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ABSTRACT
Botulinum toxin serotype A is a prominent therapeutic enzyme, for both clinical and cosmetic uses.
Since this protein is produced by bacteria, it exhibits an allergenic effect when subjected to human
therapy. Protein mutagenesis is one method to improve the characteristics of protein. However, in sil-
ico study is needed to give suggestion of which amino acid should be mutated. Hence, a lot of money
and time can be saved. This study initially screened which residue of the Botulinum toxin serotype A
is B-cell epitopes both linearly and conformationally. By overlapping the B-cell epitopes with the
excluded conserve sequence, seven residues were allowed to be mutated. There were two proposed
muteins showing a reduction in the antigenicity probability: DE147, E510F, T1062F, DE1080, N1089M
and DQ1090; and DE147, E510F, T1062F, E1080W, N1089M and DQ1090. Molecular dynamics simula-
tion of the 3D proposed muteins indicated an increase of flexibility in both muteins compared to that
in the native protein. Both muteins have lower antigenicity. In addition, they are similar in structure,
stability and functionality compared to the native protein.

Abbreviations: 3D: three-dimensional; BoNT: botulinum neurotoxins; FNN: feed-forward neural net-
work; GRAVY: grand average of hydropathy; MSMS: Michel Sanner’s molecular surface; MD simulation:
molecular dynamics simulation; NPT: constant number, pressure and temperature; NVT: constant num-
ber, volume and temperature; SASA: solvent-accessible surface area; Rg: radius of gyration; RMSD: root-
mean-square deviation; RMSF: root-mean-square fluctuation; SVM: support vector machine; US FDA:
United States Food and Drug Administration
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1. Introduction

Botulinum neurotoxins (BoNT) are potent toxins which are
produced mainly by Clostridium botulinum, and the other
producers are C. argentinense, C. baratii and C. butyricum.
Eight serotypes of BoNT (A–H) have been characterized.
These toxins are zinc metalloprotease that consists of heavy
chain, light chain and translocation domain (Hill, Xie, Foley, &
Smith, 2015). Botulinum toxin was first known to cause food
poisoning resulting in muscle paralysis. Botulinum toxin
affected muscle neuron after its internalization of the botox
to the cytosol by the heavy chain via SV2 receptor protein;
the light chain of toxin cut the SNAP-25 (by BoNT/A,/E, and/
C), VAMP/synaptobrevin (by BoNT/B,/D,/F,/G) and syntaxin
(BoNT/C). These proteins are well known as SNARE complex
components which act as a docking protein for neurotrans-
mitter exocytosis (Carruthers & Carruthers, 2005; Luvisetto,
Gazerani, Cianchetti, & Pavone, 2015).

Among those toxin serotypes, BoNT/A is the most utilized
protein as a therapeutic agent for muscle relaxation, since
botox is the one to be well characterized, tested and
approved by the US Food and Drug Administration (FDA)

(Brooks, 1954; Frevert, 2015; Scott, 1981). Since then, BoNT/A
has been widely used for many cosmetics and physiologic
disorders, such as blepharospasm, hemifacial spasm, dys-
tonia, hyperhidrosis, migraine and neuropathic pain (neural-
gia) (Babiloni, Kapos, & Nixdorf, 2016; Bentivoglio, Del
Grande, Petracca, Lalongo, & Ricciardi, 2015; Carruthers &
Carruthers, 2005; Castelao et al., 2017). BoNT/A as a thera-
peutic protein is also stimulated by biotechnology revolution.
This encourages the market for more innovation and its
unique properties dedicated to increase the performance of
the protein by many industries around the world
(Dressler, 2016).

Since BoNT/A is produced originally by bacteria, this pro-
tein is considered as a foreign antigen by human immune
system. Antibody secretion by B-cell can neutralize the pro-
tein and may reduce its efficacy (Schellekens, 2002).
Although first doubtfully reported to induce allergic and
even anaphylaxis reaction due to the possibility of other for-
eign substances in the preparation (LeWitt & Trosch, 1997; Li,
Goldberger, & Hopkins, 2005), BoNT/A is proven to be able
to induce immunogenic and even anaphylaxis reaction,
which is life-threatening (Careta, Delgado, & Patriota, 2015;
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Moon, Chang, & Kim, 2017; Rosenfield, Kardassakis, Tsia, &
Stayner, 2014). Indeed, BoNT/A can induce the production of
antibody (IgG isotype) (Dressler & Bigalke, 2017). With the
currently vast and diverse market of BoNT/A, it is beneficial
to tackle the allergenic problems as one of the different
technologies proposed for its development.

Bioinformatics offer many algorithms to predict amino acid
residues that induce immunogenic reaction. B-cells can detect
both linear (continuous) and conformational (discontinuous)
epitopes unique to human protein although most of the B-cell
epitopes are conformational or fold-dependent (Kringelum,
Lundegaard, Lund, & Nielsen, 2012; Yao, Zhang, Liang, &
Zhang, 2012). Modifications of these residues can alter the anti-
genicity (Zarei et al., 2018). Compared to time-consuming and
costly experimental approaches, a wide variety of computa-
tional tools, which are publicly available, are highly recom-
mended to predict the B-cell epitopes to reduce or minimize
cost (Kolaskar & Tongaonkar, 1990; Kringelum et al., 2012;
Potocnakova, Bhide, & Pulzova, 2016; Saha & Raghava, 2006;
Singh, Ansari, & Raghava, 2013; Yao et al., 2012).

Few studies to mutate BoNT/A to enhance the botox per-
formance have been attempted (Fonfria, Elliott, Beard,
Chaddock, & Krupp, 2018). This paper focuses on the strategy
of BoNT/A rational design to reduce the immunogenicity of
the protein by mutating the predicted B-cell epitopes. B-cell
epitopes were predicted both conformationally and linearly;
these epitopes overlapped with the conserved region pre-
dicted by the thermodynamic analysis and the essential site
of the toxin for the activity (Rigoni, Caccin, Johnson,
Montecucco, & Rossetto, 2001). Then, the new protein was
also modelled and evaluated for its physical properties
and stability.

2. Materials and methods

In general, the steps used in this methodology were (1)
determination of B-cell linear and conformational epitopes
from BoNT/A, (2) determination of conserved region and (3)
mutagenesis of BoNT/A and evaluation of antigenic, physical
properties and stability.

2.1. Sequence retrieval

The protein used in this paper was botulinum toxin serotype
A (BoNT/A) (PDB ID: 3BTA) (Lacy, Tepp, Cohen, DasGupta, &
Stevens, 1998). Protein domain and features were obtained
from UniProt (https://www.uniprot.org/uniprot/P10845).
Three amino acid residues, 262, 266 and 366, are important
for the enzymatic activity. Thus, they should not be mutated
(Rigoni et al., 2001). The sequence was saved in the Fasta
format, and the new 3D structure of the protein from the
RCSB PDB was stored for further studies.

2.2. Immuno-informatic analyses

2.2.1. Linear B-cell epitopes prediction
Several online tools were used to predict the linear B-cell
epitopes. BepiPred-2.0 (http://www.cbs.dtu.dk/services/

BepiPred/) (Jespersen, Peters, Nielsen, & Marcatili, 2017) was
used to predict epitopes based on random forest algorithm
trained on epitopes amino acids from the crystal structure of
protein. Threshold of 0.5 and sensitivity of 0.6 were
employed. Additionally, Bepipred server, accessed from IEDB
(http://tools.immuneepitope.org/bcell/), was used to predict
the linear B-cell epitopes by using hidden Markov model and
propensity scale method (Larsen, Lund, & Nielsen, 2006). The
threshold of 0.35 with the sensitivity of 0.49 and the specifi-
city of 0.75 was employed.

SVMTriP (http://sysbio.unl.edu/SVMTriP/) (Yao et al., 2012)
was used to predict linear B-cell epitopes that integrate Tri-
peptide similarity and propensity score utilizing support vec-
tor machine (SVM) algorithm. Another tool was used to pre-
dict the linear epitopes of B-cell (http://imed.med.ucm.es/
Tools/antigenic.html) and to evaluate the occurrences of
amino acids that acted as epitope in protein experimentally
(Kolaskar & Tongaonkar, 1990). Briefly, the average propen-
sity of central amino acid residue of every 7-mer was eval-
uated and compared with the average propensity of the
whole protein. The threshold to consider an antigenic amino
acid residue was 1.0. Then, every 8-mer where all residues
were above the threshold is considered as an epitope.
ABCpred (http://crdd.osdd.net/raghava/abcpred/) was
employed to predict continuous B-cell epitopes based on
machine learning techniques, such as feed-forward (FNN)
and recurrent neural network (RNN). As many as 20 mers
could be predicted as epitope (Saha & Raghava, 2006). The
score used for the threshold was 0.81.

2.2.2. Conformational B-cell epitopes prediction
Discotope 2.0 (http://www.cbs.dtu.dk/services/DiscoTope/)
was used to predict conformational B-cell epitopes from the
calculation of surface accessibility and novel propensity
amino acid score (Kringelum et al., 2012). A threshold of �1
with 30% sensitivity and 85% specificity was used. CBTOPE
(Conformational B-cell Epitope Prediction) (http://crdd.osdd.
net/raghava/cbtope/) server was also employed with the
accuracy of about 84%. This tool used SVM algorithm to train
the program with the amino acid composition and physico-
chemical profile to predict the epitopes (Ansari & Raghava,
2010). Threshold of �0.3 was used, and residues with the
scale above 5 were considered epitopes. Moreover, exposed
surface was analyzed with Emini surface accessibility which
was accessed at IEDB Analysis Resource (Emini, Hughes,
Perlow, & Boger, 1985). Score of surface probability that
resulted above one was predicted to be accessible on the
surface of the protein.

2.2.3. Examination of the conserved region
Entropy method provided by Swiss Model ExPASy was used
to determine the conserved region of the protein (Arnold,
Bordoli, Kopp, & Schwede, 2006; Benkert, Biasini, & Schwede,
2011; Biasini et al., 2014). Entropy score below 2 is consid-
ered conserved residue which will be excluded from muta-
genesis analysis.
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2.2.4. In silico mutagenesis of the predicted residues
In silico mutagenesis and stability examination of the mutein
were done using I-Mutant 2.0 (http://folding.biofold.org/i-
mutant/i-mutant2.0.html) for every single substitution muta-
tion of the determined residues (Capriotti, Fariselli, &
Casadio, 2005). The condition for the mutation was pH 7.4 at
the temperature of 37 �C, which conforms to human physio-
logical condition. Mutation was allowed if the difference of
the Gibbs free energy was positive which indicated an
increase of protein stability. The difference of the Gibbs free
energy was measured with the formula of DG(mutein) �
DG(wild-type protein). The residue that did not contain any
positive value of difference of the Gibbs free energy was
tried for deletion-type mutation. The proteins with mutated
residues were subjected to the B-cell epitopic probability
with VaxiJen (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/

VaxiJen.html). This tool used auto cross-covariance pre-proc-
essing of protein while detecting antigenicity of residues
with the help of z-descriptors as physicochemical parameters
(Doytchinova & Flower, 2007).

2.3. Immuno-informatic analyses

2.3.1. 3D Modelling of mutated protein and validation
3D protein was predicted and evaluated by PHYRE2 Protein
Fold Recognition Server (http://www.sbg.bio.ic.ac.uk/phyre2).
This tool displays the accuracy comparable to the widely
used web servers for protein modelling, such as I-TASSER or
Swiss-Model, but it is easier to use. PHYRE2 also provided
investigator tools for 3D model evaluation and validation
(Kelley, Mezulis, Yates, Wass, & Sternberg, 2015). The

Figure 1. Graphical illustration of linear B-cell epitopes (A) and overlap of consensus from the linear B-cell epitopes with the conformational B-cell epitopes and
non-conserved region (B) to determine which residues are allowed to mutate.
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evaluations of 3D protein quality provided by PHYRE2 were
ProQ2 quality assessment, HHsearch alignment confidence,
analysis of clashes, rotamers and disorder analysis based on
Disopred. ProtParam was also used to analyze all protein
properties and stability (Gasteiger et al., 2005).
Ramachandran plot, however, was analyzed by RAMPAGE
(http://mordred.bioc.cam.ac.uk/�rapper/rampage.php) ProSA-
web (https://prosa.services.came.sbg.ac.at/prosa.php) was
employed to evaluate the 3D protein quality in terms of Z-
score and residue energies plot. A good model is indicated
with a Z-score inside the range characteristics of scores from
other native proteins with similar sizes and groups, while the
energy plot shows the local model quality for each central
residue in every 40-mer fragment (Wiederstein & Sippl,
2007). In addition, the protein model quality was also ana-
lyzed with VERIFY3D (L€uthy, Bowie, & Eisenberg, 1992; Bowie,
L€uthy, & Eisenberg, 1991) and ERRAT (Colovos & Yeates,
1993) from SAVES 5.0 web servers (http://servicesn.mbi.ucla.
edu/SAVES/).

2.3.2. Molecular dynamics (MD) simulation
The 3D models of mutein generated and validated from
PHYRE2 were subjected to MD simulation at MDweb (http://
mmb.irbbarcelona.org/MDWeb/) (Hospital et al., 2012).
Gromacs Full MD setup with Gromos 53a6 force field was
employed. The system was solvated with TIP3P water mole-
cules with a spacing distance of 15 Å around the protein. Na
þ and Cl � were added to neutralize the system until the
concentration reached 50 mM. Initially, heavy atoms were
restrained with a force constant of 500 KJ/mol � nm2. The
system was further equilibrated under NPT and NVT ensem-
bles. The solvent was heated to 300 K, and the force for
restraining the heavy atoms was gradually diminished until
the simulation was done without restraint. The temperature
and pressure were kept at default with velocity-rescale and
Parinello–Rahman algorithms, respectively.

The root-mean-square deviation (RMSD) aligned through
trajectory, root-mean-square fluctuation (RMSF) of all resi-
dues, the radius of gyration (Rg), solvent-accessible surface
area (SASA) and secondary structure projection aligned
through trajectory for each protein were computed. SASA
was measured with StrucTools (https://hpcwebapps.cit.nih.
gov/structbio/basic.html) with an MSMS program (Michel
Sanner’s Molecular Surface). The surface probe size was 1.4
Å, and the surface of only atom in general 20 amino acids
was calculated. The same tool was used to calculate which
residues of the protein contributed to the following second-
ary structure: a-helix, b-strand, b-turn, b-bridge, random coil
and 310-helix. The secondary structure projection plot was
built by calculating the amount of residue that composed
each secondary structure types within the simulation time.
Intramolecular hydrogen bonds were analyzed by first
removing all water molecules and ions from the trajectory.
Hydrogen bond calculation tool (http://cib.cf.ocha.ac.jp/
bitool/HBOND/) was employed to calculate the amount of
hydrogen bond from each pdb file. The MD was done in 26
snapshots in which each snapshot was 0.5 ns. The total time
for MD simulation was 13,000 ps.

3. Results and discussion

BoNT/A market is globally diverse at the moment, with one
industry producing its own formulation and protein modifica-
tion for its novelty (Dressler, 2016). Therefore, it is interesting
to develop the low antigenicity type of this protein since this
protein is a foreign one. In silico method provides an initial
study for mutagenesis to suggest which amino acid residue
should be mutated to show lower antigenicity while still
retaining its stability and activity compared to the
native protein.

3.1. B-cell epitopes prediction

Various tools are available in a lot of web-server software to
predict antigenicity of a protein, with regard to the previ-
ously known 3D structure of the BoNT/A. BoNT/A has been
characterized with X-ray crystallography with multiple iso-
morphous replacement as phasing approach (Lacy et al.,
1998). The downloaded PDB files (3BTA) were directly used
for the determination of B-cell epitopes. The study, thus, can
be directed to the determination of the B-cell epitopes.

Some researchers used web-server tools to evaluate the
antigenicity of protein residues (Fattahian, Riahi-Madvar,
Mirzaee, Asadikaram & Rahbar, 2017; Zarei et al., 2018). In
total, five tools were employed to predict the linear B-cell
conformation, and three types of web-server software were
used to predict the conformational B-cell epitopes with vari-
ous amino acid lengths. The residues obtained from the lin-
ear B-cell epitopes prediction must comply with at least
three of the five tools. The consensus residues obtained
using this method were overlaid with the result of the pre-
diction of the conformational B-cell epitopes and the non-
conserve region to select the epitopes which are permitted
to be mutated. The selected epitopes can be seen

Table 1. Analysis of substitution mutation stability with difference in Gibbs’
free energy method by I-Mutant 2.0 Condition of mutation was set at pH of
7.4 and temperature of 37 �C.

DDG E147 E510 T1062 E1080 D1088 N1089 Q1090

V �0.98 �0.54 �0.47 0.73 �1.13 �1.23 �1.50
L �1.18 �0.50 �0.88 0.98 �1.25 �0.62 �1.21
I �0.71 �0.04 �0.12 1.31 �0.81 �0.04 �1.24
M �0.69 �0.01 0 1.01 �0.74 0.01 �1.76
F �0.20 0.86 0.29 2 �0.13 �0.17 �0.71
W �0.89 �0.07 �0.03 1.06 �1.21 �0.87 �1.33
Y �1.60 �0.28 0.47 1.25 �0.47 �0.63 �1.52
G �2.05 �1.15 �1.20 0.13 �1.51 �0.91 �1.92
A �2.12 �1.17 �0.54 �0.13 �2 �1.61 �2.78
P �2.48 �2.14 �1.31 �0.96 �2.50 �2.05 �2.87
S �1.74 �0.66 �0.09 0.06 �1.06 �1.12 �2.03
T �1.29 �0.18 0.81 �1.2 �0.86 �1.58
C �0.65 �0.29 �0.46 0.3 �0.77 �0.45 �1.59
H �2.15 �1.19 �1.42 �0.48 �0.74 �1.46 �2.31
R �1.69 �0.25 0.65 0.68 �1.23 �0.44 �2.01
K �2.37 �1.42 �0.30 �0.55 �1.39 �2.07 �2.66
Q �1.78 �0.94 �0.69 0.26 �1.12 �1.07
E 0.11 �1.06 �0.68 �1.84
N �2.62 �1.24 �0.31 0.26 �1.45 �3.11
D �1.75 �0.58 0.33 0.49 �0.89 �1.74

The bold values indicated the positive values of DDG.
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schematically in Figure 1. The same tools can also be used
to predict the antigenicity of the protein directed to vaccine
design of emerging pathogens (Bazmara et al., 2017;
Hajighahramani et al., 2017; Kalyanaraman, 2018;
Negahdaripour et al., 2017; Nezafat et al., 2016; Pahil, Taneja,
Ansari, & Raghava, 2017; Shi et al., 2015; Yasmin et al., 2016).

Conserved region determined by entropy method
(Supplementary data 1) usually contributed to the structural
and functional properties. This region was, therefore,
excluded in order to ensure the stability and the conform-
ation of the muteins (Zarei et al., 2018). Based on the linear
B-cell epitopes, conformational B-cell epitopes, surface acces-
sibility and conserved region prediction, seven residues were
obtained out of 1296 amino acids residue. T1062 was the
overlapping region with consensus linear epitopes and two
other conformational residues, whereas E147, E510, E1080,

D1088, N1089 and Q1090 were obtained from the overlap-
ping process of consensus linear epitopes and one of the B-
cell conformational epitopes prediction tools. Indeed, most
polar amino acids were predicted as B-cell epitopes since
these amino acids tend to be at the surface of a protein that
can be recognized by immune system cells and antibody
(Swearingen et al., 2016). While referring to DiscoTope 2.0
conformational B-cell prediction, many of the residues were
located near the N-terminal (8–141) and C-terminal
(906–1296) which were normally exposed (Sefid, Rasooli,
Jahangiri, & Bazmara, 2015).

3.2. In silico mutagenesis of BoNT/A and 3D modelling
and validation of the muteins

I-Mutant 2.0 is able to mutate the candidate amino acid with
the 19 other amino acids. Table 1 summarizes the difference
in Gibbs free energy after a substitution mutation. Positive
value indicated that the residue is allowed to mutate into
the specified amino acid, correlating with an increase in sta-
bility after the protein has been mutated due to the positive
Gibbs free energy.

In general, the strategies for the in silico mutagenesis
started from the deletion analysis with the amino acids that
did not contain any positive values from the result of I-
Mutant 2.0 analysis. Table 2 shows the result of the combin-
ation analysis with the help from VaxiJen for the immuno-
genicity score and bacteria as the source organism. Although
the deletion at D1088 alone reduced the immunogenicity
score, the combined score of all three deletions was still
higher than when the deletions were only at E147 and
Q1090. Then, mutagenesis strategy was continued with the
serial mutation with the other amino acids with positive con-
tent of DDG. The VaxiJen score can be seen in Figure 2.

In summary, there were two proposed mutations. Option
one was DE147, E510F, T1062F, DE1080, N1089M, DQ1090
with a VaxiJen score of 0.377. Option two was DE147, E510F,
T1062F, E1080W, N1089M, DQ1090 with a VaxiJen score of
0.3778. Both proposed muteins generated the two lowest
VaxiJen scores which were analyzed from the total sequence.
Changing the immunogenic residue into non-polar amino
acids resulted in the less-immunogenicity protein (Zarei
et al., 2018). One hotspot residue showed by IEDB with a
good surface accessibility promoting mutability was residue
1079–1092. This residue was also separately analyzed with
the VaxiJen. Both muteins showed lower VaxiJen score in the
hotspot residue, but option two revealed a lower VaxiJen
score than option one (Table 3).

These two proposed muteins were subjected to 3D pro-
tein modelling and continued with the validation of the ana-
lysis together with the native protein (Figure 3). Protein
model validation that was initially analyzed by various
PHYRE2 investigators revealed no major difference between

Table 2. Deletion of the determined residues with no increase of DDG value.

DE147 DD1088 DQ1090 DE147 DD1088 DE147 DQ1090 DE147 DD1088 DQ1090

VaxiJen Score 0.3929 0.3915 0.3906 0.391 0.3901 0.3903

The initial VaxiJen score of the BoNT/A is 0.3934.

Figure 2. Sequential substitution in silico mutagenesis strategy flowchart with
the help of the reduction of immunogenicity score from VaxiJen. The mutation
was retained after each step, while the initial protein used the result of the
deletion mutation indicated in bold.
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the mutein and native protein (Supplementary Data 2).
Further validation analyses can be seen in Table 4.

Both Ramachandran plot analyses of the mutein yield
lower residual values for the outlier region compared to
those of the native BoNT/A. The z-score from the PROSAweb
was similar to the QMean from the SWISS-MODEL, indicating
similarity of the 3D model to the experimental protein with
similar size (Benkert, Tosatto, & Schomburg, 2008). The z-
score of the first-option mutein was within the range of the
other native protein with similar size, which indicated an
appropriate model (Figure 4(B)). Both the z-score of the

native protein and the second-option mutein were not in
the range in the plot (Figure 4(A,C)). However, the z-score of
the second-option mutein was closer to that of the native
BoNT/A protein. Due to its closeness in its z-score to the
native BoNT/A, the second-option mutein model can also be
considered as valid. The local energy plots of each residue
were similar to the 3D model protein, and these positive val-
ues of the energies could be found in the native protein as
well (Figure 4(D–F)). VERIFY3D compared the 3D model with
the amino acid sequence (1D) and its environment
(Eisenberg, L€uthy, & Bowie, 1997). All the 3D protein models

Table 3. Immunogenic analysis by VaxiJen of the muteins, both total protein sequence and the selected hotspot residue (1079–1092).

Native Epitope (1079–1092) VaxiJen score of protein VaxiJen score of surface accessibility

Native protein LNEKEIKDLYDNQS 0.3934 0.5113
First option (DE147, E510F, T1062F, DE1080, N1089M, DQ1090) LNKEIKDLYDMS 0.377 0.3388
Second option (DE147, E510F, T1062F, E1080W, N1089M, DQ1090) LNWKEIKDLYDMS 0.3778 0.1276

Bold values signifies the native protein hotspot segment vaxijen score and compare (and emphasize) the reduction of the value of the mutein.

Figure 3. 3D modelling of the first-option mutein (A), second-option mutein (B) and native BoNT/A (C) built by PHYRE2. The area indicated with circle is the one
that contains difference in 3D structure with the native protein.

Table 4. Validation of both mutein 3D models built by PHYRE2.

Native BoNT/A
First-option mutein (DE147, E510F,
T1062F, DE1080, N1089M, DQ1090)

Second-option mutein (DE147, E510F,
T1062F, E1080W, N1089M, DQ1090)

Ramachandran analysis:
Favoured region 81.9 % 89.7 % 89.7 %
Allowed region 13.4 % 8 % 7.8 %
Outlier region 4.7 % 2.3 % 2.5 %

Z-Score of overall model quality �13.81 �13.51 �13.82
Average 3D–1D score 83.79% (pass) 81.12% (pass) 80.82% (pass)
ERRAT overall quality factor A 72.7273 85.7831 85.7831
ERRAT overall quality factor B 69.7789 80.9886 80.8081
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yield a result of more than 80% from its residues with a
3D–1D score > = 0.2 (Table 4). The non-bonded interactions
from the six combinations of Carbon (C), Nitrogen (N) and
Oxygen (O) and plotted the error function from every nine-
residue sliding windows were analyzed using ERRAT (Colovos
& Yeates, 1993). The ERRAT score of both muteins was higher

than that of the native BoNT/A. Overall, these validation
results indicated that the 3D model of the mutein
was proper.

Although the mutated residues were ensured in the non-
conserved region, the stability of the protein must still be eval-
uated. ProtParam provided some tools to analyze protein

Figure 4. 3D model validation by PROSAweb. (A–C) Overall model quality with the use of z-score of the native BoNT/A (A), first-option mutein (B) and second-
option mutein (C). The black dot indicated the (D–F) comparison of the residue energy plot for the local model quality for every 10 and 40 residues windows for
(D) native BoNT/A, (E) first-option mutein and (F) second-option mutein.

Table 5. Native BoNT/A and both mutein properties, stability and hydrophilicity analysis.

Native BoNT/A
First-option mutein (DE147, E510F,
T1062F, DE1080, N1089M, DQ1090)

Second-option mutein (DE147, E510F,
T1062F, E1080W, N1089M, DQ1090)

Isoelectric point 6.05 6.31 6.31
Molecular weight 149453.89 149148.75 149334.97
Instability indexa 29.35 29.33 29.05
Aliphatic indexb 90.24 90.45 90.38
Grand average of hydropathic-

ity (GRAVY)c
�0.366 �0.347 �0.347

Estimated half-lifed >30 h >30 h >30 h
aThe protein is considered stable if the instability index is below 40.
bThe protein is considered stable if the aliphatic index is more positive.
cProtein is considered more hydrophobic if the value is more positive.
dThe half-life of the protein was predicted using mammalian reticulocytes as model in vivo.

Table 6. Average values of RMSD, Rg and RMSF for the native BoNT/A and both muteins.

Native BoNT/A
First-option mutein (DE147, E510F,
T1062F, DE1080, N1089M, DQ1090)

Second-option mutein (DE147, E510F,
T1062F, E1080W, N1089M, DQ1090)

RMSD 9.4649 Å 9.4564 Å 9.4552 Å
Rg 7.6025 Å 7.5973 Å 7.5915 Å
SASA 501.814 nm2 508.462 nm2 502.185 nm2

RMSF 0.3783 Å 0.3833 Å 0.3892 Å
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properties along with the stability (Table 5). Based on the
instability index and aliphatic index, both muteins were more
stable than the native protein. According to the hydropathy
analysis by GRAVY, both muteins had higher scores which sig-
nify a more hydrophobic nature than the native, suggesting
the lower number of residues on the surface and thus reducing
antigenicity (Shi et al., 2015). Instability index led to empiric
experiment and algorithm, while aliphatic index was more
related to the thermostability of protein due to the hydropho-
bic stabilization (Ikai, 1980). In this case, the aliphatic index
implied that the first-option mutein had better thermostability
compared to the other two proteins.

3.3. MD simulation
MD analysis is one of the most frequently used methods to
determine protein stability in solvated condition. Gromos
53a6 force field was reported to give a better agreement
with wet-lab work for Histatin 5 (Henriques, Cragnell, &
Skep€o, 2015). Generally, RMSD of the protein backbone can
be plotted against time to predict stability. The RMSD plot
can be seen in Figure 5(A). A similar trend of the sudden

increment of deviation from the beginning of the simulation
until the time period of 2.5 ns also occurred. There was a
sharp increase of RMSD for the native BoNT/A in the time
period of 5 ns, which reached �9.475 Å. The RMSD values of
the native protein reached stability after 6 ns, in which the
RMSD values ranged from �9.465 to �9.47 Å. Until 10 ns of
simulation time, the RMSD values of both muteins were
lower than those of the native one. The RMSD values of the
muteins gradually increased in a small difference until the
end of the simulation. This small difference in the fluctua-
tions after the relaxation period led to stable trajectories in
the simulation. The two muteins showed more deviations
from the initial structure. However, the deviation of the
native protein was only a maximum of 5 ns. At the end of
the RMSD simulation, the RMSD values of the muteins and
native protein were similar, though. The values were about
�4.7 Å for both native BoNT/A and the first-option mutein,
and 4.68 Å for the second-option mutein.

The Rg is the overall size of the protein, computed by
measuring all the mass-weight root-mean-square distance
from all atoms from the centre of the mass (Rajendran &
Sethumadhavan, 2014). The average Rg of both muteins was

Figure 5. Time evolution of backbone RMSD (A), Rg plot (B), and SASA (C) as a function of time for native protein, first-option mutein and second-option mutein.

4774 S. E. E. TJOA ET AL.



smaller than the native BoNT/A, indicating more compact-
ness of the mutant (Table 6). The range of Rg for the native
protein was between 7.59783 and 7.6067 Å. The range of the
first-option mutein was between 7.59394 and 7.60253 Å,
while the range of the second-option mutein was between
7.58789 and 7.59786 Å (Figure 5(B)). Both muteins were

more compact compared to the native protein. By counting
the differential of the maximum and minimum Rg of all pro-
teins, the mutein in the second option was more flexible
than the native, but the mutein in the first option was more
rigid than the native one. Nonetheless, all the differences did
not even reach 0.01 Å.

Figure 6. Time evolution of the amount of amino acids residue that contributed to secondary structure of the native BoNT/A (A), mutein first option (B) and
mutein second option (C).

Figure 7. The number of protein intramolecular hydrogen bonds in the native and mutated BoNT/A vs. time at 300 K.
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Another parameter to measure the geometry of protein is
SASA. The SASA value of native BoNT/A was comparatively
similar to the second-option mutein, whereas the SASA value
of the first-option mutein was higher than that of the native
BoNT/A (Table 6). While the native BoNT/A and the first-
option mutein underwent a change in surface residues in
the simulation period, the second-option mutein SASA value
was relatively constant, indicating less transition of conform-
ation (Figure 5(C)). This fact was reinforced with the second-
ary structure prediction along the projection time (Figure 6).
The second-option mutein showed less alteration in the sec-
ondary structure, implying more conformational stability.

Hydrogen bonds played an important role in assessing
the stability of the protein. In the trajectory, the range of the
amount of intramolecular hydrogen bonds for native was
between 2404 and 2478 bonds, that of the first-option
mutein was 2346–2478 bonds, and that of the second-option
mutein was between 2360 and 2484 bonds. The fluctuation
of intramolecular hydrogen bonds can be seen in Figure 7,
where the native BoNT/A is apt to maintain its amount of
hydrogen bonds during the simulation, indicating more rigid-
ity compared to the two muteins.

The flexible regions were located with the help of RMSF
of all residues. The RMSF values of native BoNT/A and the
muteins were comparable (Figure 8) although both muteins
gained more flexibility compared to the native protein (Table
6). Native BoNT/A and both muteins generated similar RMSF

mean and deviation of 0.3783 ± 0.1405 Å for native BoNT/A,
0.3833 ± 0.1442 Å for the first-option mutein and 0.3892 ±
0.1537 Å for the second-option mutein. Nevertheless, all of
the RMSF values were small and below 1 nm, indicating sta-
bility of the protein (Nezafat et al., 2016). However, many of
the RMSF values were above average, indicating flexibility,
and, indeed, BoNT/A was a flexible protein (Silvaggi
et al., 2007).

Based on the RMSD, RMSF Rg, SASA, secondary structure
prediction and intramolecular hydrogen bond plot, it is evi-
dent that the mutation gave more flexibility to the protein in
general. The difference was not large; thus, the gain of the
flexibility did not disturb the functional behaviors of the pro-
tein (Kamaraj & Purohit, 2013). The mutation did not exhibit
destructive impacts to the protein orientation and the func-
tion since both BoNT/A mutation options were allowed to
make the protein less immunogenic.

4. Conclusion

The in silico mutagenesis to generate less immune-reactive
BoNT/A has been proposed. There were two proposed
options. The first option was DE147, E510F, T1062F, DE1080,
N1089M, and DQ1090 which generate the lowest antigenicity
score for the overall protein. The second one was DE147,
E510F, T1062F, E1080W, N1089M, DQ1090 which was the
second lowest antigenicity score for the overall protein.

Figure 8. Comparison of the RMSF plot of each residue of (A) native BoNT/A (grey line) vs. first-option mutein (black line) and (B) native BoNT/A (grey line) vs.
second-option mutein (black line).
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However, the antigenicity score for the hotspot residue of
1079–1092 was much lower than that of the first option.
Both muteins showed better stability in relation to instability
index, aliphatic index and hydropathy analysis compared to
the native protein. The MD simulation indicated that the
mutation is more flexible to the protein; thus, it would not
disrupt the functionality of the protein. These suggestions
can be used as rough guidelines for the experimental muta-
genesis to save time and cost. In addition, the results of this
study provide a breakthrough of better therapeutic and cos-
metic suitability through the properties of its BoNT/
A muteins.
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