

(https://www.sciencedirect .com/science/journal /03605442) ISSN: 0360-5442

The International Journal

> Supports Open Access (http://www.elsevier.com/journals/energy/0360-5442/open-access-options)

Editor-in-Chief: Henrik Lund (https://www.journals.elsevier.com:443/energy/editorialboard/henrik-lund)

> View Editorial Board (https://www.journals.elsevier.com:443/energy/editorial-board)

Submit Your Paper

View Articles (https://www.sciencedirect.com/science/journal/03605442)

Guide for Authors

```
Abstracting/ Indexing (http://www.elsevier.com/journals/energy/0360-5442/abstracting-indexing)
```


> Data in Brief co-submission (https://www.elsevier.com/authors/author-services/research-elements/data-

articles/DIB-co-submission)

> Interactive Plot Viewer (https://www.elsevier.com/authors/author-services/enrichments/iplots)

Related Links ()

- > Author Stats (https://www.mendeley.com/stats/welcome?dgcid=journals_referral_related-links) ①
- > Publishing Campus (https://www.publishingcampus.elsevier.com)
- > Author Services (https://www.elsevier.com/authors/author-services)

Energy Editorial Board

Editor-in-Chief

Henrik Lund (https://www.journals.elsevier.com:443/energy/editorialboard/henrik-lund) Department of Development and Planning, Aalborg University, Fibigerstræde 13, DK-9220 Aalborg, Denmark Email Henrik Lund (https://www.journals.elsevier.com:443/energy/editorialboard/henrik-lund)

Deputy Editors-in-Chief

Soteris Kalogirou (https://www.journals.elsevier.com:443/energy/editorialboard/soteris-kalogirou) Cyprus University of Technology, Lemesos, Cyprus Email Soteris Kalogirou (https://www.journals.elsevier.com:443/energy /editorial-board/soteris-kalogirou)

Ruzhu Wang (https://www.journals.elsevier.com:443/energy/editorialboard/ruzhu-wang) Shanghai Jiao Tong University, Shanghai, China Email Ruzhu Wang (https://www.journals.elsevier.com:443/energy/editorialboard/ruzhu-wang)

Subject Editors

Gianfranco Chicco (https://www.journals.elsevier.com:443/energy/editorialboard/gianfranco-chicco) Politecnico di Torino, Torino, Italy

Neven Duic (https://www.journals.elsevier.com:443/energy/editorialboard/neven-duic) Sveučilišta u Zagrebu, Zagreb, Croatia

Paula Ferreira University of Minho, Guimarães, Portugal

Yunho Hwang University of Maryland, College Park, Maryland, USA

Jiří Jaromír Klemeš (https://www.journals.elsevier.com:443/energy/editorialboard/jiri-jaromir-klemes) Brno University of Technology (VUT Brno), Brno, Czech Republic

Lingai Luo (https://www.journals.elsevier.com:443/energy/editorialboard/lingai-luo) Centre National de la Recherche Scientifique (CNRS), Nantes, France

Giampaolo Manfrida

Università degli Studi di Firenze, Firenze, Italy

Silvia Nebra Federal University of ABC (UFABC), Santo André, Brazil

Abdul Ghani Olabi (https://www.journals.elsevier.com:443/energy/editorialboard/abdul-ghani-olabi) University of the West of Scotland, Paisley, Scotland, UK

Xunmin Ou Tsinghua University, Beijing, China

Krzysztof Ptasinski Technische Universiteit Eindhoven, Eindhoven, Netherlands

Isabel Soares (https://www.journals.elsevier.com:443/energy/editorialboard/isabel-soares) Universidade do Porto, Porto, Portugal

Wojciech Stanek (https://www.journals.elsevier.com:443/energy/editorialboard/wojciech-stanek) Silesian University of Technology, Poland

Energy Editorial Board

https://www.journals.elsevier.com/energy/editorial-board

Jesse Thé (https://www.journals.elsevier.com:443/energy/editorial-board/jessethe)

University of Waterloo, Waterloo, Ontario, Canada

Petar Varbanov (https://www.journals.elsevier.com:443/energy/editorialboard/petar-varbanov) Pázmány Péter Catholic University, Budapest, Hungary

Assistant Editors

Rafaela Agathokleous

Cyprus University of Technology, Limassol, Cyprus Email Rafaela Agathokleous (https://www.journals.elsevier.com:443/energy /editorial-board/rafaela-agathokleous)

Pernille S. Andersen

Aalborg University, Aalborg, Denmark Email Pernille S. Andersen (https://www.journals.elsevier.com:443/energy /editorial-board/pernille-s-andersen)

Lars Grundahl

Aalborg University, Denmark Email Lars Grundahl (https://www.journals.elsevier.com:443/energy/editorialboard/lars-grundahl)

Weili Luo

Shanghai Jiaotong University, Shanghai, China Email Weili Luo (https://www.journals.elsevier.com:443/energy/editorial-board/weili-luo)

Mette Reiche Sørensen

Aalborg University, Aalborg, Denmark Email Mette Reiche Sørensen (https://www.journals.elsevier.com:443/energy/editorial-

Term Ending 2017

Linda Barelli (https://www.journals.elsevier.com:443/energy/editorialboard/linda-barelli) University of Perugia, Perugia, Italy

Robert Boehm University of Nevada, Las Vegas, Nevada, USA

Zeljko Bogdan (https://www.journals.elsevier.com:443/energy/editorialboard/zeljko-bogdan) Sveučilišta u Zagrebu, Zagreb, Croatia

Maria de Graca Carvalho Universidade de Lisboa, São João De Deus, Lisboa, Portugal

Christos Frangopoulos (https://www.journals.elsevier.com:443/energy /editorial-board/christos-frangopoulos) National Technical University of Athens (NTUA), Athens, Greece

Mejdi Jeguirim (https://www.journals.elsevier.com:443/energy/editorial-board/mejdijeguirim)

Université de Haute-Alsace, Mulhouse, France

Mark Kaiser Louisiana State University, Baton Rouge, Louisiana, USA

Natasa Markovska Macedonian Academy of Sciences and Arts, Skopje, Macedonia

Philippe Mathieu (https://www.journals.elsevier.com:443/energy/editorialboard/philippe-mathieu) Université de Liège, Waremme, Belgium

Alberto Mirandola Università degli Studi di Padova, Padova, Italy

Jyoti Parikh Integrated Research and Action for Development (IRADe), Malviya nagar, New Delhi, India

Roberto Schaeffer (https://www.journals.elsevier.com:443/energy/editorialboard/roberto-schaeffer) Federal University of Rio de Janeiro, Rio De Janeiro, Brazil

Enrico Sciubba Università di Roma "La Sapienza", Roma, Italy

Ram Shrestha Asian Institute of Technology, Pathumthani, Thailand

George Tsatsaronis Technische Universität Berlin (TUB), Berlin, Germany

John Twidell AMSET Centre, Horninghold, UK

Moran Wang Tsinghua University, Beijing, China

Peng Zhang (https://www.journals.elsevier.com:443/energy/editorialboard/peng-zhang) Shanghai Jiao Tong University, Shanghai, China

Term Ending 2018

Mustafa Acaroğlu (https://www.journals.elsevier.com:443/energy/editorial-board/mustafa-acaroglu)

Mariusz Adamski Bialystok University of Technology, Bialystok, Poland

Kimon Antonopoulos (https://www.journals.elsevier.com:443/energy/editorialboard/kimon-antonopoulos) National Technical University of Athens (NTUA), Athens, Greece

Brian Elmegaard Danmarks Tekniske Universitet (DTU), Kgs. Lyngby, Denmark

José Goldemberg (https://www.journals.elsevier.com:443/energy/editorialboard/jose-goldemberg) Universidade de São Paulo (USP), Sao Paulo, Brazil

Jürgen-Friedrich Hake Forschungszentrum Jülich GmbH, Jülich, Germany

Masaru Ishida Tokyo Institute of Technology, Midori-ku, Yokohama, Japan

Hussam (Sam) Jouhara Brunel University London, Uxbridge, UK

Willett Kempton (https://www.journals.elsevier.com:443/energy/editorialboard/willett-kempton) University of Delaware, Newark, Delaware, USA

Venkat Krishnan National Renewable Energy Laboratory (NREL), Golden, Colorado, USA

Christos Markides (https://www.journals.elsevier.com:443/energy/editorialboard/christos-markides) Imperial College London, London, UK

Alan Meier (https://www.journals.elsevier.com:443/energy/editorial-board/alanmeier) Lawrence Berkeley National Laboratory, Berkeley, California, USA

Tatiana Morosuk (https://www.journals.elsevier.com:443/energy/editorialboard/tatiana-morosuk) Technische Universität Berlin (TUB), Berlin, Germany

Constantine D. Rakopoulos (https://www.journals.elsevier.com:443/energy /editorial-board/constantine-d-rakopoulos) National Technical University of Athens (NTUA), Athens, Greece

Claudia Sheinbaum-Pardo

National Autonomous University of Mexico, Mexico City, Mexico

Sergio Ulgiati (https://www.journals.elsevier.com:443/energy/editorialboard/sergio-ulgiati) Università degli Studi di Napoli Parthenope, Napoli, Italy

Vittorio Verda Politecnico di Torino, Torino, Italy

William Worek Texas A&M University at Kingsville, Kingsville, Texas, USA

Ernst Worrell (https://www.journals.elsevier.com:443/energy/editorialboard/ernst-worrell) Utrecht University, Utrecht, Netherlands

Jesús Xamán National Center for Research and Technology Development (CENIDET), Cuernavaca, Morelos, Mexico

Na Zhang (https://www.journals.elsevier.com:443/energy/editorial-board/nazhang) Chinese Academy of Sciences (CAS), Beijing, China

Term Ending 2019

Naim Hamdia Afgan Universidade de Lisboa, Lisbon, Portugal

Mohammad A. Al-Nimr (https://www.journals.elsevier.com:443/energy /editorial-board/mohammad-a-al-nimr) Jordan University of Science and Technology, Irbid, Jordan

Beng Wah Ang National University of Singapore, Singapore, Singapore

Giorgio Besagni Politecnico di Milano, Milano, Italy

S.H. Chan (https://www.journals.elsevier.com:443/energy/editorial-board/shchan) Yuan Ze University, Taoyuan, Taiwan, ROC

Silvio De Oliveira, Jr (https://www.journals.elsevier.com:443/energy/editorial-board/silvio-deoliveira-jr)

Universidade de São Paulo (USP), Sao Paulo, Brazil

https://www.journals.elsevier.com/energy/editorial-board

Daniel Favrat (https://www.journals.elsevier.com:443/energy/editorialboard/daniel-favrat) École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Simon Harvey (https://www.journals.elsevier.com:443/energy/editorialboard/simon-harvey) Chalmers University of Technology, Göteborg, Sweden

Sotirios Karellas (https://www.journals.elsevier.com:443/energy/editorialboard/sotirios-karellas) National Technical University of Athens (NTUA), Zografou, Greece

Signe Kjelstrup (https://www.journals.elsevier.com:443/energy/editorialboard/signe-kjelstrup) Norwegian University of Science & Technology NTNU, Trondheim, Norway

Zygmunt Kolenda AGH University of Science & Technology, Kraków, Poland

Reiner Kümmel Julius-Maximilians-Universität Würzburg, Würzburg, Germany Qiang Liao Chongqing University, Chongqing, China

Tyrone Lin National Dong Hwa University, Shou-Feng, Hualien, Taiwan

Noam Lior (https://www.journals.elsevier.com:443/energy/editorialboard/noam-lior) University of Pennsylvania, Philadelphia, Pennsylvania, USA

Adel Mellit University of Jijel, Jijel, Algeria

Michael Moran The Ohio State University, Columbus, Ohio, USA

Luis Serra (https://www.journals.elsevier.com:443/energy/editorial-board/luisserra) Universidad de Zaragoza, Zaragoza, Spain

Vladimir Stevanovic University of Belgrade, Belgrade, Serbia

Arnaldo Walter

14 dari 17

https://www.journals.elsevier.com/energy/editorial-board

Universidade Estadual de Campinas (UNICAMP), Sao Paulo, Brazil

Chi-Keung Woo

Chi-Keung Woo Hong Kong Institute of Education, Hong Kong

Jinyue Yan (https://www.journals.elsevier.com:443/energy/editorialboard/jinyue-yan) KTH Royal Institute of Technology, Stockholm, Sweden

Ø

Book Review Panel

Henrik Lund (https://www.journals.elsevier.com:443/energy/editorialboard/henrik-lund)

Soteris Kalogirou (https://www.journals.elsevier.com:443/energy/editorialboard/soteris-kalogirou)

Krzysztof Ptasinski

John Twidell

Ernst Worrell (https://www.journals.elsevier.com:443/energy/editorialboard/ernst-worrell)

Mohammad A. Al-Nimr (https://www.journals.elsevier.com:443/energy /editorial-board/mohammad-a-al-nimr)

Energy

Readers

View Articles (https://www.sciencedirect.com/science/journal/03605442) Volume/ Issue Alert (http://www.sciencedirect.com/science/alerts)

Authors (http://www.elsevier.com/authors/home) Author Information Pack (http://www.elsevier.com/journals/energy/0360-5442?generatepdf=true) Submit Your Paper (http://ees.elsevier.com/egy/) Track Your Paper (http://help.elsevier.com/app/answers/detail/a_id/89/p/8045/) Early Career Resources (http://www.elsevier.com/early-career-researchers/training-and-workshops) Webshop (http://webshop.elsevier.com/) Customer Service (https://service.elsevier.com)

Librarians (http://www.elsevier.com/librarians/home) Ordering Information and Dispatch Dates (http://www.elsevier.com/journals/energy/0360-5442/order-journal) Abstracting/ Indexing (http://www.elsevier.com/journals/energy/0360-5442/abstracting-indexing)

Editors (http://www.elsevier.com/editors/home) Publishing Ethics Resource Kit (http://www.elsevier.com/editors/perk) Support (http://service.elsevier.com/app/answers/list/supporthub/publishing/p/10593/) Guest Editors (http://www.elsevier.com/editors/guest-editors)

Reviewers (http://www.elsevier.com/reviewers/home) Reviewer Guidelines (http://www.elsevier.com/reviewersguidelines) Log in as Reviewer (http://ees.elsevier.com/egy/login.asp)

Advertisers Media Information (https://www.elsevier.com/advertisers)

Societies (http://www.elsevier.com/societies/home)

(https://www.elsevier.com)

SEVIER \mathbf{FI}

Copyright © 2017 Elsevier B.V.

Advertising (https://www.elsevier.com/advertisers/home) - Careers (https://www.elsevier.com/careers/careers-with-us) -Feedback (https://www.elsevier.com/about/feedback) - Site map (https://www.elsevier.com/sitemap) - Terms and Conditions (https://www.elsevier.com/legal/elsevier-website-terms-and-conditions) - Privacy Policy (https://www.elsevier.com/legal /privacy-policy)

Cookies are used by this site. To decline or learn more, visit our Cookies (https://www.elsevier.com/legal/use-of-cookies) page.

Wiew PDF

AAEM role on biomass pyrolysis was investigated to answer to the several open Volumes 101 - 110 (2016) queries Volumes 91 - 100 (2015 - 2016) Salts impregnation by ionic exchange mechanism preserves the biomass . structure. Volumes 81 - 90 (2015) AAEM affects both the chars morphology and the pyrolysis products distribution. . Volumes 71 - 80 (2014 - 2015) Alkaline metals promote the decomposition of cellulose and hemicellulose Volumes 61 - 70 (2013 - 2014) polymers. Volumes 51 - 60 (2013) Alkaline earth metals inhibit the hemicellulose thermal degradation . Volumes 41 - 50 (2012 - 2013) Optimization of transesterification process for Ceiba pentandra oil: A Volumes 31 - 40 (2006 - 2012) comparative study between kernel-based extreme learning machine and Volumes 21 - 30 (1996 - 2005) artificial neural networks Original Research Article Pages 24-34 Volumes 11 - 20 (1986 - 1995) F. Kusumo, A.S. Silitonga, H.H. Masjuki, Hwai Chyuan Ong, J. Siswantoro, T.M.I. Mahlia Close research highlights PDF (1801 K) OView PDF Abstract Volumes 1 - 10 (1976 - 1985) Highlights C. pentandra oil was explored as the potential feedstock for biodiesel production. Kernel extreme learning machine and artificial neural network were used for modelling. Kernel-based extreme learning machine was superior to artificial neural n etw ork The predicted methyl ester yield by kernel extreme learning machine was 99.8%. . The properties of biodiesel produced met ASTM D6751 and EN 14214 stan dards. Experimental and modeling investigation of an organic Rankine cycle system based on the scroll expander Original Research Article Pages 35-49 Zheng Miao, Jinliang Xu, Kai Zhang PDF (3112 K) Abstract Close research highlights Highlights An ORC model is developed to analyze the mismatch among different components Effects of non-condensable gas and environment conditions are considered. System performance can be significantly improved after the optimization. Expander built-in volume ratio and backpressure are concerns of cycle design. The environment temperature and humidity strongly affect the ORC performance. Energy efficiency of perennial herbaceous crops production depending on the type of digestate and mineral fertilizers Original Research Article Pages 50-60 Mariusz J. Stolarski, Michał Krzyżaniak, Kazimierz Warmiński, Józef Tworkowski, Stefan Szczukowski, Ewelina Olba-Zięty, Janusz Gołaszewski Abstract Close research highlights PDF (551 K) OView PDF Highlights The total energy input ranged widely from 2.83 to 59.08 GJ ha⁻¹. The highest energy gain was for *Helianthus salicifolius* (139.6 GJ ha⁻¹ year⁻¹). Better energy efficiency ratios for all species were at the control plots. The highest energy ratio (19.1) was obtained for Helianthus salicifolius. . Fertilisers resulted in lower energy efficiency of crops production.

> Thermal investigation of a PEM fuel cell with cooling flow field Original Research Article

•	Inights
	This paper provides a new way to study temperature distribution of PEM catalyst.
•	Both electrochemistry and cooling flow field effect were simultaneously simulated.
•	The study was proposed by heat flux contours & index of uniformity temperature (IUT).
•	IUT was 24% improved in serpentine cooling channel than parallel one.
har ydro ages luwa Abs onter	acterization of solid fuel chars recovered from microwave thermal carbonization of human biowaste Original Research Article 74-89 sola O.D. Afolabi, M. Sohail, C.L.P. Thomas tract Close research highlights PDF (5410 K) Supplementary t Oview PDF
Hiç	hlights
•	Microwave hydrothermal carbonization can convert human biowaste to solid fuel chars.
•	Physicochemical, structural, energetic and combustion properties of chars are enhanced.
•	Higher heating value (HHV) of chars recovered increased by up to $41.5\%.$
•	HHV of chars – up to 25.6 MJ/kg – is greater than that of low-ranking coals/fuels.
	Processing human biowaste into solid fuel is promising for energy applications.
ages nenju Abs	90-702 In Ma, Rui Yan, Natasa Nord tract Close research highlights PDF (2103 K) OView PDF
Hiç	hlights
•	A cluster analysis strategy was developed to identify building typical load profiles.
•	Pearson correlation coefficient-based distance was used as the dissimilarity measure.
•	Differences between this strategy and ED-based approaches were demonstrated
	domonorated.
•	Information discovered matched with the practical findings from building operation.

Analytical method is proposed to determinate of decrement factor and time lag.
• Decrement factor and time lag determined for climate of Iran.
Effects of combined convection and radiation heat transfer coefficients.
• Effect of insulation in walls studied on time lag and the decrement factor.
Performance evaluation of CO2 Huff-n-Puff and continuous CO2 injection in tight oil reservoirs Original Research Article Pages 181-192 Pavel Zuloaga, Wei Yu, Jijun Miao, Kamy Sepehrnoori Abstract Close research highlights PDF (4789 K) O View PDF
Highlights
 A field-scale numerical model to simulate CO₂-EOR in tight oil is developed.
 Comparison of CO₂ Huff-n-Puff and flooding scenarios in the Bakken formation is performed.
Sensitivity studies are performed to quantify the key parameters.
 Fracture half-length and permeability are important in designing CO₂-EOR process.
Towards energy efficient styrene distillation scheme: From grassroots design to retrofit Original Research Article Pages 193-205
Chengtian Cui, Xingang Li, Dongrong Guo, Jinsheng Sun Abstract Close research highlights PDF (3838 K) O View PDF
Highlights
Energy efficient distillation technologies are applied on EB/SM column.
Innovative retrofit scenarios with attractive payback periods are proposed.
• Significant reduction in energy consumption as well as total annualized cost.
Optimization of advanced distillation schemes through sensitivity analysis.
Implementation of a dynamic energy management system using real time pricing and local renewable energy generation forecasts Original Research Article Pages 206-220 Onur Elma, Akın Taşcıkaraoğlu, A. Tahir İnce, Uğur S. Selam oğulları Abstract Close research highlights PDF (2739 K) O View PDF
Highlights
• A HEM approach is presented for decreasing the energy cost in a smart house
The HEM approach considers both load and source side dynamics with a 5-min
 Consumer preferences, load demand, battery SOC and electricity tariff are taken into account.
 Expected renewable power generations are also considered in the scheduling process.
• The effectiveness of the proposed HEM approach is experimentally validated.
Effect of the ambient conditions on gas turbine combined Open Access cycle power plants with post-combustion CO ₂ capture Original Research Article <i>Pages 221-233</i> Abigail González-Díaz, Agustín M. Alcaráz-Calderón, Maria Ortencia González-Díaz, Angel Méndez-Aranda, Mathieu Lucquiaud, Jose Miguel
Abstract Close research highlights PDF (2830 K) Wiew PDF
Highlights
Ambient temperature is affects the power generating and the efficiency of power plant.

Grid parity varies across regions based on solar radiation and electricity prices.

	 Policy implications are given to promote market deployment of China's PV industry.
E V F	Experimental investigation of the cyclic pitch control on a horizontal axis vind turbine in diagonal inflow wind condition Original Research Article Pages 269-278 e Quang Sang Maeda Takao, Yasunari Kamada, Qing'an Li
L	Abstract Close research highlights PDF (2731 K) Image: Close research highlights
	Highlights
	• Swash plate is used to adjust the blade pitch angle.
	 Aerodynamic force of FOWT is investigated in the diagonal inflow wind condition.
	• Power and thrust coefficients were almost constant regardless of the amplitude of the periodic change.
	• Cyclic pitch control showed the possibility of reducing the load vibrations acting on the wind turbine.
	Load change on yaw system can be controlled by cyclic pitch control.
A F C	A novel approach to energy harvesting from vehicle suspension system: Half-vehicle model Original Research Article Pages 279-288 Chongfeng Wei, Hamid Taghavifar Abstract Close research highlights PDF (3235 K) O View PDF
	Highlights
	 Energy harvesting of half vehicle model for harmonic and random road excitations.
	The effect of road frequency, velocity and road amplitude on energy harvesting.
	 Studying the energy harvesting of vehicle bounce and pitch motions (4DOF system).
	 For the random excitation, smooth highway and highway with gravels were studied.
	 Pitch motion of vehicle has a considerable effect on the potential harvested power.
T F Io	The impact of CO ₂ -costs on biogas usage Original Research Article Pages 289-300 Ia Græsted Jensen, Lise Skovsgaard Abstract Close research highlights PDF (913 K) View PDF
	Understand
	Socio-economic analysis of the usage of biogas and biomethane in the energy system.
	Natural gas and biomethane technologies are combined in Balmorel.
	A common target for biogas and biomethane is added to Balmorel.
	 Socio-economic analysis of biogas related to several CO₂-externality cost estimates.
	• The CO ₂ -cost has to be very high in order for biogas to be worthwhile.
E F C Y	Experimental study on co-pyrolysis and gasification of biomass with leoiled asphalt Original Research Article Pages 301-310 Dian Zhang, Qingfeng Li, Linxian Zhang, Zhongliang Yu, Xuliang Jing, Zhiqing Wang, Yitian Fang, Wei Huang
	Abstract Close research highlights PDF (3338 K) (3) View PDF
	Highlights
	 Co-pyrolysis of biomass and DOA does not show synergetic effect on the char yield.

DOA melt and stuck to biomass surface causes the char an obvious

agglom eration.
• Synergetic effect is observed during gasification of the co-pyrolysis chars.
• Co-gasification of DOA and biomass is a good choice for disposing DOA.
Estimating the benefits of vehicle-to-home in islands: The case of the Canary Islands Original Research Article <i>Pages 311-322</i> A. Colmenar-Santos, Carlos de Palacio-Rodriguez, Enrique Rosales-Asensio, David Borge-Diez Abstract Close graphical abstract Research highlights PDF (1906 K) Oview PDF
Estimating the banditis of vehicle-to-home in islands: The case of the Canary Islands
Dynamic modeling of gravity energy storage coupled with a PV energy plant Original Research Artide Pages 323-335 Asmae Berrada, Khalid Loudiyi, Raquel Garde Abstract Close research highlights PDF (2727 K) ③ View PDF
Highlights
Dvn amic behavior of gravity storage is analyzed.
 Operation modeling of a gravity energy storage coupled with a PV plant.
 Validation of the model by a case study.
Storage system response to load variation is studied.
Life cycle building impact of a Middle Eastern residential neighborhood Original Research Article <i>Pages 336-348</i> Catherine De Wolf, Carlos Cerezo, Zainab Murtadhawi, Ali Hajiah, Adil Al Mumin, John Ochsendorf, Christoph Reinhart Abstract Close research highlights PDF (2336 K) © View PDF
Highlights
Embodied and operational carbon simulation of buildings.
 Urban modeling simulation methodology on a neighborhood scale.
 Middle Eastern residential neighborhood case study: Al-Qādisiyyah.
Recommendations/strategies to lower environmental impact of Middle Eastern cities.
A new optimal power flow approach for wind energy integrated power systems Original Research Article <i>Pages 349-359</i> Shima Rahmani, Nima Amjady Abstract Close research highlights PDF (902 K) Oview PDF

	Highlights
	A new scenario generation approach is presented.
	A new wind power integrated optimal power model is proposed.
	A new out-of-sample analysis is presented.
	• The effectiveness of the proposed model is extensively illustrated.
	Hybrid entropy – TOPSIS approach for energy performance prioritizationin a rectangular channel employing impinging air jets Original Research ArticlePages 360-368Ranchan Chauhan, Tej Singh, Avinash Tiwari, Amar Patnaik, N.S. ThakurAbstractClose research highlightsPDF (853 K)O View PDF
	Highlights
	 Multi criteria decision approach is implemented for energy performance prioritization.
	Nusselt number and friction factor are evaluated at different control factor combinations.
	• The Entropy method is powerful tool for weight determination of control factors.
	Off-design analysis of a Hybrid Rankine-Brayton cycle used as the power block of a solar thermal power plant Original Research Article Pages 369-381
	Marta Muñoz, Antonio Rovira, Consuelo Sánchez, María José Montes Abstract Close research highlights PDF (2988 K) Image: Consult of the second se
	Highlights
	 The off-design performance of a Balanced Hybrid Rankine-Brayton cycle is analyzed.
	• The cycle is integrated in a STPP with parabolic trough collectors (HTF at 670 K).
	• Working fluid selection is key issue to guarantee suitable off-design operation.
	Several organic fluids show a suitable performance, even under stream conditions.
	• Propane is a good option with efficiencies from 41.4 to 30.2% (yearly operation).
	Modeling of the drying process of apple slices: Application with a solar dryer and the thermal energy storage system Original Research Article <i>Pages 382-391</i> Halii Atalay, Mustafa Turhan Çoban, Olcay Kıncay
	nignlights
	A solar dryer system was developed to determine the drying kinetics of apple.
	A mathematical model is presented to predict the drying curve in drying process.
	Experiments in the solar dryer are used to validate the model.
	 Thermal energy storage was used to ensure the continuity of the drying process.
-	Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China Original Research Article Pages 392-399 Xiaoying Guo, Ching-Cheng Lu, Jen-Hui Lee, Yung-Ho Chiu
	Abstract Close research highlights PDF (369 K) View PDF
	Highlights
	• To evaluate inter-temporal efficiency based on OECD countries and China.
	 The effects of the undesirable output and carry-over variable in order to rank the OECD countries and China

•	An optimal sizing method for combined cooling, heat and power projects is proposed.
	Combined cooling, heat and power projects at district level still require support.
•	Public support has to be specifically designed per project.
Novel electri <i>Pages</i> Bin Shi Abst	design of chemical looping air separation process for generating city and oxygen Original Research Article 449-457 , Erdorng Wu, Wei Wu ract Close research highlights PDF (1718 K) OView PDF
Hia	hliahts
•	The continuous- and batch-types CLAS processes are developed in Aspen Plus [®] .
•	The integration of CLAS and OCM becomes the stand-alone oxygen production system.
•	The oxygen production cost by the Design 2 is cheaper than it by the conventional design.
•	A suitable combination of oxygen carriers and inert binder ensures near-zero \mbox{CO}_2 emissions.
Suppo the ba Pages Katarin Traebo	orting involvement of electric vehicles in distribution grids: Lowering arriers for a proactive integration Original Research Article 458-468 a Knezović, Mattia Marinelli, Antonio Zecchino, Peter Bach Andersen, Chresten It
Abst	ract Close research highlights PDF (2535 K) OView PDF
Hig	hlights
•	Proactive integration of EVs could alleviate future grid problems.
•	A proper regulatory framework to allow EV distribution grid services is missing.
•	Definition of theoretical and practical flexibility attributes is provided.
•	Identification of both technological and non-technological barriers.
•	Policy recommendations for lowering the barriers are drawn.
The b netwo Pages D.P. So Abst	enefits of cooperation in a highly renewable European electricity Vrk Original Research Article 469-481 chlachtberger, T. Brown, S. Schramm, M. Greiner ract Close research highlights PDF (1497 K) O View PDF
Hig	hlights
•	Optimal transmission expansion allows highly renewable systems at current cost levels.
•	Restricting transmission expansion leads to a non-linear cost increase by up to 30%.
•	A relatively moderate amount of transmission already locks in most of the benefits.
•	Wind generation is mostly smoothed by transmission, solar PV by shortterm storage.
Invest exper Pages Qing'ar Abst	igation of wake effects on a Horizontal Axis Wind Turbine in field iments (Part I: Horizontal axis direction) Original Research Article <i>482-492</i> I Li, Takao Maeda, Yasunari Kamada, Naoya Mori ract Close research highlights PDF (2693 K) OView PDF
Hig	hlights
•	Effects of turbulence intensity and wind shear were compared by field experiments.

An ultrasonic current meter (SAT-550) was used for the wake measurement.
 Maximum velocity deficit in the wake was reduced with the increase of the turbulence intensity.
• As the increase of the wind shear index, the maximum velocity deficit in the wake was increased.
• Maximum velocity deficit in the wake was increased with the increase of the tip speed ratio.
Theoretical evaluation of the organocatalytic behavior of the negatively charged carbon atom in a fused five-member ring in carbon dioxide transformation to methanol Original Research Article Pages 493-503Hossein Sabet-Sarvestani, Mohammad Izadyar, Hossein Eshghi
Highlights
 In this work, the performances of five kinds of the carbon-centered organocatalysts have been investigated, theoretically.
 Different aspects of the proposed mechanism on the CO₂ reduction to methanol have been analyzed.
 High local nucleophilicity index of the carbon atom corresponds to low activation energy of CO₂ activation.
 NICS-XY scan was applied for investigation of the aromaticity character in the studied organocatalysts.
A good relationship between the aromaticity and nucleophilicity character of the organocatalysts was obtained.
Stability and availability evaluation of underground strategic petroleum reserve (SPR) caverns in bedded rock salt of Jintan, China Original Research Article Pages 504-514 Nan Zhang, Xilin Shi, Tongtao Wang, Chunhe Yang, Wei Liu, Hongling Ma, J.J.K. Daemen Abstract Close research highlights PDF (2650 K) Supplementary content Image: View PDF
Highlights
Stability and availability of China's first SPR salt caverns are investigated.
Jintan salt mine has a good feasibility for the SPR caverns construction.
 Operating parameters are proposed to ensure the safety of SPR salt caverns.
 Many abandoned salt caverns of China can be rebuilt as the SPR caverns.
 Interlayers are beneficial for the stability of SPR caverns in Jintan bedded salt formation.
Exergy, economic and environmental analysis and multi-objective optimization of a SOFC-GT power plant Original Research Article Pages 515-531 Moein Shamoushaki, M.A. Ehyaei, Farrokh Ghanatir Abstract Close research highlights PDF (991 K) OView PDF
Highlights
 Exergy, economic and environmental analysis of a SOFC-GT performs.
Optimization performs by NSGA-II and interactive fuzzy multi-objective method
Sensitivity analysis of change in objective functions with fuel unit cost
Investigation of current density changes impact on cell voltage and voltage losses.
 Studying of thermodynamic parameters changes on exergy efficiency and output power.

	Highlights
	Savonius turbine suffers low efficiency problem.
	This research paper proposes a novel system of ducted nozzle configuration around Savonius rotor.
	 In this study, six different duct nozzle designs had been investigated numerically.
	The ducted nozzle shields the returning blade, thus reducing the reversing torque of the turbine.
	• The maximum power coefficient of the ducted nozzle turbine was increased by 78% compared to the conventional rotor.
	Design optimization method for tube and fin latent heat thermal energy storage systems Original Research Article Pages 585-594 Raif Raud. Michael E. Cholette, Soheila Riahi, Erank Bruno, Wasim Saman, Geoffrey
	Will, Theodore A. Steinberg Abstract Close research highlights PDF (682 K)
	Highlights
	 New method to minimize the cost of latent heat energy storage systems is developed.
	 An analytic solution for the time to melt of a PCM in a heat exchanger is developed.
	• The relationships between the optimal cost and design choices are explored.
	EValuation of building energy efficiency investment options Open Access for the Kingdom of Saudi Arabia Original Research Article Pages 595-610 Moncef Krarti, Kankana Dubey, Nicholas Howarth Abstract Abstract Close research highlights PDF (3254 K)
	Highlights
	 Benefits of energy efficiency programs for KSA new and existing buildings are evaluated.
	 Optimization based analysis has been used in the analysis using a wide range of technologies.
	• Significant benefits can incur form large scale building energy retrofit programs.
]	Towards energy landscapes – "Pathfinder for sustainable Open Access wind power locations" Original Research Article Pages 611-621 Marcus Eichhorn, Philip Tafarte, Daniela Thrän Abstract Class research hisblights PDE (2022 K) View PDE
	We developed a multi-criteria optimisation for wind power allocation for multiple scales
	 System friendly wind power technology outperforms standard technology.
	 For both technologies, trade-offs between electricity production, human and environmental well-being, are significant.
	Benchmarking natural gas and coal-fired electricity generation in the United States Original Research Article <i>Pages 622-628</i>
	Alexander Q. Gilbert, Benjamin K. Sovacool Abstract Close research highlights PDF (1357 K) Image: Close research highlights
	Highlights
	• The US coal fleet has large variations in plant-level LCA emissions.
	Likely large emissions benefits from replacing with natural gas.

US natural gas plants are relatively efficient.
• Methane leakage reduces benefits, depending on efficiency.
An experimental study on carbon dioxide hydrate formation using a gas- inducing agitated reactor Original Research Article <i>Pages 629-637</i> Airong Li, Lele Jiang, Siyao Tang Abstract Close research highlights PDF (1358 K) OView PDF
Highlights
COs bydrates were formed in a das-inducing anitated reactor
The changes of COs consumption induction time storage conscitu eta were
observed.
 The effects of gas-inducing stirring, temperature and initial pressure were discussed.
• Induction time was shortened from 261 to 24 minutes with high-speed stirring.
Ejector based organic flash combined power and refrigeration cycle (EBOFCP&RC) – A scheme for low grade waste heat recovery Original Research Article <i>Pages 638-648</i> Subha Mondal, Sudipta De
Abstract Close research highlights PDF (3650 K) Wiew PDF
Highlights for review
An ejector based organic flash combined power and refrigeration cycle is
proposea.
Both 1st and 2nd law analysis conducted.
 Optimum flash pressures exist for maximum fist and 2nd law efficiencies.
 1st and 2nd law efficiency improved compared to organic flash power cycle.
The economics of electricity generation from Gulf Stream currents Original Research Article Pages 649-658 Binghui Li, Anderson Rodrigo de Queiroz, Joseph F. DeCarolis, John Bane, Ruoying He, Andrew G. Keeler, Vincent S. Neary Abstract Close research highlights PDF (2073 K) Supplementary content ③
Highlights
The economics of Gulf Stream energy off the North Carolina coast are assessed.
A portfolio optimization model is developed to identify optimal generation sites.
 The optimal portfolio reduces the variance in monthly electricity generation tenfold.
• The lowest levelized cost for a single 16 MW site can reach 400 \$/MWh.
• The lowest levelized cost for an 80 MW portfolio can reach below 300 \$/MWh.
Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models Original Research Article <i>Pages 659-671</i> Nengcheng Chen, Lei Xu, Zegiang Chen Abstract Close research highlights PDF (786 K) O View PDF
Highlights
 City-level environmental efficiency was measured in the Yangtze River E conomic Zone during 2003–2014.
GDP per capita was found acting negatively on environmental efficiency during
this period.

	• Remote sensing PM2.5 data was incorporated into the undesirable outputs.
	• The number of cities below the average environmental efficiency increased from 70 (53.4%) to 83 (63.4%).
	Maintenance planning of power plant elements based on avoided risk Value Original Research Article <i>Pages 672-680</i> Andrzej Rusin, Michał Bieniek
	Abstract Close research highlights PDF (2584 K) 🐼 View PDF
	Highlights
	Theoretical probability assessment of the pipeline bend failure.
	 Maintenance planning based on criteria of avoided risk value and NPV index.
	Assessment of the element failure probability based on microstructure testing.
	Estimation of optimal times to preventive replacement of the steam pipeline.
]	Simulation of natural gas quality distribution for pipeline systems Original Research Article <i>Pages 681-698</i> Maciej Chaczykowski, Paweł Zarodkiewicz
	Abstract Close research highlights PDF (1195 K) 🐼 View PDF
	Highlights
	 Transient thermo-hydraulic model for pipeline transportation of natural gas under variable gas quality conditions is proposed.
	 Chemical energy flow rate instead of volumetric flow rate is selected as a dependent variable.
	• Model validation on field data is carried out.
	 Operating strategy of the pipeline system with energy flow rate as a control variable is simulated.
	Advantages of energy-based over volume-based approach are illustrated.
	Coordinated short-term scheduling and long-term expansion planning in microgrids incorporating renewable energy resources and energy storage systems Original Research Article Pages 699-708 Reza Hemmati, Hedayat Saboori, Pierluigi Siano Abstract Close research highlights PDF (434 K) View PDF
	Highlights
	• A stochastic expansion planning is addressed on microgrids.
	• The planning tool includes two long-term and short-term plans.
	• Wind unit, solar panel, energy storage system, and line are installed by plan.
	• The planning tool is expressed as a mixed integer nonlinear programming.
	• Meta-heuristic optimization algorithm is applied so solve the problem.
	Convergence analysis of eco-efficiency of China's cement manufacturers through unit root test of panel data Original Research Article <i>Pages 709-717</i> Xingle Long, Mei Sun, Faxin Cheng, Jijian Zhang Abstract Close research highlights PDF (1221 K) OView PDF
	Highlights
	We verify the convergence of eco-efficiency through unit root test.
	 We verify the convergence of eco-efficiency through unit root test. Eco-efficiency in cement manufacturers converged in the east. middle and west.

Optimization of hydropower system operation by uniform dynamic programming for dimensionality reduction Original Research Article

Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system Origina Research Article Pages 813-839 Xanxun Wang, Yadong Mei, Yanjun Kong, Yuru Lin, Hao Wang Abstract Close research highlights PDF (8893 K) Iwe PDF Highlights • With refined objective functions and constraints, a multi-objective model for multi-energy system is proposed. • By comparing three schemes, the complementary role of hydropower in the coordination is discussed. • The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article Pages 840-849 Mohammad Medi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) © View PDF Highlights • Performing a multi-objective optimization of cooling water package. • Exergetic, economic and environmental (3E) analysis of the system simultaneously. • Reducing the cold water production cost from 117.5 Sthr to 87.19 Sthr. • Reducing the NOx emission from 4958 kg/year to 2645 kg/year. • Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case Study Original Research Article Pages 850-863 • Wiew PDF		PBI/GO composite membrane produce higher power densities compared with literature data's.
Pages 813-839 Xanxun Wang, Yadong Mei, Yanjun Kong, Yuru Lin, Hao Wang Abstract Close research highlights PDF (8893 K) Image: View PDF Highlights • With refined objective functions and constraints, a multi-objective model for multi-energy system is proposed. • By comparing three schemes, the complementary role of hydropower in the coordination is discussed. • The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article Pages 840-849 Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) Image: View PDF Highlights • Performing a multi-objective optimization of cooling water package. • • Exergetic, economic and environmental (3E) analysis of the system simultaneously. • Reducing the cold water production cost from 117.5 \$hr to 87.19 \$hr. • Reducing the cold water production cost from 117.5 \$hr to 87.19 \$hr. • Reducing the NOx emission from 4958 kg/year to 2645 kg/year. * Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$tudy Original Research Article Pages 850-803 </th <th>ļ</th> <th>Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system Original Research Article</th>	ļ	Improved multi-objective model and analysis of the coordinated operation of a hydro-wind-photovoltaic system Original Research Article
Highlights • With refined objective functions and constraints, a multi-objective model for multi-energy system is proposed. • By comparing three schemes, the complementary role of hydropower in the coordination is discussed. • The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article Pages 840-849 Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights • Performing a multi-objective optimization of cooling water package. • Exergetic, economic and environmental (3E) an alysis of the system simultaneously. • Reducing the coid water production cost from 117.5 \$thr to 87.19 \$thr. • Reducing the coid water production cost from 117.5 \$thr to 87.19 \$thr. • Reducing the coid water production cost from 117.5 \$thr to 87.19 \$thr. • Reducing the coid water production to the Spanish case \$tudy Original Research Article Pages 850-863 F. Martin-Martinez, A. Sanchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights • Identify factors that can tip the scale in favor of centralized or distributed generation. • Identify factors that can tip the scale in favor of centralized or distributed generation. • Identify factors that can tip the scale in favor of centrali		Pages 813-839 Xianxun Wang, Yadong Mei, Yanjun Kong, Yuru Lin, Hao Wang Abstract Close research highlights PDF (8893 K) View PDF
 With refined objective functions and constraints, a multi-objective model for multi-energy system is proposed. By comparing three schemes, the complementary role of hydropower in the coordination is discussed. The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article Pages 340-349 Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) View PDF Highlights Performing a multi-objective optimization of cooling water package. Exergetic, economic and environmental (3E) analysis of the system simultaneously. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$Udy Original Research Article Pages 860-863 F. Martin-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Or		Highlights
 By comparing three schemes, the complementary role of hydropower in the coordination is discussed. The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A Case sludy Orginal Research Article Pages 840-849 Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) I View PDF Highlights Performing a multi-objective optimization of cooling water package. Exergetic, economic and environmental (3E) analysis of the system simultaneously. Reducing exergy destruction from 264.8 kW to 127.6 kW. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$Udy Original Research Article Pages 850-863 F. Mattin-Mattinez, A. Sánchez-Miralles, M. Rivier, C.F. Calvilio Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized or tandem configuration? Original Research Article Pages 843-70 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF 		• With refined objective functions and constraints, a multi-objective model for multi-energy system is proposed.
 The Pareto frontier of power generation and output fluctuations is obtained. Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article <i>Pages 840-849</i> Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K)		By comparing three schemes, the complementary role of hydropower in the coordination is discussed.
Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article Pages 840-849 Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) Image: View PDF Highlights • Performing a multi-objective optimization of cooling water package. • Exergetic, economic and environmental (3E) analysis of the system simultaneously. • Reducing exergy destruction from 264.8 kW to 127.6 kW. • Reducing the cold water production cost from 117.5 \$hr to 87.19 \$hr. • Reducing the cold water production cost from 117.5 \$hr to 87.19 \$hr. • Reducing the cold water production cost from 117.5 \$hr to 87.19 \$hr. • Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$tudy Original Research Article Pages 80-838 F. Martin-Martinez, A. Sánchez-Miralles, M. Rivier, C.F. Caivillo Abstract Close research highlights PDF (693 K) Image: View PDF Highlights • Identify factors that can tip the scale in favor of centralized or distributed generation. • Modeling the electrical system's behavior with both types of generation. • Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 804-870 Mohammad Reza Saeb View PDF		• The Pareto frontier of power generation and output fluctuations is obtained.
Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) Image: Construction of Cooling Water Package. Highlights • Performing a multi-objective optimization of cooling water package. • Exergetic, economic and environmental (3E) analysis of the system simultaneously. • Reducing exergy destruction from 264.8 kW to 127.6 kW. • Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. • Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. • Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$tudy Original Research Article Pages 850.863 F. Martin-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) Highlights • Identify factors that can tip the scale in favor of centralized or distributed generation. • Analysis of the impact of these factors on different generation technologies. • Highlights • Identify factors that can tip the scale in favor of centralized or distributed generation. • Show relationships among centralized and distributed technologies. • In quest of power conve		Multi-objective optimization of cooling water package based on 3E analysis: A case study Original Research Article <i>Pages 840-849</i>
 Highlights Performing a multi-objective optimization of cooling water package. Exergetic, economic and environmental (3E) analysis of the system simultaneously. Reducing exergy destruction from 264.8 kW to 127.6 kW. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance or some thermal and electric factors. Application to the Spanish case study Original Research Article <i>Pages 850-863</i> F. Martin-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) ♥ View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article <i>Pages 864-870</i> Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) 		Mohammad Mehdi Keshtkar, Pouyan Talebizadeh Abstract Close research highlights PDF (1202 K) View PDF
 Performing a multi-objective optimization of cooling water package. Exergetic, economic and environmental (3E) analysis of the system simultaneously. Reducing exergy destruction from 264.8 kW to 127.6 kW. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case \$100 YO original Research Article Pages 850-863 Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) © View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) © View PDF 		Highlights
 Exergetic, economic and environmental (3E) analysis of the system simultaneously. Reducing exergy destruction from 264.8 kW to 127.6 kW. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance or some thermal and electric factors. Application to the Spanish case study Original Research Article Pages 850-863 F. Martin-Martinez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. 		Performing a multi-objective optimization of cooling water package.
 Reducing exergy destruction from 264.8 kW to 127.6 kW. Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance or some thermal and electric factors. Application to the Spanish case study Original Research Article Pages 850-863 F. Martin-Martinez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. 		• Exergetic, economic and environmental (3E) analysis of the system simultaneously.
 Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr. Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study Original Research Article Pages 850-863 F. Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) Original Research Article Identify factors that can tip the scale in favor of centralized or distributed generation. Identify factors that can tip the scale in favor of centralized or distributed generation. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) Oview PDF 		• Reducing exergy destruction from 264.8 kW to 127.6 kW.
 Reducing the NOx emission from 4958 kg/year to 2645 kg/year. Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study Original Research Article Pages 850-863 F. Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) Original Research Article Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Moda gan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) Oview PDF 		• Reducing the cold water production cost from 117.5 \$/hr to 87.19 \$/hr.
 Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study Original Research Article Pages 850-863 F. Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mochgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF 		Reducing the NOx emission from 4958 kg/year to 2645 kg/year.
 Pages 850-863 F. Mattín-Mattín ez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research highlights PDF (693 K) View PDF Highlights Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF 		Centralized vs distributed generation. A model to assess the relevance of some thermal and electric factors. Application to the Spanish case study Original Research Article
Highlights • Identify factors that can tip the scale in favor of centralized or distributed generation. • Analysis of the impact of these factors on different generation technologies. • Modeling the electrical system's behavior with both types of generation. • Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mothgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) © View PDF		Pages 850-863 F. Martín-Martínez, A. Sánchez-Miralles, M. Rivier, C.F. Calvillo Abstract Close research biblights PDF (693.K) O View PDF
 Identify factors that can tip the scale in favor of centralized or distributed generation. Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF 		Highlights
 Analysis of the impact of these factors on different generation technologies. Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) Weiw PDF		 Identify factors that can tip the scale in favor of centralized or distributed generation.
 Modeling the electrical system's behavior with both types of generation. Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb		Analysis of the impact of these factors on different generation technologies.
Show relationships among centralized and distributed technologies. In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF		• Modeling the electrical system's behavior with both types of generation.
 In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article Pages 864-870 Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza Saeb Abstract Close research highlights PDF (1406 K) View PDF 		Show relationships among centralized and distributed technologies.
Saeb Abstract Close research highlights PDF (1406 K) O View PDF		In quest of power conversion efficiency in nature-inspired dye-sensitized solar cells: Individual, co-sensitized or tandem configuration? Original Research Article <i>Pages 864-870</i> Mozhgan Hosseinnezhad, Kamaladin Gharanjig, Siamak Moradian, Mohammad Reza
		Saeb Abstract Close research highlights PDF (1406 K) View PDF

We visualize climate-related and socio-economic variables for the same time period We combine the visualizations and compare them to previous relevant studies. . The results in general confirm the conclusions of previous relevant studies. . However, some unexpected patterns are revealed. Multi-parameter optimization of double-loop fluidized bed solar reactor for thermochemical fuel production Original Research Article Pages 919-932 Marco Milanese, Gianpiero Colangelo, Domenico Laforgia, Arturo de Risi Abstract Close research highlights PDF (4755 K) **OVIEW PDF** Highlights A new model of solar reactor based on a double-loop fluidized bed has been studied. The overall reaction $CO_2 \rightarrow CO + 1/2O_2$ is achieved, by thermochemical cycle. The use of nanoparticles as catalyst allows maximizing the surface area of reaction The multi-parameter optimization allowed reaching the mean efficiency of 29.96%, with a maximum of 59.46%. Novel power generation models integrated supercritical water gasification of coal and parallel partial chemical heat recovery Original Research Article Pages 933-942 Zhewen Chen, Xiaosong Zhang, Sheng Li, Lin Gao PDF (1284 K) **Wiew PDF** Abstract Close research highlights Highlights Three novel models integrated SCWG of coal with power generation are proposed, and analyzed. Energetic analyses through energy flow diagrams. . Maximum thermal efficiency of 46.60% of all the models is obtained. Heat transfer analysis of a Trombe wall with a projecting channel design Original Research Article Pages 943-950 Mehran Rabani, Vali Kalantar, Mehrdad Rabani Close research highlights PDF (3152 K) **Wiew PDF** Abstract Highlights Different heat transfer types were analyzed in Trombe wall with new channel . design. Highest amount of convection heat is delivered to the room during sunny period. Radiation is the dominant heat transfer process from the Trombe wall. . Heat transfer is more sensible on the coldest day than the warmest day. Market penetration modeling of high energy efficiency appliances in the residential sector Original Research Article Pages 951-961 Saeidreza Radpour, Md Alam Hossain Mondal, Amit Kumar Abstract Close research highlights PDF (2300 K) 🙆 View PDF

Highlights

- The analysis focuses on six major appliances.
- E conometric models are used to forecast market penetration.
- High-efficiency appliance shares are modeled by logit models.
- Impacts of incentives on energy efficiency improvement are analyzed.
- Annual energy consumption by appliance is evaluated.
- Suppressing the formation of Fe₂P: Thermodynamic study on the phase diagram and phase transformation for LiFePO4 synthesis Original Research Article Pages 962-967 Lihua He, Shengming Xu, Zhongwei Zhao Abstract Close research highlights PDF (2053 K) **Wiew PDF** Highlights . Phase diagrams and phase transformation for LiFePO₄ synthesis were studied. LiFePO₄ can decompose to FeP, Fe₂P, and Fe₃P at 718, 776, and 836 °C, respectively Fe₂P formation can be suppressed below temperature 776 °C. Excess of Li is beneficial to avoid the formation of Fe₂P. Dynamic optimization of natural gas networks under customer demand uncertainties Original Research Article Pages 968-983 Hesam Ahmadian Behrooz, R. Bozorgmehry Boozarjomehry PDF (1857 Close graphical abstract Research highlights Abstract K) O View PDF Demand [MMSCFD] M **S**1 t,+t, P1, P2, P3 & P4 C2 P6 P5 N1 Stochastic energy market equilibrium modeling with multiple agents Original Research Article Pages 984-990 Kjell Arne Brekke, Rolf Golombek, Michal Kaut, Sverre A.C. Kittelsen, Stein W. Wallace Abstract Close research highlights PDF (247 K) OView PDF Highlights Analyze energy investment decisions that are taken before the uncertainty is revealed Criticism of Monte Carlo simulations to assess behavioral uncertainty. . Guide to transform a deterministic energy model into a stochastic model. No programming of a stochastic solution algorithm is required. The analysis of energy efficiency of the Mediterranean countries: A twostage double bootstrap DEA approach Original Research Article Pages 991-1000 Eva Jebali, Hédi Essid, Naceur Khraief PDF (778 K) Supplementary Abstract Close research highlights content OView PDF Highlights The energy efficiency in Mediterranean countries has been analyzed . The two-stage double bootstrap approach has been used.

· ·	The first stage results show the decline of efficiency over the study period.
•	Energy efficiency is impacted by different environmental variables.
•	Policy recommendations have been provided.
A hy syste	brid concentrated solar thermal collector/thermo-electric generation of Original Research Article
Moh'o Keyya	IA. Al-Nimr, Bourhan M. Tashtoush, Mohammad A. Khasawneh, Ibrahim Al- am
Abs	tract Close research highlights PDF (2530 K) 📀 View PDF
Hi	ghlights
•	A 1-D mathematical model was developed to evaluate the system performance.
•	The evaporative cooling has significant effect on the system performance.
•	Wind speed plays a major role in the case of pure forced convection.
•	Stable electrical performance for the system while adopting evaporative cooling.
•	An optimal value of mass flow rate is found for maximum power output.
Ther analy <i>Page</i> Tusha	modynamic assessment of SOFC-ICGT hybrid cycle: Energy ysis and entropy generation minimization Original Research Article <i>s 1013-1028</i> ar Choudhary, Sanjay
Abs	stract Close research highlights PDF (3724 K) O View PDF
Hi	ghlights
•	Entropy Generation Minimization has been performed for hybrid cycle.
•	Novel mathematical modeling of SOFC-ICGT has been proposed.
•	A unique performance contour plot for SOFC-ICGT hybrid cycle has been plotted.
•	Optimal efficiency of 74.13% has been achieved with entropy minimization of 8.05 W/K.
Fina evide tests <i>Page</i> Sahb	ncial development and energy demand in the United States: New ence from combined cointegration and asymmetric causality Original Research Article <i>s 1029-1037</i> Farhani, Sakiru Adebola Solarin
Abs	stract Close research highlights PDF (372 K) O View PDF
Hi	ghlights
•	We examine the impact of financial development on energy consumption in the U.S.
•	We provide for breaks and asymmetries in the estimation process.
•	The model also include economic growth, trade openness and capital formation.
	Financial development decreases energy demand in the U.S.
•	The policy implications of the results are provided.
Desi	gn Operability and Retrofit Analysis (DORA) framework for energy

	Systematic framework for Design Operability and Retrofit Analysis (DORA) is proposed.
•	DORA analyzes inherent operability and flexibility of an energy system.
•	DORA combines operability and flexibility analysis with debottlenecking and retrofitting.
n o nteg 2age: Omid larc Abs onte	ptimal versatile control approach for plug-in electric vehicles to rate renewable energy sources and smart grids Original Research Article <i>s 1053-1067</i> Rahbari, Majid Vafaeipour, Noshin Omar, Marc A. Rosen, Omar Hegazy, Jean- Timmermans, Seyedmohammadreza Heibati, Peter Van Den Bossche tract Close research highlights PDF (3587 K) Supplementary nt View PDF
Hie	phiahts
•	Optimization problems are solved to size and site smart parking lots of electric vehicles.
•	The effectiveness of the proposed algorithm is compared to other reported algorithms.
•	An adaptive intelligent control strategy with V2G and G2V applicability is
	proposed.
•	proposed. A global optimal solution is guaranteed with the proposed model.
Estin on th Page: (ueqi Abs	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) OView PDF
Estin on th Pages (u eqi Abs Hi g	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article <i>s 1068-1078</i> an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) O View PDF ghlights
Estin on th Pages Abs Hig	A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model optimal solution is global optimal. A global optimal solution is guaranteed with the proposed model optimal solution is global optimal. A global optimal solution is global optimal solution is global optimal solution is global optimal. A global optimal solution is global optimal solution is global optimal optimal solution is glo
Estin on th Page: Kueqi Abs Hi ų	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) I I I I I I I I I I I I I I I I I I I
Estin on th Pages Kueqi Abs Hi q	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) Image: Wiew PDF ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stochastic behaviours of a limited gas supply are considered.
Estin on th Page Kueqi Abs Hi q	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) ✓ View PDF ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stochastic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled.
Estin on th Page Abs Hig	proposed. A global optimal solution is guaranteed with the proposed model. nation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) ✓ View PDF ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stochastic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES.
Estin Don th Page. Abs Hig Coni Page. Salar Abs	proposed. A global optimal solution is guaranteed with the proposed model. hation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) ✓ View PDF ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. c relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights
Estin Page: Kueqi Abs Hiq Coni Page: Salar Abs	proposed. A global optimal solution is guaranteed with the proposed model. hation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) Image: Close research highlights ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. c relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights PDF (1498 K) PDF (1498 K) Image: View PDF
Estin on th Page: Kueqi Abs Hig Solar Abs Hig	proposed. A global optimal solution is guaranteed with the proposed model. hation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) ✓ View PDF ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. c relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights PDF (1498 K) ✓ View PDF ghlights This work improves the operation of electrical power systems.
Estin Pages Abs Hig Coni Pages Salar Abs	proposed. A global optimal solution is guaranteed with the proposed model. hation of the failure probability of an integrated energy system based e first order reliability method Original Research Article s 1068-1078 an Fu, Qinglai Guo, Hongbin Sun, Xiurong Zhang, Li Wang tract Close research highlights PDF (1615 K) Image: Close research highlights ghlights This paper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. c relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights PDF (1498 K) This work improves the operation of electrical power systems. It addresses the design of a convex model for unit commitment.
Estin on th Page: Abs Hig Coni Page: Salar Abs	A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed or a system based a function of the failure problems of an integrated energy system. Practical engineering problems are investigated and analysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. C relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights PDF (1498 K) O View PDF ghlights This work improves the operation of electrical power systems. It addresses the design of a convex model for unit commitment. The proposed method is based on conic relaxations with valid inequalities.
Estin Pages (u eqi Abs Hig Salar Abs Hig	A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution is guaranteed with the proposed model. A global optimal solution of the failure problem Research Article C lose research highlights PDF (1615 K) O View PDF C phights The spaper presents the failure problems of an integrated energy system. Practical engineering problems are investigated and an alysed. The stoch astic behaviours of a limited gas supply are considered. The dependencies between the surplus power and the ability of the grid to absorb it is modelled. The application of the model is illustrated using an ideal IES. C relaxations of the unit commitment problem Original Research Article is 1079-1095 Fattahi, Morteza Ashraphijuo, Javad Lavaei, Alper Atamtürk tract Close research highlights PDF (1498 K) O View PDF C phights This work improves the operation of electrical power systems. It addresses the design of a convex model for unit commitment. The proposed method is based on conic relaxations with valid inequalities. The method finds a globally optimal schedule of units in various cases.

 Buoyancy causes deterioration at low mass flux and high heat flux conditions. The drop in properties triggers deterioration at high mass and high heat flux. Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities Orginal Research Aride Pages 1107-1120 Kalid O.A. AbdouliaL-attwish, Xiaoan Mao, Artur J. Jaworski Abstract Close research highlights PDF (3193 K) View PDF Highlights Demonstrator with just under 20 W of electrical output is modelled and tested. Design trade-offs are outlined to apply the technology in poor rural areas. Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fue! A review Orginal Research Article Pages 1121-1131 Dina Czajcynska. Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marrio Zleifiski. Ewa Korzeniewska, Zofia Filipkowska, Marcin Debowski, Monika Harnisz, Rafa Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>R</i>		The k-s turbulence model is used in the numerical study
 Debylancy causes deterioration at high mass not and high near tax conducts. The drop in properties triggers deterioration at high mass and high heat flux. The moacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities Original Research Article Pages 1107-1120 Kalid O.A. Abdoulla-Lathwish, Xiaoan Mao, Artur J. Jaworski Abstract Close research highlights PDF (3193 K) O View PDF Highlights Demonstrator with just under 20 W of electrical output is modelled and tested. Design trade-offs are outlined to apply the technology in poor rural areas. Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czącychska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) O View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria originals, Ewa Korzeniewska, Zoffa Filipkowska, Marcin Dębowski, Monika Harnisz, Rafa Kwiatkowski Abstract Close research highlights PDF (430 K) O View PDF Highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnel/la aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD₁₆₀. <i>Proteobacteria</i>		Buovancy causes deterioration at low mass flux and high heat flux conditions
 The drop in properties trigges deterioration at high mass and high near hux. Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities Original Research Antice Pages 1107-1120 Kaid O.A. Abdoulla-Lathwish, Xiaoan Mao, Artur J. Jaworski Abstract Close research highlights PDF (3193 K) ③ View PDF Highlights Demonstrator with just under 20 W of electrical output is modelled and tested. Design trade-offs are outlined to apply the technology in poor rural areas. Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) ③ View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic DacCeria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) ③ View PDF Highlights Psychrophilic ba		The deep is second in this second device the state of the base of
Thermoacoustic micro-electricity generator for rural dwellings in developing countries driven by waste heat from cooking activities Orginal Research Article Pages 1107-1120 Kalid O.A. Abdoulla-Latiwish, Xiaoan Mao, Artur J. Jaworski Abstract Close research highlights PDF (3193 K) ③ View PDF Highlights • Demonstrator with just under 20 W of electrical output is modelled and tested. • Design trade-offs are outlined to apply the technology in poor rural areas. • Atmospheric air has been shown as a viable thermodynamic medium. • Use of cheap components has been demonstrated to reduce costs. • Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. ¹ Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) ④ View PDF Highlights • Pyrolytic gas obtained from waste tires is a valuable source of energy. • Composition and properties of pyrogas varies depending on pyrolysis conditions. • The special emphasis should be focused on the collection of data on gas emissions. • Biohydrogen production at low load of organic matter by psychrophilic bacteria Zeinzenia Article Pages 1132-1139 Marcin Zeinfaki, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafa Kwiatkowski Abstract Close research h	•	i në drop in properties triggers deterioration at nigh mass and high neat flux.
Highlights • Demonstrator with just under 20 W of electrical output is modelled and tested. • Design trade-offs are outlined to apply the technology in poor rural areas. • Atmospheric air has been shown as a viable thermodynamic medium. • Use of cheap components has been demonstrated to reduce costs. • Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights P Pyrolytic gas obtained from waste tires is a valuable source of energy. • Composition and properties of pyrogas varies depending on pyrolysis conditions. • The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) ② View PDF Highlights • Psychrophilic bacteria as H₂ producers from organic substrates were investigated. • The most effective rate of hydrogen production was obtained for Rahnetla aqatilis. • Proteobacteria may be used as producers of H₂ in psychrophilic conditions	Therr devel Resear Pages Kalid (noacoustic micro-electricity generator for rural dwellings in oping countries driven by waste heat from cooking activities Original rch Article : 1107-1120 O.A. Abdoulla-Latiwish, Xiaoan Mao, Artur J. Jaworski tract Close research highlights PDF (3193 K) O View PDF
 Demonstrator with just under 20 W of electrical output is modelled and tested. Design trade-offs are outlined to apply the technology in poor rural areas. Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zielňski, Eva Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H2 in psychrophilic conditions. 	Hio	shlights
 Design trade-offs are outlined to apply the technology in poor rural areas. Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zleliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H2 in psychrophilic conditions. 		Demonstrator with just under 20 W of electrical output is modelled and tested.
 Atmospheric air has been shown as a viable thermodynamic medium. Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafa Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. Proteobacteria may be used as producers of H2 in psychrophilic conditions. 		Design trade-offs are outlined to apply the technology in poor rural areas.
 Use of cheap components has been demonstrated to reduce costs. Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) Yiew PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski		Atmospheric air has been shown as a viable thermodynamic medium.
 Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved. Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H₂ producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for Rahnella aqatilis. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. Proteobacteria may be used as producers of H₂ in psychrophilic conditions. 		Use of cheap components has been demonstrated to reduce costs.
 Use of pyrolytic gas from waste tire as a fuel: A review Original Research Article Pages 1121-1131 Dina Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer Abstract Close research highlights PDF (1375 K) View PDF Highlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H₂ producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD fed. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 		Acoustic and electric efficiencies of 3.5% and 1.9%, respectively, achieved.
 Biohydrogen production at low load of organic matter by psychrophilic bacteria Original Research Article Pages 1132-1139 Marcin Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika Harnisz, Rafał Kwiatkowski Abstract Close research highlights PDF (430 K) View PDF Highlights Psychrophilic bacteria as H₂ producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 	Dina C Abst	s 1121-1131 Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) ⓒ View PDF
 Highlights Psychrophilic bacteria as H₂ producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 	Higo	I121-1131 Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: Composition composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions.
 Psychrophilic bacteria as H₂ producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 	Biohy bacter Pages Marcin Harnis	F1121-1131 Czajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: View PDF ghlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. rdrogen production at low load of organic matter by psychrophilic rtial Original Research Article 1132-1139 i Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika z, Rafał Kwiatkowski tract Close research highlights
 The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i>. Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 	Biohy bacte Pages Marcin Harnis Abst	F1121-1131 Dzajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: View PDF ghlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. rdrogen production at low load of organic matter by psychrophilic tria Original Research Article : 1132-1139 : Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika z, Rafał Kwiatkowski tract Close research highlights PDF (430 K) Image: View PDF
 Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD_{fed}. <i>Proteobacteria</i> may be used as producers of H₂ in psychrophilic conditions. 	Biohy bacter Pages Marcin Hig	F1121-1131 Dzajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: View PDF ghlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. rdrogen production at low load of organic matter by psychrophilic #132-1139 1 Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika z., Rafał Kwiatkowski tract Close research highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated.
• <i>Proteobacteria</i> may be used as producers of H ₂ in psychrophilic conditions.	Biohy bacte Pages Marcin Harnis Abst	P121-1131 Dzajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: View PDF ghlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. Production at low load of organic matter by psychrophilic Prila Original Research Article 1132-1139 Pzieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika z, Rafał Kwiatkowski tract Close research highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i> .
	Biohy bacte Pages Marcin Harnis Abst	St 1121-1131 Dzajczyńska, Renata Krzyżyńska, Hussam Jouhara, Nik Spencer tract Close research highlights PDF (1375 K) Image: View PDF ghlights Pyrolytic gas obtained from waste tires is a valuable source of energy. Composition and properties of pyrogas varies depending on pyrolysis conditions. The special emphasis should be focused on the collection of data on gas emissions. vdrogen production at low load of organic matter by psychrophilic tria Original Research Article : 1132-1139 1 Zieliński, Ewa Korzeniewska, Zofia Filipkowska, Marcin Dębowski, Monika z., Rafał Kwiatkowski tract Close research highlights Psychrophilic bacteria as H2 producers from organic substrates were investigated. The most effective rate of hydrogen production was obtained for <i>Rahnella aqatilis</i> . Amount of hydrogen production ranged from 16.3 to 58.1 mL/g COD _{fed} .

About ScienceDirect Terms and conditions

Remote access Privacy policy

Shopping cart Contact and support

Cookies are used by this site. For more information, visit the cookies page. Copyright © 2017 Elsevier B.V. or its licensors or contributors. ScienceDirect ® is a registered trademark of Elsevier B.V.

Energy 134 (2017) 24-34

Energy

journal homepage: www.elsevier.com/locate/energy

Optimization of transesterification process for *Ceiba pentandra* oil: A comparative study between kernel-based extreme learning machine and artificial neural networks

Autors or the at

F. Kusumo ^a, A.S. Silitonga ^{a, b, c, d, *}, H.H. Masjuki ^a, Hwai Chyuan Ong ^a, J. Siswantoro ^e, T.M.I. Mahlia ^d

^a Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia

^b Department of Mechanical Engineering, Politeknik Negeri Medan, 20155, Medan, Indonesia

^c Department of Mechanical Engineering, Syiah Kuala University, 23111, Banda Aceh, Indonesia

^d Department of Mechanical Engineering, Faculty of Engineering, Universiti Tenaga Nasional, 43000, Kajang, Selangor, Malaysia

^e Department of Informatics Engineering, Faculty of Engineering, Universitas Surabaya, Jl. Kali Rungkut, Surabaya, 60293, Indonesia

ARTICLE INFO

Article history: Received 20 May 2016 Received in revised form 29 April 2017 Accepted 31 May 2017 Available online 3 June 2017

Keywords: Biodiesel Ceiba pentandra oil Kernel-based extreme learning machine Ant colony optimization Artificial neural network

ABSTRACT

In this study, kernel-based extreme learning machine (K-ELM) and artificial neural network (ANN) models were developed in order to predict the conditions of an alkaline-catalysed transesterification process. The reliability of these models was assessed and compared based on the coefficient of determination (\mathbb{R}^2), root mean squared error (RSME), mean average percent error (MAPE) and relative percent deviation (RPD). The K-ELM model had higher \mathbb{R}^2 (0.991) and lower RSME, MAPE and RPD (0.688, 0.388 and 0.380) compared to the ANN model (0.984, 0.913, 0.640 and 0.634). Based on these results, the K-ELM model is a more reliable prediction model and it was integrated with ant colony optimization (ACO) in order to achieve the highest *Ceiba pentandra* methyl ester yield. The optimum molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed predicted by the K-ELM model integrated with ACO was 10:1, 1 %wt, 60 °C, 108 min and 1100 rpm, respectively. The *Ceiba pentandra* methyl ester yield attained under these optimum conditions was 99.80%. This novel integrated model provides insight on the effect of parameters investigated on the methyl ester yield, which may be useful for industries involved in biodiesel production.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Biodiesel has gained prominence throughout the world as alternative fuel for diesel engines. Biodiesels as alternative fuels in diesel engines is not new nowadays owing to their favourable physical and chemical properties that are comparable to those for diesel, but with lower engine emissions. There is a growing trend in the biodiesel production capacity not only in developed countries such as France, Germany, Italy and the United States, but also in developing countries such as Brazil, Argentina, Indonesia and Malaysia [1]. The production of alternative fuels from renewable sources have gained much interest from scientists, researchers and industrialists in the field due to concerns on the depletion of fossil fuels and the impact of fossil fuel emissions on the environment. More importantly, there is a critical need to ensure a sustainable supply of energy in order to fulfil the escalating energy demands, which is not possible with fossil fuels since these fuels are derived from non-renewable sources [2]. Concerns over food security have led to the development and enforcement of policies which emphasize the production biofuels from non-agricultural sources [3]. In response to this need, scientists and researchers actively search for ways to produce biodiesels from non-edible feedstocks as well as macroalgae and microalgae [4,5].

Ceiba pentandra (C. *pentandra*) is commonly known as silkcotton tree. It is a tall plant which belongs to the *Malvaceae* family and it is typically found in tropical rainforests. The seeds of *Ceiba pentandra* contain a relatively high non-edible oil content (~40 %wt, dry basis) and thus, these seeds can be used as potential feedstocks to produce biodiesels. Several experimental have been conducted

^{*} Corresponding author. Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.

E-mail addresses: arridina@polmed.ac.id, ardinsu@yahoo.co.id (A.S. Silitonga).

the production of *C. pentandra* methyl esters (biodiesels) through a conventional process known as alkaline-catalysed transesterification [6,7]. Ong et al. [6] produced *C. pentandra* methyl ester via supercritical transesterification and the process conditions were optimized using response surface methodology (RSM). They achieved a high *C. pentandra* methyl ester yield of 95.5% when the molar ratio of methanol to oil, reaction time, reaction temperature and pressure was 30:1, 476 s, 322 °C and 167 MPa, respectively. Sivakumar et al. [7] used an alkaline-catalysed transesterification process and they also attained a high methyl ester yield of 99.5% using the following molar ratio of methanol to oil of 6:1, KOH catalyst weight of 1 %wt, reaction temperature of 65 °C and reaction time of 45 min.

To date, most of the models used to optimize the process conditions for biodiesel production are based on response surface methodology (RSM) and artificial neural networks (ANN). In both of these approaches, experimental data are used as the groundwork for modelling and optimization [8,9]. However, kernel-based extreme learning machine (K-ELM) models have also been implemented in recent years to study alcoholysis reactions and the process conditions for biodiesel production. Extreme learning machine (ELM) is a learning technique that was initially proposed for generalized single hidden layer feedforward networks (SLFNs) and this technique has been used to optimize processes in various engineering disciplines [10,11]. K-ELM is a learning algorithm used to determine the rational number of hidden neurons in SLFNs based on a kernel matrix. This technique is still rather new, considering that it was developed only in recent years by a few researchers. The main benefit of K-ELM is that the user only needs to identify the necessary parameters and determine one optimum solution using the kernel function. This eliminates the need to specify the number of hidden nodes unlike conventional feedforward neural networks [12,13].

ANN, on the other hand, is fundamentally different from K-ELM since the algorithm is based on the idea that the human nervous system is a data processing system. ANN is widely used for modelling complex phenomena including prediction and classification which involve a large number of independent and dependent [14,15]. Interestingly, ANN is also commonly used to demonstrate the effectiveness of K-ELM models. Ant colony optimization (ACO), however, is an optimization technique that is inspired from observations of the foraging behaviour of ant colonies.

In this study, K-ELM model is developed to predict the process conditions for alkaline-catalysed transesterification of C. pentandra oil. Prior to optimization, it is first necessary to develop a reliable prediction model for the transesterification process. There are numerous studies found in the literature pertaining to C. pentandra biodiesel production - however, there is a lack of studies pertaining to the mathematical modelling of transesterification process conditions using K-ELM models. In general, the molar ratio of methanol to oil, catalyst weight, reaction time, reaction temperature and agitation speed all play a crucial role in an alkalinecatalysed transesterification process and it is essential to optimize these parameters in order to achieve the highest methyl ester yield and reduce the production costs as much as possible. Hence, in this study, the reliability of the K-ELM and ANN models in predicting the conditions of the alkaline-catalysed transesterification process is determined in order to identify which is the more effective prediction model. The reliability of these models was assessed using the following statistical parameters: coefficient of determination (R²), mean absolute percent error (MAPE), relative percent deviation (RPD) and root mean squared error (RMSE).

To the best of the authors' knowledge, none of the studies available in the literature have addressed the optimization of process conditions for alkaline-catalysed transesterification of C. *pentandra* methyl ester using a novel, integrated modelling approach, which formed the motivation for this study. Moreover, the best prediction model is chosen for integration with ACO to optimize five conditions of the alkaline-catalysed transesterification process (the molar ratio of methanol to oil, catalyst weight, reaction time, reaction temperature and agitation speed) in order to achieve a high C. *pentandra* methyl ester yield.

2. Materials and methods

2.1. Raw materials and chemical reagents

The crude C. *pentandra* oil chosen for this study, and it was sourced from Koperasi Lestari, Cilacap, Indonesia. The following chemical reagents were all sourced from Merck: analytical-grade methanol with a purity of 99.9%, sulphuric acid with a purity of more than 98.9%, and potassium hydroxide pellets with a purity of 99%. The following certified chemical standards for gas chromatography (GC) were sourced from It Tech Research (M) Sdn Bhd: FAME MIX C8-C24 (100 mg, Supelco-Sigma-Aldrich) and methyl nanodecanoate (C19 with a minimum purity of 99.5%, Supelco-Sigma-Aldrich). Phenolphthalein solution (1% in ethanol) was purchased from Fluka Analytical. Whatman filter papers were sourced from Filter Fioroni, France, each having a diameter of 15 cm.

2.2. Physical and chemical properties

The physical and chemical properties of the crude *C. pentandra* oil and *C. pentandra* methyl ester were determined according to the ASTM D6751 and EN 14214 standards, as shown in Table 4. The physical and chemical properties of biodiesels obtained from other studies are also presented for comparison.

Eq. (1) was used to determine the fatty acid methyl ester (FAME) content in percent (%):

$$FAME = \frac{(\sum A) - A_{EI}}{A_{EI}} \times \frac{C_{EI} \times V_{EI}}{m} \times 100$$
(1)

here, $\sum A$ represents the sum of the peak areas for the FAME, A_{EI} represents the peak area of methyl heptadecanoate, which is the internal standard, C_{EI} represents the concentration of the methyl heptadecanoate solution in heptane (mg/ml), V_{EI} represents the volume of the methyl heptadecanoate solution (ml) and *m* represents the mass of the methyl ester (mg).

Eq. (2) was used to determine the methyl ester yield in percent (%):

$$Methyl \ ester \ yield = \frac{FAME \times B_{cp}}{O_{cp}} \times 100$$
(2)

here, *FAME* represents the fatty acid methyl ester content (%), B_{cp} represents the weight of the C. *pentandra* methyl ester (g) and O_{so} represents the weight of the C. *pentandra* oil (g).

2.3. Pre-processing of C. pentandra oil

The crude C. *pentandra* oil needs to be pre-processed prior to transesterification due to its inherent high free fatty acid content, which will lead to saponification and reduce the methyl ester yield. Thus, the crude C. *pentandra* oil was pre-processed by acid-catalysed esterification in the presence of suitable process to reduce the acid value to a lower level (less than 2 mg KOH/g) [6,7]. The acid-catalysed esterification was conducted according to the

procedure of Sivakumar et al. [7] using the following parameters: methanol-to-oil volume ratio: 8:1, reaction temperature: 65 °C and H₂SO₄ catalyst weight: 1.834 wt%. The crude *C. pentandra* oil was poured into a three necked flask containing methanol and H₂SO₄ catalyst preheated at 65 °C. The mixture was agitated over a period of 120 min. The temperature was kept at 65 °C throughout the esterification process. On completion of reaction, the mixture was poured into separating funnel and left to stand for several hours. Two layers formed in the separating funnel and the bottom layer was collected in a flask. The extraneous methanol present in the esterified oil was removed by evaporation.

2.4. Alkaline-catalysed transesterification of the esterified C. pentandra oil

The esterified C. pentandra oil was poured into a three-necked flask preheated to a temperature range of 40–65 °C using a circulating water bath. Methanol and KOH catalyst were added into the esterified oil and the mixture was stirred on a continuous basis throughout the transesterification process. In this study, the molar ratio of methanol to oil was varied from 3:1 to 15:1 whereas the concentration of the potassium hydroxide (KOH) catalyst was varied from 0.5 to 1.5 % wt The reaction time was varied from 60 to 150 min whereas the agitation speed was varied from 800 to 1200 rpm. Upon completion of the transesterification process, the mixture was transferred into a separating funnel and left to settle until the methyl ester and glycerine were completely separated by gravity. It shall be noted that this separation occurred after 4 h. The top layer is the C. pentandra methyl ester whereas the bottom layer is a mixture of glycerine and impurities and therefore, this layer needs to be removed. The C. pentandra methyl ester was washed with warm water several times. Lastly, traces of moisture and unreacted methanol were removed using a vacuum evaporator set at 60 °C.

2.5. Design of experiments

The design of experiments (DoE) approach based on the Box-Behnken experimental design was used for modelling and optimization in this study using Design-Expert software version 8.0.3.1 (Stat-Ease Inc., Minneapolis, MN, USA). The designed experiment consists of 46 experimental runs, as shown in Table 1. The molar ratio of methanol to oil (x_1), KOH catalyst weight (x_2), reaction temperature (x_3), reaction time (x_4) and agitation speed (x_5) were varied to achieve the highest C. *pentandra* methyl ester yield (y). Both independent and dependent variables of the designed experiment are presented in Table 1.

2.6. Modelling of the alkaline-catalysed transesterification process

2.6.1. Fundamental concept of ELM

Extreme learning machine (ELM) was initially developed for single-hidden-layer feedforward networks (SLFNs). The parameters

Table 1	
Experiment design matrix for transesterification	process.

Parameters	Unit	Coded variables	Coded factor levels		evels
			1	2	3
Methanol to oil molar ratio	_	x ₁	3	9	15
Catalyst concentration	%wt	x ₂	0.5	1.0	1.5
Reaction temperature	°C	X3	50	55	65
Reaction time	min	x ₄	60	90	150
Agitation speed	rpm	x ₅	800	1000	1200

in the hidden layer are initialized in a random fashion and the Moore-Penrose generalized inverse is used to compute the output weights. Eq. (3) represents the output function of the ELM for generalized SLFNs [16,17]:

$$f_L(x) = \sum_{i=1}^L \beta_i h_i(x) = h(x)\beta$$
(3)

In this equation, $\beta = [\beta_1, \dots, \beta_L]^T$ represents the column vector in which the elements are the output weights between the hidden layer of *L* nodes and the output node. h(x) represents the output row vector of the hidden layer for each input *x*, *i.e.* $h(x) = [h_1(x), ..., h_L(x)]$. h(x) is used to map the data from the input space of dimension *d* to the hidden layer feature space of dimension *L*, *H*. *H* is also known as the feature space of the ELM. The training data are given by $\{(x_i, t_i) | x_i \in \mathbb{R}^d, t_i \in \mathbb{R}^m, i = 1, ..., N\}$. The goal of ELM is to attain the smallest training error and the smallest norm of output weights, which is an advantage over other learning algorithms [13,16].

2.6.2. Fundamental concept of K-ELM

If the user has no prior knowledge of the feature space h(x), the user can use Eq. (4) to define the kernel matrix of the ELM [10,18]:

$$\Omega_{ELM} = HH^T : \Omega_{ELMi,j} = h(X_i) \cdot h(X_j) = K(X_i, X_j)$$
(4)

Eq. (5) represents the output function of the ELM classifier:

$$f(\mathbf{x}) = h(\mathbf{x})H^{T} \left(\frac{I}{C} + HH^{T}\right)^{-1} T = \begin{bmatrix} K(\mathbf{x},\mathbf{x}_{1}) \\ \vdots \\ K(\mathbf{x},\mathbf{x}_{N}) \end{bmatrix}^{T} \left(\frac{I}{C} + \Omega_{ELM}\right)^{-1} T$$
(5)

With this function, it is not essential for the user to have prior knowledge of the feature space h(x). In this case, h(x) corresponds to the kernel K(u, v) (*e.g.* $K(u, v) = \exp(-\gamma u - v^2)$), which is supplied to the user. In addition, it is not essential for the user to know the number of hidden nodes, which is represented by the dimension *L* of the feature space [12,16]. In this study, MATLAB 7.10.0 software was used to model the alkaline-catalysed transesterification process using K-ELM.

2.6.3. Normalization of the dataset

Normalization was conducted on the dataset for the training model, ensuring that the values are within the range of [0, 1]. Eq. (6) was used for this purpose [12]:

$$N(\nu) = e_i = \frac{(E_i - E_{min})}{(E_{max} - E_{min})}$$
(6)

here, e_i represents and E_i represents the normalized parameter and original parameter, respectively. E_{max} and E_{min} represents the upper and lower bound of the original parameter, respectively.

Once all of the minimum and maximum values were normalized, the predicted values need to be denormalized after the training process. This was done using the inverse of Eq. (5) [12,19].

2.6.4. Hyper parameter tuning

The K-ELM model involves two hyper parameters, namely, the regularization factor (*C*) and basis function width parameter (γ^2). The best values for these parameters were chosen using the leave-one-out cross-validation (LOOCV) algorithm and the possible values for *C* and γ were chosen based on the exponent of 2 (*i.e.* 2⁻²⁴, 2⁻²³, ..., 2²⁴, 2²⁵) [12,16].

2.6.5. Random sub-sampling cross validation

The performance of the K-ELM model was assessed using 46 datasets that may not be large enough to evaluate the performance of the K-ELM model. Therefore, random sub-sampling cross validation was used in this study. Random sub-sampling is a multiple holdout which is based on splitting the data randomly into subsets whereby the size of each subset is determined by the user [20,21]. A total of 39 datasets and 7 datasets were used for training and testing, respectively. The procedure was repeated ten times and the average MAPE was determined. Eqs. (6) and (7) was used to determine the standard deviation (SD) and standard error of the mean (SEM), respectively [12]:

$$SD = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}}$$
(6)

$$SEM = \frac{sd}{\sqrt{n}} \tag{7}$$

In Eq. (6), *N* represents the size of the dataset and \bar{x} represents the mean value of the dataset $x_1, ..., x_N$. In Eq. (7), *n* represents the size of the dataset or the number of observations.

2.6.6. Fundamental concept of ANN

An ANN model was also developed in this study to predict the transesterification process conditions and *C. pentandra* methyl ester yield. MATLAB 7.10.0 software was also used to develop the ANN model. The experimental data, consisting of 46 datasets in total, were divided into training data (80%), cross-validation data (10%) and testing data (10%) in a random manner. The three layer feed-forward scheme was chosen for this study. The *tansig* transfer function was applied for the input layer to the hidden layer while the *purelin* transfer function was applied for the hidden layer to the output layer.

Eqs. (8) and (9) represents the tansig and purelin transfer function, respectively [22,23]:

tansig (x) =
$$\frac{2}{(1 + e^{-2x})} - 1$$
 (8)

$$A = purelin (x) = x$$
(9)

The Levenberg-Marquardt backpropagation algorithm was used for the ANN. The ANN architecture is composed of three input layers with five inputs, hidden layers with the optimum number of neurons and one output variable. The five inputs are the molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed. Training was carried out until the minimum mean squared error (MSE) was reached and the average correlation coefficient (R) was close or equal to 1.

2.6.7. Verification of the data

The following statistical parameters were used to assess the performance of the K-ELM and ANN models: R^2 , MAPE, RMSE and RPD. These parameters are given by Eq. (10)–(13) [24,25]:

$$R^{2} = 1 - \sum_{i=1}^{n} \left(\frac{(x_{ia} - x_{ib})^{2}}{(x_{m} - x_{ib})^{2}} \right)$$
(10)

MAPE =
$$\frac{100}{n} \sum_{i=1}^{n} \left| \frac{x_{ia} - x_{ib}}{x_{ia}} \right|$$
 (11)

$$\text{RMSE} = \sqrt{\frac{\sum_{i=1}^{n} (x_{ib} - x_{ia})^2}{n}}$$
(12)

$$\text{RPD} = \frac{100}{n} \sum_{i=1}^{n} \frac{|(x_{ib} - x_{ia})|}{|(x_{ia})|}$$
(13)

here, *n* represents the number of experimental data. x_{ia} , x_{ib} and x_m represents the experimental value, computed value and mean experimental value, respectively. The R² value is an indicator of the accuracy (and hence, reliability) of the prediction models, whereby a higher R² value indicates higher accuracy. As a rule of thumb, the R² value should be greater than or equal to 80% [26]. The MAPE, RMSE and RPD values indicate the reliability of the model and it is important to reduce these parameters as much as possible.

2.6.8. Sensitivity analysis of the transesterification process conditions

Sensitivity analysis was used to determine the impact of an independent variable towards a dependent variable based on a set of assumptions [27]. Various combinations of inputs were tested using the K-ELM model to determine the impact of each input parameter on the C. *pentandra* methyl ester yield. However, it shall be noted one input was eliminated from each combination. The MAPE was used to assess the impact of each combination of inputs on the predicted C. *pentandra* methyl ester yield using the test dataset.

2.6.9. Optimization of the transesterification process conditions using ACO

ACO is an artificial intelligence technique commonly used to solve complex optimization problems. As the name implies, ACO is inspired from the foraging behaviour of ant colonies [28]. In the wild, ants will leave their nest in search of food and they will leave a chemical scent (known as pheromone) along the way, which is recognized by other members of the colony [19]. Eq. (14) represents the probability of an ant moving from node *i* to node *j* [19,29]:

$$P_{i,j} = \frac{\left(\tau_{i,j}^{\alpha}\right) \left(\mathbf{n}_{i,j}^{\beta}\right)}{\sum \left(\tau_{i,j}^{\alpha}\right) \left(\mathbf{n}_{i,j}^{\beta}\right)}$$
(14)

here, $\tau_{i,j}$ represents the amount of pheromone on edge i,j. α represents the parameter used to control the effect of $\tau_{i,j}$. $\tau_{i,j}$ and $n_{i,j}$ represent the desirability of edge i,j (typically $1/d_{i,j}$) whereas β represents the parameter used to control the effect of $n_{i,j}$. Eq. (15) was used to update the amount of pheromone [28,30]:

$$\tau_{i,j} = (1 - \rho)\tau_{i,j} + \Delta\tau_{i,j} \tag{15}$$

In this equation, τ_{ij} represents the amount of pheromone on edge ij, ρ represents the rate of evaporation of the pheromone, and $\Delta \tau_{ij}$ represents the amount of pheromone deposited.

Eq. (16) was used for the amount of pheromone if ant k travels on edge ij [29,31]:

$$\Delta \tau_{i,j}^{k} = \begin{cases} \frac{1}{L_{k}}, \text{ if ant k travels on edge } i,j \\ 0, \text{ Otherwise} \end{cases}$$
(16)

Here, L_k represents the cost of the *k*th ant's tour (typically length) [19,31]. The flow chart of the K-ELM model is shown in Fig. 1.

Fig. 1. Flow chart for K-ELM.

3. Results and discussion

3.1. Prediction of the transesterification process conditions by the K-ELM model

The molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed were used as the inputs in the Box-Behnken designed experimental condition. The aforementioned parameters were optimized in order to achieve the highest C. pentandra methyl ester yield. Training was conducted using the K-ELM model until the lowest MSE was achieved and the average R was close or equal to 1. It can be observed from Fig. 2 that R values generated by the K-ELM model from the training value, test value and all value are 0.995, 0.998 and 0.995, respectively. It can be deduced that the model was reliable since the slope of the linear line for the K-ELM model is very close to 1. Hence, the number of iterations was keyed into the programme, initiating training of the data. The training data were compared with the experimental data to verify if the K-ELM model was reliable to predict the conditions of the transesterification process. The R², RMSE, MAPE and RPD values were used to assess the reliability of the model [11], as shown in Table 2. It can be seen that the R^2 value of the K-ELM model is 0.991, which was higher than 0.80. The RMSE, MAPE and RPD was found to be 0.668, 0.388 and 0.380 respectively. This indicates that the K-ELM model was reliable as a prediction model because of its high accuracy and low error values. More importantly, the values predicted by the K-ELM model show excellent agreement with the experimental data.

3.2. Random sub-sampling cross validation for the K-ELM model

A total of 39 datasets were used for training whereas the remaining 7 datasets were used for testing. The process was repeated ten times using various combinations of inputs with the same user-defined parameters ($C = 2^{25}$ and $\gamma = 2^{0}$), as shown in Table 3. Based on the results in Table 3, the SD and MSE of the random sub-sampling cross validation was found to be 0.117 and 0.037, respectively which is indicated the accuracy of the models.

3.3. Prediction of the transesterification process conditions by the ANN model

When implementing ANNs, it was imperative to choose a suitable number of neurons in the hidden layer in order to account for the complexity of the experimental dataset [25,32]. The ANN model was built using a heuristic procedure and the resulting configuration chosen for this study was 5-6-1. This configuration was chosen since it had the lowest MSE for training, validation and testing, with a value of 0.363, 0.596 and 4.331, respectively. This configuration also had the highest R for training, validation and testing, with a value of 0.995, 0.997 and 0.981, respectively. Fig. 3 shows that there is a negligible difference between the testing and validation curves when the ANN was trained for 27 epochs with an error goal of 1×10^{-2} . There is no significant overfitting from the training, validation and testing errors when the number of neurons in the hidden layer was 5, indicating that this number of neurons is suitable for the ANN model. The R², RMSE, MAPE and RPD is found to be 0.984, 0.913, 0.640 and 0.643, respectively, as shown in Table 2. It is evident from the residual error of the ANN model that there was good fit between the predicted and experimental data.

3.4. Comparison between the K-ELM and ANN models

The following statistical parameters were used to assess the reliability of the K-ELM and ANN models developed in this study: RMSE, R², RPD and MAPE [11,25], and the results are presented in Table 2. The R² value for the ANN model and K-ELM model is 0.984 and 0.991, respectively. In general, both of these models are reliable to predict the conditions of the alkaline-catalysed transesterification process. However, the K-ELM model is more accurate than the ANN model, as indicated by the higher R² value. The RMSE, RPD and MAPE for the ANN model was 0.913, 0.634 and 0.640, respectively. In contrast, the RMSE, RPD and MAPE are significantly lower for the K-ELM model, with a value of 0.688, 0.380 and 0.388, respectively. The values for each experimental run predicted using the ANN and K-ELM models as well as the corresponding methyl ester yield are shown in Fig. 4. In general, the values predicted by the trained K-ELM model fall within closer proximity of the experimental data compared to the ANN model, implying that the

Fig. 2. K-ELM coefficient relation (a) training value and (b) test value and (c) all value.

K-ELM model is more reliable as a prediction model compared to ANN. In addition, the ANN model requires a large number of iterations, which makes it less favourable compared to the K-ELM model [9,33]. For this reason, the K-ELM model was chosen to optimize the transesterification process parameters in order to attain the highest *C. pentandra* methyl ester yield. This was done by integrating the K-ELM model with ACO.

3.5. Sensitivity analysis for the K-ELM model

The MAPE was used to examine the impact of the process conditions on the predicted C. *pentandra* methyl ester yield. Various combinations of inputs were used to determine the impact of each input parameter for the K-ELM model [12,34]. Table 4 shows the impact of different levels of inputs (molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and

agitation speed) on the C. *pentandra* methyl ester yield based on the MAPE values. The higher MAPE value for the molar ratio of methanol to oil (25.169) indicates that this input variable had a more pronounced impact on the methyl ester yield produced from the transesterification process. Table 4 also shows that the MAPE value for the KOH catalyst weight (5.174) and reaction temperature (5.173) are nearly equal, indicating that these input variables have a similar impact on the methyl ester yield. The MAPE for agitation speed and reaction time was 4.086 and 1.634, respectively. In general, the KOH catalyst weight, reaction temperature and agitation speed somewhat affects the methyl ester yield, though the impact was not as significant as the molar ratio of methanol to oil. The reaction time has the least impact on the methyl ester yield, since this parameter had the lowest MAPE. Hence, the molar ratio of methanol to oil was the most significant parameter for the transesterification process using the K-ELM model.

Tabl	e 2	
------	-----	--

Response for transesterification process.

No	Molar ratio	Reaction Temperature (°C)	Catalyst concentration (%wt)	Reaction time (min)	Agitation speed (rpm)	Methyl ester yield (%)		
						Experiment	ANN	K-ELM
1	3	52.5	0.5	105	1000	76.44	76.11	76.44
2	9	52.5	1.0	105	1000	94.57	95.67	95.75
3	9	52.5	1.0	150	800	93.92	93.51	92.70
4	3	40.0	1.0	105	1000	74.23	73.76	74.23
5	9	65.0	1.0	60	1000	95.36	95.27	95.36
6	15	52.5	0.5	105	1000	81.72	81.83	81.72
7	9	52.5	0.5	60	1000	91.24	91.20	91.24
8	15	52.5	1.5	105	1000	86.92	86.87	86.92
9	9	40.0	1.5	105	1000	90.71	90.74	90.71
10	9	52.5	1.0	105	1000	95.72	95.67	95.75
11	9	52.5	1.5	60	1000	95.51	95.02	95.51
12	15	52.5	1.0	105	1200	89.72	89.77	89.72
13	3	52.5	1.0	150	1000	76.13	76.62	78.04
14	3	52.5	1.0	105	1200	84.86	84.64	84.86
15	9	52.5	0.5	105	1200	97.72	97.70	97.72
16	9	40.0	1.0	60	1000	91.77	91.49	91.77
17	15	52.5	1.0	105	800	83.32	83.22	83.32
18	9	40.0	1.0	105	800	90.06	90.48	90.06
19	9	52.5	1.0	150	1200	98.13	97.86	97.14
20	9	52.5	1.0	60	800	92.58	93.27	92.58
21	3	65.0	1.0	105	1000	79.89	80.03	80.58
22	9	65.0	0.5	105	1000	91.76	92.86	91.76
23	9	65.0	1.0	150	1000	97.01	96.58	97.01
24	9	52.5	0.5	105	800	88.32	87.89	88.32
25	9	40.0	0.5	105	1000	86.52	86.38	86.52
26	3	52.5	1.5	105	1000	77.12	77.07	77.12
27	9	40.0	1.0	150	1000	87.06	86.46	88.84
28	9	52.5	1.5	105	800	94.12	93.59	94.12
29	15	52.5	1.0	60	1000	86.32	82.99	86.32
30	9	65.0	1.5	105	1000	96.72	96.39	96.44
31	3	52.5	1.0	105	800	77.77	77.29	77.77
32	15	52.5	1.0	150	1000	88.28	88.20	88.28
33	3	52.5	1.0	60	1000	78.36	78.34	80.38
34	9	40.0	1.0	105	1200	92.87	93.05	92.87
35	9	52.5	1.0	105	1000	94.52	95.67	95.75
36	9	52.5	1.5	105	1200	97.42	99.41	97.42
37	9	52.5	1.5	150	1000	95.12	94.89	95.12
38	9	52.5	0.5	150	1000	89.76	89.83	88.99
39	9	52.5	1.0	105	1000	97.14	95.67	95.75
40	9	65.0	1.0	105	800	95.98	95.85	95.98
41	9	52.5	1.0	105	1000	96.65	95.67	95.75
42	15	65.0	1.0	105	1000	90.92	88.50	90.92
43	Э	52.5	1.0	105	1000	96.82	95.67	95.75
44	9	52.5	1.0	6U 105	1200	98.89	98.12	98.89
45	15	40.0	1.0	105	1000	83.68	81.58	83.68
46 p2	9	65.0	1.0	105	1200	98.69	98.31	98.69
K~ DMCC							0.984	0.991
KIVISE							0.913	0.088
MAPE							0.640	0.388
KPD							0.034	0.380

Tabl	e 3
------	-----

Random subsampling cross validation.

Repetition	MAPE
Repeat 1	0.723
Repeat 2	0.627
Repeat 3	0.637
Repeat 4	0.416
Repeat 5	0.449
Repeat 6	0.494
Repeat 7	0.581
Repeat 8	0.521
Repeat 9	0.684
Repeat 10	0.380
Overall average	0.551
Standard deviation (SD)	0.117
Standard error of the mean (SEM)	0.037

Table 4

Kernel based extreme learning machine sensitivity analysis.

Parameter removed from the input dataset with five attributes	MAPE
Methanol to molar ratio (X_1) Catalyst concentration (X_2)	25.169 5.174
Reaction temperature (X_3)	5.173
Reaction time (X_4)	4.086 1.634

3.6. Optimization of the transesterification process conditions using *K*-ELM model integrated with ACO

As mentioned previously in Section 3.4, the K-ELM model was chosen to be integrated with ACO in order to optimize the molar ratio of methanol to oil, KOH catalyst weight, reaction temperature,

(b)

(c)

Fig. 3. ANN coefficient relation (a) training, (b) value, (c) validation and (d) all value.

reaction time and agitation speed in order to attain the highest C. *pentandra* methyl ester yield. In order to prove the credibility of the optimization results, the experimental data for the molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed were keyed in as the inputs for the objective function and the results were compared with the predicted results. The optimum molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed obtained from the K-ELM model integrated with ACO is 10:1, 1 %wt, 60 °C, 108 min and 1100 rpm, respectively. These are the optimum conditions for the transesterification process based on the optimization model developed in this study. The results are presented in Table 2 and Fig. 5. The C. pentandra methyl ester yield predicted with these process conditions is 99.88%, which is in very

good agreement with the experimental methyl ester yield, with a value of 99.46%, indicating a minor margin of error. Based on the sensitivity analysis for the K-ELM model, it can be deduced that the methanol-to-oil ratio has the most pronounced impact on the methyl ester yield compared to the other parameters investigated in this study. In general, it can be stated that the K-ELM model integrated with ACO was reliable to optimize the conditions of the transesterification process.

3.7. Physical and chemical properties of the C. pentandra methyl ester

The physical and chemical properties of the C. pentandra methyl ester were determined according to the procedure outlined in the

Fig. 4. Comparison between experimental and predicted value.

Fig. 5. Optimization of K-ELM model integrated with ACO model at molar ratio of methanol to oil: 10:1, reaction time 108 min and agitation speed 1100 rpm.

ASTM D6751 and EN 14214 standards and the results are presented in Table 5. In general, the physical and chemical properties of the C. pentandra methyl ester produced in this study fulfil the biodiesel requirements stipulated in both of these standards. The kinematic viscosity is an important property since it determines the behaviour of the fuel in cold conditions and this property should be between 3.5 and 5 mm²/s according to ASTM D445 [35]. The density is also an important property of biodiesels besides the kinematic viscosity [36] since it determines the amount of fuel that needs to be injected for a specific engine power. A higher fuel density is undesirable since more fuel needs to be injected into the system at the same engine power. The kinematic viscosity and density of the C. pentandra methyl ester produced in this study is 4.69 mm²/s and 883.6 kg/m³, respectively. The total acid number is an important property of biodiesels and it is influenced by the free fatty acid composition of the fuel. This property was expressed in milligrams of KOH per gram of sample required to titrate a sample to a specified end point [37]. In general, the total acid number should be as low as possible in order to minimize corrosion of the fuel system and components that are in direct contact with the fuel. The maximum permissible limit for the total acid number according to

Table 5							
Physicochemical	properties (of C.	pentandra	oil and	C.pentandra	methyl	ester.

Properties	Unit	Test method	Crude C. pentandra oil ^a	C. pentandra methyl ester ^a	Kapok methyl ester [7]	Petrol diesel ^a
Density at 15° C	kg/m ³	D 1298	906.5	883.6	875	826
Kinematic viscosity at 40° C	mm²/s	D 445	18.74	4.69	5.4	2.99
Flash point	°C	D 93	186.5	158.5	156	72.5
Pour point	°C	D 97	_	-2.0	-8	-5
Cloud point	°C	D 2500	_	-3.0	_	-8
Higher heating value	MJ/kg	EN 14214	38.672	40.276	36.292	45.483
Sulphur content	mg/kg	EN ISO 20846	_	8.2	0.5	42.3
Cetane number	_	D 613	_	56.8	54	48.5
Water content	v/v	EN ISO 12937	0.005	0.018	_	0.0015
Copper strip corrosion	_	D 130	_	1a	1a	1a
Oxidation stability	h	EN 14112	_	9.22	_	23.9
Acid number	mg KOH/g	D 664	16.2	0.18	_	0.06
Iodine value	I ₂ /100 g	EN 14111	116.7	101.5	_	_
FAME	%wt	EN 14103	-	98.9	-	-

^a Result.

the EN 14104 standard is 0.5 mg KOH/g [38]. The total acid number of the C. pentandra methyl ester produced in this study is 0.18 mg KOH/g, which is well below the permissible limit. The flash point of the C. pentandra methyl ester is 158.5 °C, which is desirable since the value is higher than that for diesel. The higher flash point of the biodiesel is indeed favourable since it reduces safety hazards when the fuel is stored or shipped to different locations. The cloud point and pour point of the C. *pentandra* methyl ester is -2.0 °C and -3.0 °C, respectively, which are lower than those for diesel. This is indeed expected since the C. pentandra oil (the feedstock used to produce the methyl ester) has higher saturated fatty acid content. Copper corrosion strip test was conducted by heating a copper strip to 50 °C in a fuel bath for 3 h. The result shows that the water content of the C. pentandra methyl ester was less than 0.05 % vol. It is evident that the physical and chemical properties of the C. pentandra biodiesel are superior to those for other fuels, as indicated by the lower kinematic viscosity, higher oxidation stability, higher flash point and higher heating value. In addition, the other physical and chemical properties assessed in this study fulfil the fuel specifications given in the ASTM D6751 and EN 14214 standards, indicating that the Ceiba pentandra methyl ester had great potential for use as an alternative fuel for diesel engines.

4. Conclusions

K-ELM and ANN models are developed in this study to predict the conditions of the alkaline-catalysed transesterifcation process for C. pentandra methyl ester. The reliability of the K-ELM and ANN models was assessed based on the following statistical parameters: R^2 , RMSE, RPD and MAPE. In general, the values predicted by the K-ELM model show excellent agreement with the experimental values, with higher R² value and lower RMSE, RPD and MAPE compared with the ANN model. The results prove that the K-ELM model was able to simulate the process conditions of the alkalinecatalysed transesterification in reality with consistent results and reasonable accuracy. In addition, the K-ELM model is more efficient compared to the ANN model since the latter model is more timeintensive to produce the prediction results. Hence, the K-ELM model is chosen to optimize the parameters of the transesterification process, specifically the molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed in order to attain the highest C. pentandra methyl ester yield. This is done by integrating the K-ELM model with ACO. The optimum molar ratio of methanol to oil, KOH catalyst weight, reaction temperature, reaction time and agitation speed which gives the highest methyl ester yield is 10:1, 1 %wt, 60 °C, 108 min and 1100 rpm, respectively. The methyl ester yield predicted with these process conditions is 99.88%, which is in very good agreement with the experimental methyl ester yield, with a value of 99.46%. This shows that the K-ELM model integrated with ACO is a reliable computing tool to optimize the transesterification process conditions in order to maximize the C. pentandra methyl ester yield. Even though C. pentandra methyl ester is the focus of this investigation, it was believed that this tool will be applicable for other types of biodiesels as well, indicating its adaptability and flexibility. Furthermore, the K-ELM model integrated with ACO can help reduce time, costs and raw materials incurred with conventional trial and error experiments, which is greatly beneficial to industries involved in biodiesel production.

Acknowledgement

The authors wish to acknowledge the Ministry of Education, Malaysia, and University of Malaya, Kuala Lumpur, Malaysia, for funding this work under the SATU Joint Research Scheme (RU021B- 2015), PG036-2014B, and Politeknik Negeri Medan, Medan, North Sumatra, Indonesia, under the Research and Community Service Unit (UPPM-2017) and Universiti Tenaga Nasional (Grant No.: 20160101FRGS).

References

- Mofijur M, Masjuki HH, Kalam MA, Ashrafur Rahman SM, Mahmudul HM. Energy scenario and biofuel policies and targets in ASEAN countries. Renew Sust Energ Rev 2015;46:51–61.
- [2] Dharma S, Ong HC, Masjuki HH, Sebayang AH, Silitonga AS. An overview of engine durability and compatibility using biodiesel-bioethanol-diesel blends in compression-ignition engines. Energ Convers Manage 2016;128:66–81.
- [3] Mofijur M, Masjuki HH, Kalam MA, Atabani AE, Shahabuddin M, Palash SM, et al. Effect of biodiesel from various feedstocks on combustion characteristics, engine durability and materials compatibility: a review. Renew Sust Energ Rev 2013;28:441–55.
- [4] Nautiyal P, Subramanian KA, Dastidar MG. Production and characterization of biodiesel from algae. Fuel Proces Technol 2014;120:79–88.
- [5] Parthiban KS, Perumalsamy M. Nano sized heterogeneous acid catalyst from *Ceiba pentandra* stalks for production of biodiesel using extracted oil from *Ceiba pentandra* seeds. RSC Adv 2015;5:11180–7.
- [6] Ong LK, Effendi C, Kurniawan A, Lin CX, Zhao XS, Ismadji S. Optimization of catalyst-free production of biodiesel from *Ceiba pentandra* (kapok) oil with high free fatty acid contents. Energ 2013;57:615–23.
- [7] Sivakumar P, Sindhanaiselvan S, Gandhi NN, Devi SS, Renganathan S. Optimization and kinetic studies on biodiesel production from underutilized Ceiba Pentandra oil. Fuel 2013;103:693–8.
- [8] Betiku E, Okunsolawo SS, Ajala SO, Odedele OS. Performance evaluation of artificial neural network coupled with generic algorithm and response surface methodology in modeling and optimization of biodiesel production process parameters from shea tree (*Vitellaria paradoxa*) nut butter. Renew Energ 2015;76:408–17.
- [9] Prakash Maran J, Priya B. Modeling of ultrasound assisted intensification of biodiesel production from neem (Azadirachta indica) oil using response surface methodology and artificial neural network. Fuel 2015;143:262–7.
- [10] Wu S, Wang Y, Cheng S. Extreme learning machine based wind speed estimation and sensorless control for wind turbine power generation system. Neurocomp 2013;102:163–75.
- [11] Wong KI, Wong PK, Cheung CS, Vong CM. Modelling of diesel engine performance using advanced machine learning methods under scarce and exponential data set. Appl Soft Comp 2013;13:4428–41.
- [12] Wong PK, Wong KI, Vong CM, Cheung CS. Modeling and optimization of biodiesel engine performance using kernel-based extreme learning machine and cuckoo search. Renew Energ 2015;74:640–7.
- [13] Zhang L, Yuan J. Fault diagnosis of power Transformers using kernel based extreme learning machine with particle swarm optimization. Appl Math Inf 2015;2:1003–10.
- [14] Siswantoro J, Prabuwono AS, Abdullah A, Idrus B. A linear model based on Kalman filter for improving neural network classification performance. Expert Sys Appl 2016;49:112–22.
- [15] Sarve AN, Varma MN, Sonawane SS. Response surface optimization and artificial neural network modeling of biodiesel production from crude mahua (*Madhuca indica*) oil under supercritical ethanol conditions using CO₂ as co-solvent. RSC Adv 2015;5:69702–13.
- [16] Guang-Bin H, Hongming Z, Xiaojian D, Rui Z. Extreme learning machine for regression and multiclass classification. Syst Cyber Part B IEEE Trans 2012;42: 513-29.
- [17] Huang G-B, Wang D, Lan Y. Extreme learning machines: a survey. Int J Mach Learn Cyber 2011;2:107–22.
- [18] Xu Y, Dai Y, Dong Z, Zhang R, Meng K. Extreme learning machine-based predictor for real-time frequency stability assessment of electric power systems. Neural Comp Appl 2013;22:501–8.
- [19] Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. Evol Comp 1997;1:53–66.
- [20] Micheline K, Jiawei H, Jian P. Data mining: concepts and techniques. Elsevier.3; 2006. p. 1–740.
- [21] Rocha A, Hauagge DC, Wainer J, Goldenstein S. Automatic fruit and vegetable classification from images. Comp Electro Agri 2010;70:96–104.
- [22] Rajendra M, Jena PC, Raheman H. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 2009;88: 868–75.
- [23] Garson GD. Interpreting neural-network connection weights. AI Expert 1991;6:46–51.
- [24] Lee HV, Yunus R, Juan JC, Taufiq Yap YH. Process optimization design for *jatropha*-based biodiesel production using response surface methodology. Fuel Proces Technol 2011;92:2420–8.
- [25] Maran JP, Priya B. Comparison of response surface methodology and artificial neural network approach towards efficient ultrasound-assisted biodiesel production from muskmelon oil. Ultrason Sonochem 2015;23:192–200.
- [26] Guan X, Yao H. Optimization of Viscozyme L-assisted extraction of oat bran protein using response surface methodology. Food Chem 2008;106:345–51.
- [27] Sarve A, Sonawane SS, Varma MN. Ultrasound assisted biodiesel production

from sesame (*Sesamum indicum* L.) oil using barium hydroxide as a heterogeneous catalyst: comparative assessment of prediction abilities between response surface methodology (RSM) and artificial neural network (ANN). Ultrason Sonochem 2015;26:218–28.

- [28] Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. Syst Cyber Part B IEEE Trans 1996;26:29–41.
- [29] Chandra Mohan B, Baskaran R. A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Sys Appl 2012;39:4618–27.
- [30] Sebayang AH, Masjuki HH, Ong HC, Dharma S, Silitonga AS, Kusumo F, et al. Optimization of bioethanol production from sorghum grains using artificial neural networks integrated with ant colony. Ind Crop Prod 2017;97:146–55.
- [31] Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Info Scie 2013;237:82–117.
- [32] Yusaf TF, Yousif BF, Elawad MM. Crude palm oil fuel for diesel-engines: experimental and ANN simulation approaches. Energ 2011;36:4871–8.
- [33] Badday AS, Abdullah AZ, Lee K-T. Artificial neural network approach for modeling of ultrasound-assisted transesterification process of crude Jatropha

oil catalyzed by heteropolyacid based catalyst. Chem Eng Process Process Inten 2014;75:31–7.

- [34] Pal M, Deswal S. Extreme learning machine based modeling of resilient modulus of subgrade soils. Geotech Geol Eng 2014;32:287–96.
- [35] Silitonga AS, Masjuki HH, Mahlia TMI, Ong HC, Chong WT, Boosroh MH. Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sust Energ Rev 2013;22:346–60.
- [36] Ong HC, Silitonga AS, Masjuki HH, Mahlia TMI, Chong WT, Boosroh MH. Production and comparative fuel properties of biodiesel from non-edible oils: jatropha curcas, Sterculia foetida and Ceiba pentandra. Energ Convers Manage 2013;73:245–55.
- [37] Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 2012;16:2070–93.
- [38] Silitonga AS, Masjuki HH, Ong HC, Yusaf T, Kusumo F, TMI Mahlia. Synthesis and optimization of *Hevea brasiliensis* and *Ricinus communis* as feedstock for biodiesel production: a comparative study. Ind Crop Prod 2016;85:274–86.