lease value. At the same time, it is necessary to 

remove cache entries which are not useful as datasets 

referenced by these entries cannot be deleted. The cache 

eviction policy includes a cost-benefit analysis to 

determine which entries to remove as follows: 

, where S is the of the 

resulting derived dataset, ∆T is the elapsed time since it 

was last used, N is the number of times it has been used 

and M is the cumulative machine time of the computation 

that created it. 

IV. DISCUSSIONS 

This section will discuss MapReduce performance, 

handling stragglers, optimizing network topology, and 

optimizing data shuffle. 

A. MapReduce Performance 

The original MapReduce model itself is not without 

controversy. Michael Stonebraker et al. [8, 9] strongly 

argues with their benchmark results for MapReduce 

model against traditional parallel-RDBMS model that 

MapReduce does not offer significant better performance 

than the later. Although parallel-RDBMS model loads 

data slower than MapReduce model, the task was done 

faster in parallel-RDMBS model. It is observed that doing 

the task using traditional RDBMS, in addition to SQL, is 

much easier than writing user-defined functions for 

MapReduce, however MapReduce is easier to install and 

setup on parallel computing environment. The 

MapReduce model used in the benchmark is Apache 

implementation, Hadoop[5], however the authors believe 

that Google’s MapReduce also suffers the same problem. 

Although this benchmark argues over the effectiveness of 

MapReduce model, the authors believe that in some 

applications, MapReduce is feasible to use [8]. Such 

applications may include complex analytics jobs (as 

Google uses MapReduce in order to index websites [10]) 

and quick-and-dirty analysis jobs (as MapReduce is easier 

and faster to install and configure). 

B. Handling Stragglers 

Google MapReduce has a general mechanism to handle 

stragglers by using backup tasks. Although this 

mechanism has been tuned to control the usage of 

additional computational resources and significantly 

reduces the job completion times of large MapReduce 

operations, there may be some problems such as backup 

task placement and unnecessary duplication and resources 

incurred. Mantri [13] is designed around such cons as it 

attempts to understand the causes of outlier and find out 

the best course of action to alleviate the issue of 

stragglers. The decision is based on resources available 

and opportunity costs considerations as Mantri identifies 

and acts on outliers early in order to release resources for 

usage by other task and speed up job completion time 

resulting in an improvement over MapReduce 

implementation that only duplicates the in the progress 

tasks near the end of operation. The performance of 

Mantri has been shown to be practically feasible where 

Mantri sped up the median job by 32% in the live 

deployment of BING in the production cluster and 55% of 

the jobs experienced a net reduction in resources used. 

The network-aware placement of tasks also speeds up half 

of the reduce phases by at least 60% each and completion 

times due to recomputation of jobs are reduced by at least 

40% [13]. Nevertheless, an assumption is made where the 

cluster involved is homogenous where every available 

machine will have resources to perform the recomputation 

of a particular assigned task by Mantri. Therefore, a 

specialized cluster software will be necessary to manage 

the cluster of machines to enable load-balancing for 

Mantri’s performance to be stipulated above. 

C. Optimizing Network Topology 

On the other hand, Camdoop optimizes MapReduce 

model over the network topology. We find that this is not 

really a breakthrough over the original MapReduce model, 

but is only a minor tweak of the network topology, 

although the tweak improves the runtime. Camdoop also 

makes use of CamCube platform, requires the current 

network topology to be re-setup. This might not a feasible 

workout for current environment, but is doable for fresh 

environments. Also, as CamCube is part of Microsoft 

Research project that is still ongoing, we suggest that 

CamCube is not used in a productive environment, but 

instead in a research environment to exploit the 

opportunities further and finalize the topology. Although 

the authors of Camdoop specify that their model is 

beneficial, the side effects are yet to be seen. 

D. Optimizing Data Shuffle 

The four model discussed in this report optimize the 

original MapReduce in different ways. Sudo optimizes on 

user-defined functions and data-shuffling stage. We think 

that this optimization is good that it works on low-level 

MapReduce model; although the authors of Sudo test the 

model based on SCOPE programming model and make 
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some adjustments, it is not difficult to implement Sudo 

model into existing MapReduce model using any high-

level programming languages. The authors believe that 

Sudo will open many ways of further optimizations on 

parallel-computing world that not only learns the data 

from databases or distributed system, but also 

programming languages and system analysis. Therefore, 

we argue that Sudo is one of the feasible technique to 

develop optimal MapReduce model. However, Sudo 

model has some issues, that are discussed in the last 

section of this article. 

E. Redundant Computations and Data Management 

The MapReduce framework while simplifying large 

distribute data intensive applications, still lacks a scheme 

integrated to optimize data resources management. Hence 

Nectar aims to extend such functionality by avoiding 

redundant computations and removing datasets that are 

deemed to be not useful [5].  Nectar caches immediate 

results as well as programs that produced these derived 

results and hence cached results can be reused and if data 

that are removed and needed in the future, the programs 

can be rerun to provide for the results. Similarly, Nectar 

has been shown practical results through live deployment 

on 240-node research cluster as well as analytic results of 

execution logs from 25 large production clusters and on 

average across all clusters, more than 35% of the jobs 

benefit from caching [5]. However, Nectar only presents 

data management for derived datasets while primary 

datasets are not automatically deleted due to an inherent 

property of LINQ program [5]. As the operations scale 

accordingly, the condition of primary datasets growth 

which is not really taken care of in a comparable 

performance level relative to derived dataset may result in 

undesirable issues as well. 

V. CHALLENGES 

This section will discuss challenges on MapReduce as 

well as other improvement models already discussed in 

this article. 

A. MapReduce 

Since its publication, many researches and new 

products have been created in complement of MapReduce 

model. Google has developed and published Dremel in 

2010 to further reduce the execution time of MapReduce 

by a fraction [7]. As data tends to get bigger and bigger 

and computation gets more complicated, it is interesting to 

see whether the optimizations described in this report are 

still applicable. 

B. Sudo and Camdoop 

The authors of Sudo mention out some issues that they 

call “interesting and somewhat negative” results. First, 

SCOPE programming model is different from the 

traditional MapReduce model; this model allows changing 

the key for reduce and merge tasks. They only study this 

property on SCOPE model, thus we think there is still 

room for optimization for studies that exhibit similar 

optimization but on a more general environment (i.e. the 

MapReduce model itself). Second, for quite a few jobs, 

loading input data incurs the most I/O cost. This is due to 

loading more data than necessary. Since the occurrence 

are very small, we think that this is not an issue. Third, for 

some jobs, the first shuffling-phase dominates the 

shuffling cost. This is due to the fact that the output is 

significantly smaller in number than the input. The 

authors mention a pipeline opportunity to be sought. 

Fourth, the rule-based deduction can be improved by 

making the analysis context- and path-sensitive. 

Nevertheless, this model gives quite an improvement to 

the original MapReduce model. If it is applicable to any 

high-level programming language, distributed systems 

will gain more benefit from it. 

Meanwhile, the authors of Camdoop have tested that 

Camdoop over CamCube topology has a very significant 

improved performance over traditional MapReduce 

models, such as Apache Hadoop and Dryad (now known 

as LINQ to HPC [4]). They show that in every case, even 

with small input data, Camdoop over CamCube 

outperforms both platforms in terms of shuffle and reduce 

times. However, there are newer versions of these two 

platforms (at the time of writing, there are multiple newer 

versions of Apache Hadoop [5] and Microsoft now 

focuses to bringing Apache Hadoop into Windows 

Servers and Azure [4, 6]), so a reevaluation might be 

needed to see whether the Camdoop optimization over 

traditional MapReduce still holds. The authors also note 

out that currently Camdoop is not open for some 

optimizations on traditional MapReduce model, such as 

support for iterative jobs, incremental computations, and 

pipelining of Map or Reduce phase. However, they 

believe that these optimizations are quite non-trivial and 

may be incorporated into Camdoop model in the future. 

C. Mantri and Nectar 

Based on the way that Mantri is structured, it can be 

seen as another layer over MapReduce which performs 

this detection and handling of stragglers. Perhaps, with 

such enhanced understanding of the stragglers problem, 

the next step can to deviate from enforcing a layer of 

“policy” and to change some inherent properties of 

MapReduce to better mitigate the problem of stragglers 

across production clusters. 

A common observation is that the caching mechanism 

of Nectar is dependent on the nature of the computation 

and hence an assumption made would be that the results 

of DryadLINQ applications are deterministic. Therefore, 

computations do not produce the same result all the time 

may cause a failure of the caching operations. This will 

definitely introduce increased complexity should the 

algorithm be modified and improved upon to cater for 

such computations. 
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D. Real Time Woes 

MapReduce excels when general query mechanism is 

carried out on large volume of data. However, it will fail 

to perform as well on applications which require real-time 

processing [15]. As described in section 2, MapReduce 

programming model involved a Map pre-processing step 

and a Reduce data aggregation step. While Map step can 

be applied on real-time streaming data, Reduce step may 

not be able to work properly as all input data for each 

unique data key are required to be mapped and collated 

first. Although there are techniques to overcome this 

limitation, there will be a new set of problems brought 

forth to the table. 

VI. CONCLUSION 

In this article, we have discussed MapReduce as a data 

processing tool used in Cloud Computing for the big data 

involved in applications of today. MapReduce is no doubt 

an excellent tool which provides great scalability and fault 

tolerance with simplicity. However, it does come with a 

set of limitations in its framework, and we have studied in 

details some optimization and extensions to overcome 

these limitations as presented in recent approaches. 

Nonetheless, challenges and improvements remain for 

these enhanced models, and the paradigm that MapReduce 

governed by more new and upcoming complicated 

policies could possibly a step backwards remains an 

interesting one. 
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