
978-1-7281-0719-6/19/$31.00 ©2019 IEEE

Software defect detection based on selected
complexity metrics using fuzzy association rule

mining and defective module oversampling

Mohammad Farid Naufal
Department of Informatics

Universitas Surabaya
Surabaya, Indonesia

faridnaufal@staff.ubaya.ac.id

Selvia Ferdiana Kusuma
Department of Informatic

Institut Teknologi Sepuluh Nopember
Surabaya, Indonesia

selvia1805@mhs.its.ac.id

Abstract—Software defect is a major problem in software
development. The cost of software development will be
minimized when the software defects are detected earlier.
Complexity metric is a mathematic calculation to calculate code
complexity. It could be used to consider software defect
detection. But, not all of complexity metrics influent on the
occurrence of software defect, therefore it needs feature
selection to select the most influent complexity metrics.
Correlation-based Feature Selection (CFS) is used for selecting
the most influent complexity metrics. This study conducted
experiments on NASA Metric Data Program (MDP) datasets.
NASA MDP contains software defect history logs based on
several complexity metrics. But, there is an imbalanced
distribution of defective and not defective modules in NASA
MDP. The distribution of defective modules is less than not
defective modules. It can reduce software defect detection
performance. The distribution of defective module need to be
reproduced. In this study, Synthetic Minority Oversampling
Technique (SMOTE) is used to balance the distribution between
defective and not defective modules. Software defect detection
using Fuzzy Association Rule Mining (FARM) which is
combined with the selection of complexity metrics using CFS
and dataset balancing using SMOTE has sensitivity 85.51% and
accuracy 91.63% in detecting software defective modules on
NASA MDP dataset.

Index Terms— Software Defects, Fuzzy Association Rule
Mining, CFS, SMOTE, Complexity Metric

I. INTRODUCTION
eveloping good quality software is an expensive task.
Minimizing the occurrence of software defect can also

minimize the software development cost. Software defect
detection is useful for software engineer to pay attention to
defective modules (e.g. function, method, or classes) [1].

NASA MDP [2] are open source datasets which shows the
occurrence of software defect module with its following
software complexity metrics. NASA has publicly accessible
datasets which is easy to compare this study with the previous
researches which use the same dataset.

Complexity metric selection as attributes or features in
software defect detection still be an issue today. Not all of
complexity metric influent the occurrence of software defect
[3]. It needs a method to select the most influential
complexity metrics. CFS is used to analyze the attributes
relation in classification [4]. It can be applied to select the
most influential complexity metric in software defect
detection.

 The software defect distribution in training dataset is also
important for detecting software defect. NASA MDP consist
of two type distributions which are defective and not
defective modules. If one of the distributions is more than the
other, it causes the class imbalance. This situation can affect
on software defect detection performance [5]. The majority
class is the class which has higher distribution and the
minority class is a class which has fewer distribution.
Undersampling or oversampling technique can be used to
solve this problem [6]. Undersampling is used for reducing
the majority class and oversampling is used for increasing the
minority class.

Defective modules distribution is less than not defective
modules in NASA MDP dataset. It requires oversampling
technique to increase defective modules distribution.
SMOTE [7] is a technique to oversample the minority class.
In this study SMOTE performs data oversampling on
defective modules.

FARM is association rule mining extension with excess
faster and more efficient in large quantitative dataset [8].
FARM generate the pattern of defective modules which is
useful for detecting defective modules with complexity
metric as attributes. FARM can be expected as a good
approach to detect defective modules. This study proposes
detection of software defect by applying FARM combined
with attributes selection in complexity metric by applying
CFS and defective modules oversampling using SMOTE.

II. BACKGROUND

A. Related Work
Burak [8] uses Branch Count, McCabe, and Halstead

metric as features for software defect detection. CM1, JM1,
KC1, KC2, and PC1 are NASA MDP dataset which are used
in this study. This method is not considering the most influent
complexity metrics to detect software defect but has fast
computing time.

Ruchika [9] uses Support Vector Machine (SVM) to detect
software defect on one CMI dataset in NASA MDP. This
method uses Chidamber & Kemerer (CK) Metrics [10] as
features. But this study only tried on one dataset. Gabriela
using relational association rule to detect software defect
[11]. It uses CK metrics (Fan-in, Fan-Out, DIT, and NOC).

D

karyono
Highlight

The weakness of this method is representing complexity
metric. It converts complexity metric into Boolean relational
association rule.

Omer Faruk [12] combine Artificial Bee Colony (ABC)
and Artificial Neural Network (ANN) to detect software
defect. Branch Count, McCabe, and Halstead metric are used
as features. The NASA MDP datasets which are used in this
study are CM1, JM1, KC1, KC2, and PC1. This method is
easy to implement in quantitative complexity metrics values.
But it’s performance is not significant while compared with
other software defect detection method.

B. Complexity Metrics
NASA MDP provides the occurrence of software defect

with related complexity metrics. These complexity metrics
can be used as features for software defect detection. Branch
Count, Halstead metric [13], and McCabe metrics [14] are
widely used software metric which represent the code
complexity. Table 1 shows list of some complexity metrics.

C. Correlation-based Features Selection
 A useful feature is a feature which is correlated with
predicted class, otherwise it is irrelevant feature [4].
Correlation-based feature selection select the most influent
features by considering the correlation between features-
features and features-predicted class. The calculation of CFS
evaluation is shown in Eq. (1).

MS =
!"#$%%%%%

&!	(!(!*+)"$$%%%%%
 (1)

 MS is a Merit or heuristic value of S which containing k
features. 𝑟./%%%% is value of average correlation between predicted
classes and features (f ∈ S). 𝑟//%%%% is value of average correlation
between features and other features. Rank of the most influent
metric to predict class is shown in Eq. (1). Value of 𝑟./%%%% and
𝑟//%%%% are calculated by using the Symmetrical Uncertainty (SU).
The equation of SU is shown in Eq. (2).

𝑆𝑈 = 2.0	𝑥	 89(:)*9(;|:)
9(;)(9(:)

= (2)

 The entropy H(X) and H(Y) are the possible emergence of
an attribute (x ∈ X) or (y ∈ Y) in a transaction. The calculation
of H(X), H(Y), and H(X|Y) are shown in Eq. (3), (4), and (5).

𝐻(𝑌) = 	−∑ 𝑝(𝑦) logG(𝑝(𝑦))(H	∈	;) (3)

𝐻(𝑋) = 	−∑ 𝑝(𝑥) logG(𝑝(𝑥))(J	∈	:) (4)

𝐻(𝑋|𝑌) = 	−	∑ 𝑝(𝑥)∑ 𝑝(𝑦|𝑥) logG(𝑝(𝑦|𝑥))(H	∈	;)(J	∈	:) (5)

D. Synthetic Minority Oversampling Technique
SMOTE solve the class imbalanced problem by

reproducing or oversampling of the minority class
distribution [7]. Oversampling is the way to create synthetic
data by merging k nearest neighbors of minority class
samples. K-nearest neighbors is randomly selected depend on
the amount of desired synthetic data. Synthetic data in
software defective modules is formed in the following way:

a. Select one of defective module randomly.
b. Take the k-nearest neighbors of that defective

module based on its complexity metric value.
c. Randomly select n of selected defective modules.
d. Calculate the differences value between selected

defective module’s complexity metric with its N
nearest neighbors.

e. Multiply a random value from [0,1] with previous
differences value.

f. Add the selected defective module’s complexity
metric with the multiplied differences from step e.
Eq. (6) is the calculation to form oversampled
defective module. N,	a, and b are vector of defective
module which consist of complexity metrics m. N is
oversampled dataset vector N (mn1, mn2, mn3, …), a	
is selected defective module vector a (ma1, ma2, ma3,
…), r is random value [0,1], and b is one of nearest
neighbor vector of a,	b (mb1, mb2, mb3, …).
𝑁 = 𝑎 + 𝑟(𝑎 − 𝑏) (6)

III. FUZZY ASSOCIATION RULE MINING
 FARM [15] is Association Rule Mining (ARM)
expansion. ARM represent the appearance of item in
transaction as a Boolean value. In FARM represent the data
as a membership function between 0 and 1. FARM is a good
method for detecting software defect which has quantitative
complexity metric attributes.

TABLE I. COMPLEXITY METRICS IN NASA MDP

Symbol Metric

loc line count of code

v(g) cyclomatic complexity

ev(g) essential complexity

Iv(g) design complexity

n total operators + operands

v(g) Volume

L
…

program length
…

TABLE II. THE DESCRIPTION OF NASA MDP DATASET
[2]

Dataset Language Description

CM1 C Instrument of NASA
spacecraft

JM1 C
Real-time predictor of ground
system: Generate predictions
using simulation.

KC1 C++
Management of storage for
processing and receiving
ground data

KC2 C++ Another part of KC1 project.
Data processing of science.

PC1 C Flight application for earth
orbiting satellite

𝑆𝑢𝑝𝑝(𝐴, 𝐵) = 	 WXX	Y"Z[\Z.Y]^[\	.^[YZ][W	Z[_	`

WXX	Y"Z[\Z.Y]^[\
 (7)

𝐶𝑜𝑛𝑓(𝐴, 𝐵) = 	 WXX	Y"Z[\Z.Y]^[\	.^[YZ][W	_Z[`
WXX	Y"Z[\Z.Y]^[\	.^[YZ][\	W

 (8)

 There are several methods for finding association rules
in fuzzy sets. F-APACS [16] describes quantitative attributes
into fuzzy sets by using a linguistic term. Apriori [17]
performs fuzzification of quantitative attributes then
categorize them into membership functions. Finally,
association rules are generated using fuzzy sets. But, Apriori
efficiency is not good enough. Han [18] propose Frequent-
Pattern growth (FP-Growth) as a new mining method to
improve Apriori efficiency. This method more efficient
because it does not generate all item set candidates. FP-
Growth categorize every transaction into Frequent Pattern
tree (FP-Tree). Then it calculates the support and confidence
for every pattern. Eq. (7) and Eq. (8) show support and
confidence calculation.

IV. METHODOLOGY
The detail of this study approaches will be described in this
section.

A. Collecting Dataset
 NASA MDP dataset are used for evaluating our method.
NASA MDP datasets contain several software defect history
logs based on Branch Count, McCabe, and Halstead metric.
This dataset publicly accessible and used in many previous
researches.
 This study uses 5 NASA MDP datasets which are CM1,
JM1, KC1, KC2, and PC1. Table 2 shows the description of
each dataset and Table 3 shows the software defect history
logs in NASA MDP dataset. Every row is a module, it could
be a method or a function and every column is a complexity
metric calculation for each module. The rightmost column is
a defective status for each module. For example, at the first
row is a method with ID 1, it has 24 line of codes (loc), 5
cyclomatic complexity (v(g)), 1 essential complexity (ev(g)),
3 design complexity (iv(g)), 63 total operators and operands
(n), and defective status of that module is false. Another
example at the third row is a method with id 3, it has 31 line
of codes (loc), 4 cyclomatic complexity (v(g)), 1 essential
complexity (ev(g)), 2 design complexity (iv(g)), 141 total
operators and operands (n), and defective status of that
module is true.

B. Preprocessing
In the preprocessing step, CFS and SMOTE are used to

select the most influent complexity metric and oversample the
training dataset. From 21 complexity metrics on NASA MDP

dataset, CFS will select the most influent metric for detecting
defective modules on each dataset. Good complexity metric
combinations selection is based on merit value on Eq. 1. The best
complexity metric combination has the highest merit value. CFS
and SMOTE are executed using WEKA tools [19]. SMOTE will
reproduce the defective modules on training dataset. This phase
has been completed after selection of complexity metric using
CFS. The example of oversampling process are as follows:
a. Table 4 shows one of randomly selected defective module

which will be oversampled.
b. Select the k nearest neighbors of Table 4 randomly. Table 5

shows the 5 randomly nearest neighbors of Table 4 and ID
2 and 5 are selected nearest neighbors.

c. Calculate oversampled defective module using Eq (6) as
follows:
𝑁2 = (32, 2, 0.43) + 0.2	𝑥	[(32,2,0.43)–	(23,5,0.08)]
𝑁5 = (32, 2, 0.43) + 0.3	𝑥	[(32,2,0.43)	–	(38,5,0.35)]
N2 and N5 are new defective modules from
oversampling process of selected defective module on
Table 4. Table 6 shows the new defective module of N1
and N2.

C. Training
 In this step, software defect pattern will be obtained. FP
Growth is used for conducting training step. Then FP-Tree is
obtained based on complexity metrics. The detail of training
steps are as follows:

1) Determining Fuzzy Membership Function
 Each complexity metric of defective modules will be

categorized its fuzzy membership function value. The kind of
fuzzy membership functions are trapezoidal, triangular,
gaussian function. This study uses triangular fuzzy
membership function because it can more precisely write the
more and less value [20] in this case complexity metric. The
membership functions are “low”, “medium”, and “high”. The
x-axis is complexity metric value and y-axis is membership
value of complexity metric to each category.
 The limit value of a, b, and c for every complexity metric
in training dataset defines as:
y	=	complexity	metric	value		 	 (8)	

TABLE III. SOFTWARE DEFECT HISTORY LOGS IN NASA

MDP DATASET

ID loc v(g) ev(g) iv(g) n other
metrics

defect
status

1 24 5 1 3 63 … FALSE

2 20 4 4 2 47 … FALSE

3 31 4 1 2 141 … TRUE

4 29 5 1 3 111 … TRUE

TABLE IV RANDOMLY SELECTED DEFECTIVE MODULE

ID ev(g) b IOComment

1 32 2 0.43

TABLE V RANDOMLY 5 NEAREST NEIGHBORS

ID ev(g) b IOComment

1 41 6 0.33

2 23 5 0.08

3 38 5 0.35

… … … …

TABLE VI. NEW DEFECTIVE MODULE FROM

OVERSAMPLING PROCESS

ID ev(g) b IOComment

N2 33.8 1.4 0.5

N5 30.2 1.1 0.454

a	=	the	minimum	value	of	y	 	 	 (9)	
b	=	y	mean	value	 	 	 	 	 	 	 (10)	
c	=	2	x	y	mean	value	 	 	 	 	 	 (11)	

2) Mapping Complexity Metric to Fuzzy Membership
 In this step the membership function of complexity
metric μ(x) will be calculated in each category (low, medium,
and high). In Table 7, the complexity metric has been
converted into three categories (low, medium, and high)
fuzzy membership. For example, at the first row, a module
with ID 1 has low of ev(g) and low medium of b and low
medium of IOComment. b and IOComment are metric which
have two fuzzy memberships. Low medium means that
complexity metric has two fuzzy memberships which are low
and medium.

3) Identify Defective Patterns
The defective pattern will be identified by using FP

Growth. The next step is calculating each defective pattern
confidence. Then this pattern will be used for detecting
defective modules. Table 8 shows the defective pattern based
on complexity metric which are generated from training step.
For example at the first row the defective pattern with ID 1 is
ev(g).Low, ev(g).Med, b.High, lOComment.High and has
confidence value 1. It means the module which has low
medium of ev(g) and high of b and high of IOComment has
100% probability to be a defective module. Another example
at the third row the defective pattern with ID 3 is ev(g).Low,
ev(g).Med, b.Med, b.High, lOComment.Med,
lOComment.High and has confidence value 0.875. It means
the module which has low medium of ev(g) and medium high
of b, and medium high of IOComment has 87.5% probability
to be a defective module.

D. Defective Modules Detection
 The generated defective modules patterns from training
step will be used to detect defect on testing dataset. A module
is detected as defective module if it is matched with one of
defective modules pattern and vice versa.

E. Performance Evaluation
True Positive (TP) is the defective module number which

successfully detected as defect, True Negative (TN) is the not
defective module number which successfully detected as not
defect, False Positive (FP) is the not defective module
number which classified as defect, False Negative (FN) is the
defective modules number which classified as defect.
Accuracy, sensitivity, specificity, precision, nad probability
of false alarm are used as performance evaluation.

F. Results
This study has been done on five NASA MDP datasets.
Testing scenario has been done without oversampling
(FARM-CFS) and with oversampling process (FARM-CFS-
SMOTE). This scenario is done to compare the effect of
oversampling on defect detection performance. This
proposed approach use weka to run CFS and SMOTE.
 We are dividing the dataset randomly into two parts,
50% for training and 50% for testing. The reason is we
assume in real software project, the model of defect detection
is formed in the middle of software construction. We also
compare the accuracy, sensitivity, precision, specificity and
probability of false alarm (pof) of this detection approach
with another detection method using Naïve Bayes (NB),
Support Vector Machine (SVM), Relational Association Rule

(RAR), Artificial Neural Network + Artificial Bee Colony
(ANN+ABC).
 Table 9 shows the selected metric of each dataset. From
21 complexity metrics in Table 1, CFS select only 3
complexity metrics on CM1, 7 on JM1, 8 on KC1, 8 on KC2,
and 3 on PC1. It can be seen that IOComment is the most
influent metric in all dataset, followed by
locCodeAndComment and ev(g) which are influent metric in
3 datasets, IOBlank, uniqOp, iv(g), loc, b, and I are influent
metric at least in 2 datasets.
 The result of this approach can be clearly seen on Table
10. Table 10 shows the performance average of FARM-CFS
and FARM-CFS-SMOTE at every confidence threshold
value.
 Accuracy comparison between FARM-CFS and FARM-
CFS-SMOTE is not significant but when the confidence
threshold above 0.3 FARM-CFS-SMOTE is better than
FARM-CFS. This indicate that when confidence threshold is
above 0.3, the defective pattern of FARM-CFS-SMOTE can
detect more defective pattern as a defect than detecting not
defective pattern as defect. In other words FARM-CFS-
SMOTE has more true positive and true negative value than
FARM-CFS.
 Specificity comparison between FARM-CFS and
FARM-CFS-SMOTE are significant when the confidence
value under 0.3, it is caused by true negative value of FARM-
CFS is always better than FARM-CFS-SMOTE. Moreover
defective pattern which formed by oversampling process is
not always accurate to detect defective modules. In another
word FARM-CFS-SMOTE has more false positive value
than FARM-CFS.
 Sensitivity comparison between FARM-CFS and
FARM-CFS-SMOTE are significant. FARM-CFS-SMOTE
sensitivity is better than FARM-CFS at every confidence
threshold. It caused by oversampling process which
reproduce more defective pattern can detect more defective
module. In other word, FARM-CFS-SMOTE has more true
positive value.
 Precision comparison between FARM-CFS and FARM-
CFS-SMOTE are significant when confidence threshold
above 0.6. It is caused by true positive value of FARM-CFS-
SMOTE more than FARM-CFS compared by the false
positive value.
 Probability of false alarm comparison between FARM-
CFS and FARM-CFS-SMOTE are not significant but
FARM-CFS is better at every confidence threshold. It is
caused by defective pattern which is formed by oversampling
process sometimes detect not defective modules as defect.
 The comparison of these two scenarios can be clearly
seen on Table 10. It shows the comparison of the best value
of each performance evaluation at each confidence threshold.
FARM-CFS has better specificity, precision, and probability
of false alarm than FARM-CFS-SMOTE by a margin of each
are 9.35%, 1.14%, and 1.32%. However, the imbalance of
defective and not defective modules in the dataset make
detecting the defective modules is more important. FARM-
CFS-SMOTE which has a higher sensitivity value still better
assessed because it more able to detect more defective
modules. In other words FARM-CFS-SMOTE has more true
positive value than FARM-CFS.
 Table 11 shows the performance comparison between
this approach with NB, SVM, RAR, and ANN+ABC.
FARM-CFS-SMOTE has the highest sensitivity than the NB,
SVM, RAR, ANN + ABC, and FARM-CFS. Although the

accuracy, specificity, precision, and probability of false
alarms FARM-CFS-SMOTE is not the best, but sensitivity is
the priority in defect detection. The higher value of
sensitivity, it is better in detecting defective modules that
have lower distribution in the dataset. The imbalance
distribution of defective and not defective modules makes
detection of defective modules which have lower distribution
becomes more essential.

G. Conclusion
 From the results, it can be concluded that the addition of
oversampling process on defective modules can significantly
increase the sensitivity up to 15.96% compared with no
oversampling process. Although the oversampling process
does not improve accuracy significantly, it is only 1.18%
compared without oversampling process.

 FARM-CFS-SMOTE has the best sensitivity compared
with SVM, NB, RAR, ANN+ABC, and FARM-CFS. It
means that FARM-CFS-SMOTE can detect more defective
modules than the other methods. The lower distribution of
defective modules compared with not defective modules
make detection of defective module is more essential. The
defective pattern which generated from oversampling process
can detect the defective modules correctly. Although several
not defective modules are classified as defect (false positive)
but the value is not significant if compared with defective
modules which are classified as defect (true positive).
Software defect detection performed in this study is based on
complexity metrics McCabe, Halstead, and Branch Count at
NASA MDP dataset.

TABLE VII. THE COMPLEXITY METRIC HAS BEEN CONVERTED INTO THREE FUZZY MEMBERSHIP CATEGORIES

ID ev(g) b IOComment Defect
Status Low Medium High Low Medium High Low Medium High

1 1 0 0 1 1 0 1 1 0 FALSE

2 1 0 0 1 1 0 1 0 0 FALSE

3 1 0 0 1 1 0 1 0 0 FALSE

TABLE VIII. THE DEFECTIVE PATTERN BASED ON COMPLEXITY METRIC

ID Defective Pattern Confidence

1 ev(g).Low, ev(g).Med, b.High, lOComment.High 1

2 ev(g).Low, ev(g).Med, b.High, lOComment.Med, lOComment.High 1

3 ev(g).Low, ev(g).Med, b.Low, b.Med, lOComment.Low, lOComment.Med 0.844

TABLE IX. SELECTED COMPLEXITY METRIC OF NASA MDP DATASET
CM1 JM1 KC1 KC2 PC1

 ev(g) loc ev(g) IOComment i

 b v(g) iv(g) IOCodeAndComment IOComment

 IOComment ev(g) v(g) IOBlank IocCodeAndComment
 iv(g) IOCode uniq_Op loc
 e IOComment loc ev(g)
 IOComment IOBlank ev(g) i
 locCodeAndComment uniq_Op i b

 total_Opnd b

TABLE X. PERFORMANCE COMPARISON BETWEEN FARM-CFS AND FARM-CFS-SMOTE

Confidence
FARM-CFS FARM-CFS-SMOTE

Accuracy Specificity Sensitivity Precision Pof Accuracy Specificity Sensitivity Precision Pof

0.1 87.96% 90.15% 69.56% 55.61% 9.82% 84.08% 83.61% 85.51% 48.57% 16.36%

0.2 88.15% 95.31% 54.18% 71.83% 4.66% 85.74% 86.27% 82.31% 51.91% 13.70%

0.3 87.57% 95.64% 47.29% 72.65% 4.34% 90.18% 92.98% 70.74% 63.36% 6.99%

0.4 89.00% 96.17% 38.20% 75.86% 3.81% 89.94% 94.07% 62.87% 65.56% 5.90%

0.5 88.24% 96.55% 30.96% 73.03% 3.42% 90.41% 96.03% 54.62% 72.54% 3.95%

0.6 89.11% 99.09% 21.77% 46.66% 0.90% 89.95% 96.57% 45.54% 74.06% 3.41%

0.7 89.13% 99.73% 19.08% 54.94% 0.26% 89.73% 96.57% 42.40% 74.72% 3.21%

0.8 88.41% 99.76% 15.46% 55.25% 0.24% 89.78% 97.37% 39.47% 75.93% 2.60%

0.9 88.40% 99.76% 15.39% 55.23% 0.24% 88.90% 98.41% 26.24% 72.35% 1.56%

H. Future Work
In the future software defect detection can be developed and
applied to another software development project.
Furthermore, determining the confidence threshold value can
be detailed in smaller units to get the better performance.

V. REFERENCES

[1] P. He and B. Li, "An empirical study on software defect prediction

with a simplified metric set," Information and Software Technology,
vol. 59, pp. 170-190, 2015.

[2] NASA, "PROMISE," University of Ottawa, 2006. [Online].
Available: http://promise.site.uottawa.ca/SERepository/datasets-
page.html. [Accessed 3 May 2015].

[3] V. T. A. S. Ishani Arora, "Open Issues in Software Defect
Prediction," Procedia Computer Science, pp. 906-912, 2015.

[4] M. A. Hall, "Correlation-based feature selection for machine
learning," 1998.

[5] M. Galar, A. Fernández, E. Barrenechea, H. Bustince and F. Herrera,
"A Review on Ensembles for the Class Imbalance Problem: Bagging-
, Boosting-, and Hybrid-Based Approaches," Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions,
pp. 463-484, 2012.

[6] R. Barandela, R. Valdovinos, J. Sánchez and F. Ferri, "The
imbalanced training sample problem: Under or over sampling?,"
Structural, Syntactic, and Statistical Pattern Recognition, pp. 806-
814, 2004.

[7] Chawla, N. V. a. Bowyer, K. W. a. Hall, L. O. a. Kegelmeyer and W.
Philip, "SMOTE: Synthetic Minority Over-sampling Technique,"
CoRR, pp. 321--357, 2002.

[8] B. Turhan and A. Bener, "Analysis of Naive Bayes assumptions on
software fault data: An empirical study," Data & Knowledge
Engineering, pp. 278-290, 2009.

[9] R. Malhotra, "A systematic review of machine learning techniques
for software fault prediction," Applied Soft Computing, vol. 27, p.
504–518, 2015.

[10] M. Hitz and B. Montazeri, "Chidamber and Kemerer's metrics suite:
a measurement theory perspective," in IEEE Transactions on
Software Engineering, 1996.

[11] G. Czibula, "Software defect prediction using relational association
rule," Information Sciences, pp. 260-278, 2014.

[12] N. Omar, S. S. Haris, R. Hassan, H. Arshad , M. Rahmat, N. F. A.
Zainal and R. Zulkifli, "Automated Analysis of Exam Questions
According to Bloom's Taxonomy," Science Direct, pp. 297-303,
2012.

[13] M. H. Halstead, "Elements of Software Science (Operating and
Programming Systems Series," 1977.

[14] T. McCabe, "A Complexity Measure," Software Engineering, IEEE
Transaction, Vols. SE-2, pp. 308-320, 1976.

[15] C.-H. Wang and W.-H. Lee, "Applying Fuzzy FP-Growth to Mine
Fuzzy Association Rules," 2010.

[16] W. Au and K. Chan, "An effective algorithm for discovering fuzzy
rules in relational databases," in IEEE World Congress on
Computational Intelligence, 1998.

[17] A. Inokuchi, T. Washio and H. Motoda, "An Apriori-Based
Algorithm for Mining Frequent Substructures from Graph Data," in
Principles of Data Mining and Knowledge Discovery, 2002.

[18] H. Jiawei, P. Jian and Y. Yiwe, "Mining Frequent Patterns Without
Candidate Generation," SIGMOD Rec., vol. 29, no. 2, pp. 1-12, 2000.

[19] Hall, M. a. Frank, E. a. Holmes, G. a. Pfahringer, B. a. Reutemann,
P. a. Witten and I. H, "The WEKA Data Mining Software: An
Update," SIGKDD Explor. Newsl., vol. 11, pp. 10-18, 2009.

[20] A. K. Shyamal and M. Pal, "Triangular Fuzzy Matrices," Iranian
Journal of Fuzzy Systems , vol. 4, no. 1, pp. 75-87, 2007.

TABLE XI. PERFORMANCE COMPARISON WITH ANOTHER CLASSIFICATION METHOD

Defect
Detection
Method

Accuracy Specificity Sensitivity Precision Pof

NB 87.95% 95.17% 50.10% 71.86% 4.84%

SVM 92.48% 99.95% 54.36% 99.24% 0.04%

RAR 87.69% 89.33% 82.80% 69.83% 10.70%

ANN+ABC 69.60% 56.41% 76.60% 22.55% 29.80%
FARM-
CFS 91.09% 99.76% 69.56% 93.54% 0.24%

FARM-
CFS-
SMOTE

91.63% 98.41% 85.51% 80.35% 1.56%

IEEE Catalog Number:
ISBN:

CFP1932P-POD
978-1-7281-0720-2

2019 16th International Joint
Conference on Computer Science
and Software Engineering
(JCSSE 2019)

Chonburi, Thailand
10 – 12 July 2019

Copyright © 2019 by the Institute of Electrical and Electronics Engineers, Inc.
All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private
use of patrons those articles in this volume that carry a code at the bottom of the first
page, provided the per-copy fee indicated in the code is paid through Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights
Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights
reserved.

*** This is a print representation of what appears in the IEEE Digital
Library. Some format issues inherent in the e-media version may also
appear in this print version.

IEEE Catalog Number: CFP1932P-POD
ISBN (Print-On-Demand): 978-1-7281-0720-2
ISBN (Online): 978-1-7281-0719-6
ISSN: 2372-1642

Additional Copies of This Publication Are Available From:

Curran Associates, Inc
57 Morehouse Lane
Red Hook, NY 12571 USA
Phone: (845) 758-0400
Fax: (845) 758-2633
E-mail: curran@proceedings.com
Web: www.proceedings.com

6

11

17

21

26

32

38

43

49

55

61

67

73

79

85

91

97

103

109

115

120

125

131

137

142

146

152

158

164

170

175

181

187

193

198

203

207

212

218

224

230

236

242

248

254

N/A

265

271

277

283

287

292

297

303

308

313

318

324

330

336

karyono
Highlight

342

346

352

357

362

368

374

378

	[1] Artikel International Conference
	50842webtoc

