Clinical Laboratory			
	aboratory medicine, d cell therapy 😰 Login Q. Search		
ORDER 77 CURREN	TISSUE PREVIEW TN NEXT ISSUE Resket Checkout 04/2021 Web Shop Instructions		
	RENT ISSUE PREVIEW ARCHIVE EPUB AHEAD OF PRINT EDITORIAL BOARD		
Issue No 11/201			
Abstract	SHORT COMPUDICATION Pitfalls in the Laboratory Assessment of Serum Prealburnin Levels in Hemato-Oncological Patients by Helma Brodika, Karin Malichova, Marketa Markova Stastrua, Tomas Zima		
10.7754/CB41ab2014.131211	ORIGINAL ARTICLE Detection of CMI Gene Vulnetists in Early-onset Diffuse Gastric Cancer in Chinese Patients by Xu Yanjua, Cao Wenning, Ying Lisha, Xu Qi, Guo Jiannin, Wang Xinban, Cheng Xiangdong, Ying Jieer		
10.7754/Clini.Lak.2014.131329	ORIGINAL ARTICLE Automated Cell Analysis of Cerebrospinal Fluid with XE-5000 by Xlanming Liang, Itamei Chen, Xlaofeng Xlau, Yang Yu, Wenyi LL, Zhongying Zhang		
18.7754/CBL26.2014.140307	ORIGINAL ARTICLE Stability of Procalcitonin at Room Temperature by Karen Milcord, Claire Poulathon, Christelle Vauloup Fellous, Francois Petit, Jean Bouyer, Vincent, Gajdos		
10.7754/CB41a62014.140321	LETTER TO THE EDITOR Fluk-Ag Rapid Assay for Detection of Influenza A Virus by Somuri Wiwanitkit, Viroj Wiwanitkit		
18.7754/ClivLab.2014.140315	CASE REPORT Three Hematologic Hallgrancies in the Same Patient: Chronic Lymphocytic Leukemia, Followed by Chronic Mydiold Leukemia and Acote Myeloid Leukemia by Bruno Fattizzo, Tommaso Radice, Daniele: Cattaneo, Mauro Pomati, Wilma Barcellini, Alessandra Italio		
10.7544Cin.Lab.2014.140116	ORIGINAL ARTICLE Coronary Slow Flow Phenomenon Associated with High Serum Levels of Soluble CD40 Ligand and Unotensin It: A Multi-Marker Approach by Bulanti Devini, Blow Marci Cadjat, Hande Oktay Tareli, Osman Pirhan, Gonal Aciksani, Serkan Cifci, Cem. Oezde, Asarran Gerlikbani, Cafer Zorkan, Esca Demit, Osman Karakaya		
10.7754/Cin.Lab.2014.151209	ORIGINAL ARTICLE Increased Serum Hepcklin Levels in Brucellosis by Emel Yilmaz, Ayse Oguz Ayarci, Deniz Sigirli, Mettern Oner Torlar, Ferah Budak, Gaher Goral, Haluk Barbaros Oral		
10.7714-Cin.Lab.2014.140121	ORIGINAL ARTICLE NMM1 Gene Mutation in Experian Patients with Cytogenetically Normal Acute Myeloid Leukenia by Mandoult A. Sofari, Samir Elmary, Dalia A. Salim, Mohamed M. Bacid		
10.7744/CBL14b.2014.140211	ORIGINAL ARTICLE Presence of Vancomprich, Aminoglycosides, and Erythromycin Resistance Genes in Enterococci Isolated from Clinical Samples in Turkey by Sole Celik, Fatma Koksal Cakidar, Muzeyyen Mamul Torun		
10.7754/Clinicae.2014.140508	CASE REPORT Spherectomy-Related Red Cell Lysis Resistance Causing Analytical Difficulty in a Patient with a Hermatological Malignancy by Burry Kennes, Avan Dowid, Alme Lennon, Christopher L. Bacon, Anne Fortame		
10.7554/CID.146.2014.140317	ORIGINAL ARTICLE Dealing with Large Surgel Sizes: Comparison of a New One Spot Dot Blot Method to Western Blot by Sultyte Teamston Dwi Born. Oleg Tsuppleos, Karoline Von Websky, Teresa Ritzer, Christoph Reicherzeder, Berthold Hocher		
10.7754/0041ab.3054140503	CASE REPORT Early Infective Endocarditis Due to Staphylococcus aureus Following Dental Procedures by Gendan Kanni, Etleva Refattlari, Selman Dumani, All Refattlari		
10.754/CBk1463014.140207	ORIGINAL ARTICLE Evaluation of Lymphocyte Subpopulations in Cord Biood of Bulgarian Newborns by Valentina Azanssova, Anastasia Mihaylova, Tsvetelin Lukanov, Maria Azanstova, Assen Nikolov, Elissaveta Naumora		
10.7754/Elistak2014.540110	ORIGINAL ARTICLE Diagnostic Value of ELISPOT Technique for Ostecarticular Taberculosis try Xangiong Wu, Yuantheng Ha, Lan Wang, Dawel LI, Yourong Yang, Ming Hu, Yan Liang, Haibin Xue, Juredan Zhang		
10.7734/CIRL4b.2054.140311	ORIGINAL ARTICLE IL-6 Promoter Functional Polymorphism-572C/G Affects Spontaneous Clearance of Hepatitis 8 Virus Infection by Yanjun Lu, Jing Peng, Chunyu Wang, Yaowu Zhu, Feng Wang, Ziyong Sun		
10.7754C0sLab.2014.140111	ORIGINAL ARTICLE The Development of a Beacon-based Real-time PCR for Cytomegalovirus and its Application in Immunocompromised Patients by Yt-Ching Tang, Liany Yta Ku, Wen-Chan Tsat, Kael-Halang Lin, Shih-Meng Tsal, Chu-Feng Wang, Halao-Fen Len, Hui Av Sa, Pe-Liang La		
10.7754/Coclub_2014_150805	ORIGINAL ARTICLE Detection of Fetal Hemoglobin (HeF) Using the G8 Glycohemoglobin Analyzer by Byung Riyul Jeon		
107754Could-2014231204	ORIGINAL ARTICLE The Epidemiological and Molecular Characterization of Vancomyclin-Resistant Enterococci Isolated from Rectal Swab Samples of Hospitalized Patients in Turkey by Tatma Kistana Calultar, Hostata Samatti, Ibrahim Baris, Halil Kawakti, Asiye Karakultukcu, Serhat Sirekbasan, Yisan Rangdatti		
10.7754/Conlue.2014.140518	ORIGINAL ARTICLE Lack of Transferability between Two Automated Immunoassays for Serum IGF-1 Measurement by Carolina Gome-Gome, Eva M. Iglesias, Jaume Barallat, Fernando Moreno, Carme Biorca, Mari-Cruz Pastor, Maria-Luisa Granda		
10.7754Clin.Lab.201433133	ORIGINAL ARTICLE Prevalence and Antimicrobial Susceptibilities of Anaerobic Bacteria Isolated from Perforated Corneal Ulcers by Culture and Multiplex CR: An Evaluation in try Hrisi Bharis Tofama, Such Isolatel, Zinyeng Sungarda Dalar, Athille Anne Kangaba, Metewat Demirci, Harico K, Alarg Baris Ata Bona, Reytan Calistan Algingi, Bekir S, Koczerybek, Museyyen Mamul Torun, Nari Kiraz		
10.7754(Teclar.2014.140112	LETTER TO THE EDITOR Analytical performance of the new analyzer BA 400 Biosystems with LED technology by Rossana Molinaria, Chiara Autilia, Pio Dante Daloizo, Krisia Pocine, Luigi Colaciczo, Cecilia Zuppi, Mirca Antenucci		
10.7754/Clin.Lab.2014.140119	ORIGINAL ARTICLE Rheumatold Factor Interference of a Fetoprotein Evaluations in Human Serum by ELISA by Xilaonia Zhu, Xivingguo, Zhenyun Huang, Shumei Yang		
10.7754/CBit.Lab.2014.140220	ORIGINAL ARTICLE Analytical Performance of the Biosino Urea Reagent Kit by Zhihong Qi, Fang Zhang, Wanchum Dari, Xiaoyue Liang, Yu Chen, Xiaopeng Li, Qi Zhou		
1877540stas2014140126	ORIGINAL ARTICLE Status of Leptin in MBCA.RBL p210 Positive Chronic Myeloid Leukemia Patients Before and After Imatinib Therapy: A conflicting Security Pyrpeh Illemat, Wend S. Gludaut, Tarun K. Sharma, Pattap S. Gludaut, Sumit Dolwal, Ragini Ghulaut, Marioh Kulstwesthu, Kiran Dahiya .		
Clinical Laboratory Copyright Series 2008, all rights reserved.	Impressum Disclaimer Contact Author Guide Subscription Rates		
	STKB VIENLD		

Clinical Laboratory

transfusion medicine and cell therapy				2	Login	۹	Search		
ORDER		RENT ISSUE	PREVIE\		XT ISSUE	R	Basket	50	Checkout
03/2021			04	/2021		Web SI	nop Instru	uctions	
HOME	NEWS	CURRENT ISSUE	PREVIEW	ARCHIVE		DOF	PRINT	FDITORIA	LBOARD

Editorial Board

Editor-in-chief

Professor Dr. Michael F. Holick Boston University, School of Medicine Boston, USA

Formerly: Professor Dr. Dr. Heinrich Schmidt-Gayk Heidelberg, Germany

Associate Editors

Dr. Franz Paul Armbruster, Bensheim, Germany Professor Dr. Walter Hitzler, Mainz, Germany Dr. Markus R. John, Basel, Switzerland Dr. Christoph Niederau, Dortmund, Germany Dr. Tarun Kumar Sharma, Chandigarh, India Professor Dr. Jörg Reichrath, Homburg, Germany Dr. Eleftherios C. Vamvakas, Los Angeles, USA Professor Dr. Eberhard Wieland, Stuttgart, Germany Professor Dr. Detlef Zillikens, Lübeck, Germany

Editorial Office

(For correspondence!) Christina Noske Stubenwald-Allee 8a 64625 Bensheim, Germany Phone: +49-(0)6251-70190-246 Fax: +49-(0)6251-70190-409 E-Mail: info@clin-lab-publications.com

Publisher

(Not for correspondence!) Clinical Laboratory Publications GmbH Neue Rheingaustraße 13 55129 Mainz, Germany

Clinical Laboratory Copyright since 2008, all rights reserved.

Impressum

Disclaimer Contact Author Guide

	oracory	Inter	ps.// w w w.sennagoji.com/jou	indisedien.php.q-25+10eeup-
<form><form></form></form>				
<form> Image: state state</form>	SJR Scimago Journal & Country Rank	Home Journal Pankings Country Panking		ter Journal Title, ISSN or Publisher Name
<form></form>				0 ×
<form></form>		Affiliate Marketing Tool		
bicidi classification of the second s			e completely isolated and cannot	
bicidi classification of the second s				
<form> cmr cmr<td></td><td>GoLogin</td><td>Open</td><td></td></form>		GoLogin	Open	
Backmick Schwarz	linical Laboratory			
Binding Bindin Binding Binding	COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	H-INDEX
Image: Balantiating, Genetic and Microsoft Biology (microsoft Biology) Puedato members Image: Balantiating, Genetic and Microsoft Biology (microsoft Biology) Charles In the Source Microsoft Biology (microsoft Biology) Image: Balantiating, Genetic and Microsoft Biology (microsoft Biology) Charles In the Source Microsoft Biology (microsoft Biology) Image: Balantiating, Balantiatin	Germany		Verlag Klinisches Labor GmbH	44
loans bit 100 100 100 100 100 100 100 100 100 10		Biochemistry, Genetics and		
Are public hit hits public hit	PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Compared and the process of the proc	Journals	14336510	1964, 1997-2020	
Comparison of the conversation about this journal				
Clinical Laboratory is an international fully peer-reviewed journal covering all aspects of laboratory medicine and transfusion medicine. In addition to transfusion medicine topics Clinical Laboratory represents submissions concerning tissue transplantation and hematopoietic, cellular and gene therapies. The journal publishes original articles, review articles, posters, short reports, case studies and letters to the editor dealing with 1) the scientific background, implementation and diagnostic significance of laboratory methods employed in hospitals, blood banks and physicians' offices and with 2) scientific, administrative and clinical aspects of transfusion medicine and 3) in addition to transfusion medicine topics Clinical Laboratory represents submissions concerning tissue transplantation and hematopoietic, cellular and gene therapies.	Call For Papers Elsevier Q4 Peer Reviewed Indexed Journal Collaboration proposals are invited to pro- single platform for worldwide research. turcomat.org			
$igodoldsymbol{Q}$ Join the conversation about this journal	Clinical Laboratory is an international fully peer-revi Laboratory represents submissions concerning tiss reports, case studies and letters to the editor dealin and physicians' offices and with 2) scientific, admin	ue transplantation and hematopoietic, cellular an g with 1) the scientific background, implementati istrative and clinical aspects of transfusion medi	nd gene therapies. The journal publishes orig ion and diagnostic significance of laboratory	inal articles, review articles, posters, short methods employed in hospitals, blood banks
	submissions concerning tissue transplantation and	hematopoietic, cellular and gene therapies.		
0 ×		${igodoldoldoldoldoldoldoldoldoldoldoldoldol$	about this journal	
				0 ×
Call For Papers Elsevier Q4	Ca	ll For Papers Elsevier Q4		
Collaboration proposals are invited to provide a single platform for worldwide research.			e platform for worldwide research.	
turcomst.org OPEN	turcor	natorg	OPEN	

Quartiles

ORIGINAL ARTICLE

Dealing with Large Sample Sizes: Comparison of a New One Spot Dot Blot Method to Western Blot

SULISTYO EMANTOKO DWI PUTRA^{1, 3, *}, OLEG TSUPRYKOV^{1, 2, *}, KAROLINE VON WEBSKY¹, TERESA RITTER², CHRISTOPH REICHETZEDER¹, BERTHOLD HOCHER¹

> ^{*} Equal contributors ¹ Institute for Nutritional Science, University of Potsdam, Potsdam, Germany ² Center for Cardiovascular Research, Charité, Berlin, Germany ³ University of Surabaya, Indonesia

SUMMARY

Background: Western blot is the gold standard method to determine individual protein expression levels. However, western blot is technically difficult to perform in large sample sizes because it is a time consuming and labor intensive process. Dot blot is often used instead when dealing with large sample sizes, but the main disadvantage of the existing dot blot techniques, is the absence of signal normalization to a housekeeping protein.

Methods: In this study we established a one dot two development signals (ODTDS) dot blot method employing two different signal development systems. The first signal from the protein of interest was detected by horseradish peroxidase (HRP). The second signal, detecting the housekeeping protein, was obtained by using alkaline phosphatase (AP).

Results: Inter-assay results variations within ODTDS dot blot and western blot and intra-assay variations between both methods were low (1.04 - 5.71%) as assessed by coefficient of variation.

Conclusions: ODTDS dot blot technique can be used instead of western blot when dealing with large sample sizes without a reduction in results accuracy.

(Clin. Lab. 2014;60:xx-xx. DOI: 10.7754/Clin.Lab.2014.140317)

Correspondence:

Prof. Berthold Hocher, MD, PhD Institute of Nutritional Science University of Potsdam 14558 Nuthetal, Germany Email: hocher@uni-potsdam.de

KEY WORDS

one dot two development signals (ODTDS) dot blot, western blot, protein quantification, large sample size studies, comparison

INTRODUCTION

Western blot is the gold standard method to determine individual protein expression levels. However, western blot is technically difficult to perform in large sample sizes because it is a time consuming and labor intensive process. Dot blot is often used instead when dealing with large sample sizes [1-5]. Dot blot has similar technical features and specificity as western blot, but is the more sensitive method [6,7]. Currently dot blot is used in routine sample analysis [8-11], and at the same time

Manuscript accepted May 8, 2014

it has been proven to work well with proteins over a wide range of molecular weights [12]. Most of the dot blot methods which have been developed use only one developing signal [13,14]. The main disadvantage of the existing dot blot techniques, which limits their application, is the absence of signal normalization to a house-keeping protein. Stripping off previously used antibodies is one possibility to apply further antibodies for the detection of a housekeeping protein. However the stripping procedure often leads to a partial protein detachment from the membrane and thus to a signal low-ering of the protein of interest.

In this study we established a one dot two development signals (ODTDS) dot blot method employing two different signal development systems. The first signal from the protein of interest was detected by horseradish peroxidase (HRP). The second signal, detecting the housekeeping protein, was obtained by using alkaline phosphatase (AP). Collagen I, nephrin, and pSMAD2/3 were used as proteins of interest whereas glyceraldehyde-3phosphate dehydrogenase (GAPDH) was used as a housekeeping protein. We tested the efficiency of dot blot using urea/thiourea lysis buffer on kidney samples derived from sham-operated and 5/6 nephrectomized animals, which were taken from another study conducted by our group [15].

MATERIALS AND METHODS

Sample Preparation

Deep frozen pieces of 1/8 of the left kidney containing both medulla and cortex were mechanically turned into powder using a laboratory metal mortar and pestle precooled with liquid nitrogen. Urea/thiourea buffer [2 M thiourea, 7 M urea, 2% SDS, 1% DTT, and protease inhibitor (Complete Mini, Cat. No.: 11 697 498 001, Roche)] was used for protein extraction. Samples were sonicated on ice using the Bandelin Sonopuls GM 2070 sonicator (Bandelin electronic, Berlin, Germany) for 1.5 minutes (1 second on/1 second off cycles) at medium intensity, kept for 10 minutes at room temperature, centrifuged for 10 minutes at full speed. Afterwards, the supernatant was collected. Protein concentration was determined by spectrophotometry with Roti-Nanoquant (Cat. No. K800.1, Carl Roth). Standard samples were prepared using standard protein dilutions provided by the manufacturer.

Pure Protein Positive Controls

Pure protein positive control solutions were prepared by diluting pure collagen I from rat tail tendon (sc-136157, Santa Cruz Biotechnology, Inc., CA, USA) and pure GAPDH (ab77109, Abcam) as shown in Table 1 in urea/thiourea lysis buffer.

Animal models

Male Wistar rats (Charles River Laboratories International, Inc., Wilmington, MA, USA) were allocated into two groups: 5/6 nephrectomized (5/6 Nx) or sham operated. Surgery was performed as previously described [16].

Dot blot analysis

1 μ L urea/thiourea lysed samples at a concentration of 5 μ g/ μ L were spotted onto a nitrocellulose membrane (AmershamTM HybondTM ECL, GE Healthcare). The same procedure was applied for membranes, which were spotted with 0.125 μ g, 0.25 μ g, 0.5 μ g, and 1 μ g *pure protein positive control.* After complete drying for 5 minutes at room temperature, the membrane was washed with TBS-T three times for ten minutes.

The membranes were blocked in 5% non-fat milk/TBS-T (20 mM Tris, 140 mM NaCl, 0.1% Tween-20 at pH 7.6) for 1 hour at room temperature. First, the primary antibody incubation was performed overnight at +4°C. The anti-nephrin antibody (sc-28192, Santa Cruz Biotechnology, Inc.,) was used at a dilution of 1:2000, the anti-collagen I antibody (a gift from Prof. Schuppan [17]) at a dilution of 1:10000, the anti-pSMAD2/3 antibody (sc-11769-R, Santa Cruz Biotechnology, Inc.,) at a dilution of 1:5000, and the anti-housekeeping protein GAPDH antibody (MAB 374, Millipore) at a dilution of 1:10000. Membranes were washed with TBS-T three times for ten minutes and incubated with HRP-conjugated secondary antibodies (sc-2054, Santa Cruz Biotechnology, Inc.,). The signal was developed using enhanced chemiluminescence (ECL). Second, the same membranes were incubated with anti-GAPDH primary antibodies overnight at +4°C, washed three times in TBS-T and incubated with AP-conjugated secondary antibodies (sc-2008, Santa Cruz Biotechnology, Inc.,) for 1 hour at room temperature. The signal was developed using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium chloride (BCIP/NBT) substrate. The developed membranes were digitalized using a 600 dpi scanner resolution. Quantitative analysis was performed using AlphaEaseFCTM software version 3.1.2. (Alpha Innotech Corporation). The signal protein expression was determined using integrated density value (IDV). The background expression was determined individually for every given sample and was subtracted from the main signal. The final results were calculated as a ratio between the protein of interest expression and GAPDH. A standard sample was constituted by mixing aliquots of all samples.

Western Blot Analysis

15 μg protein extract was loaded into each separation well of the gel. 10% polyacrylamide gels were used for SDS-PAGE. After SDS-PAGE gels were blotted to nitrocellulose membrane (AmershamTM HybondTM ECL, GE Healthcare) using a Biorad Trans-Blot semidry blotter and transfer buffer (184 mM glycine, 24 mM Tris,

NEW DOT BLOT METHOD FOR PROTEIN QUANTIFICATION

	Pure Protein Positive Control	Collagen I concentration (µg/µL)	GAPDH concentration (µg/µL)
Collagen I	Col I with 20% GAPDH	1	0.2
added	Col I with 5% GAPDH	1	0.05
GAPDH	Col I with 1% GAPDH	1	0.01
GAPDH	GAPDH with 20% Col I	0.2	1
added collagen I	GAPDH with 5% Col I	0.05	1
	GAPDH with 1% Col I	0.01	1

Table 1. Pure Protein Positive Control Composition.

Table 2. Linear regression analysis of dot blot standard curves.

Protein of Interest	Corresponding GAPDH
pSMAD2/3: y = 186110x - 205622 R2 = 0.9850	$y = 161619x - 199205$ $R^2 = 0.9785$
Collagen I: y = 244643x + 398354 R ² = 0.9652	$y = 35663x - 34914$ $R^2 = 0.9797$
Nephrin: y = 1052,2x - 435,07 R ² = 0.9879	y = 15708x - 1753,5 R ² = 0.9877

x - protein amount (µg), y - IDV (Integrated DensityValue).

Table 3. Inter-assay results variations within ODTDS dot blot and western blot and intra-assay variations between both methods.

Protein	Inter-assay		Intra-assay
Trotein	WB	ODTDS Dot Blot	WB and ODTDS Dot Blot
Collagen I	$\boldsymbol{1.04\pm0.98}$	1.55 ± 2.00	1.72 ± 1.71
pSMAD2/3	$\textbf{2.16} \pm \textbf{2.18}$	$\boldsymbol{2.78 \pm 2.84}$	5.49 ± 5.31
Nephrin	$\boldsymbol{2.94 \pm 2.87}$	3.24 ± 2.53	5.71 ± 7.29

Coefficient of variation in percent. The values are given as mean ± SD.

20% methanol) at 25 V for 1 hour. All subsequent steps were exactly the same as in the dot blot.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 5 software. Student's *t*-test was performed if the variables were parametric and normally distributed, as determined by the Kolmogorov-Smirnov test; otherwise, the Mann-Whitney U-test was used. A confidence interval of 0.05 was used. Coefficient of variation (CV)

was determined as the ratio of the standard deviation to the mean value of protein signal. Linear regression analysis was performed to prove that IDV signal origins were from the protein of interest and not from the background signal.

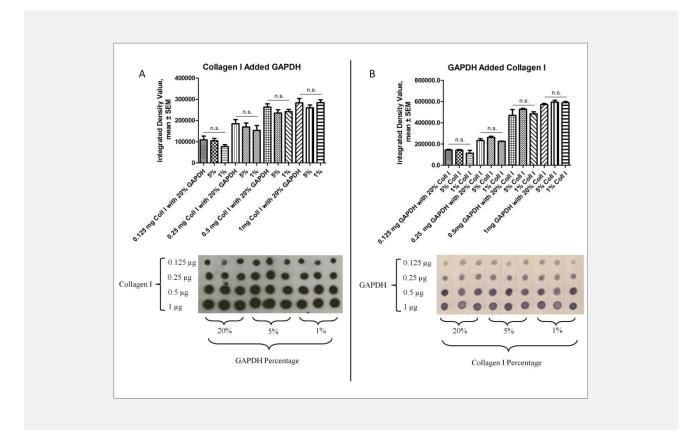


Figure 1. There was no significant difference (n.s.) between the signal from 0.125 µg collagen I added with 1%, 5%, and 20% GAPDH. The same results were obtained in the case of 0.25 µg, 0.5 µg, and 1 µg collagen I with added GAPDH samples (A). Addition of collagen I also had no impact on the GAPDH signal (B).

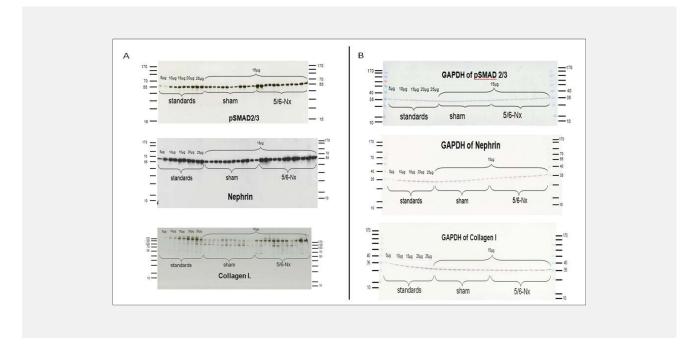


Figure 2. Western blot for pSMAD2/3, nephrin, collagen I (A) and corresponding GAPDH (B).

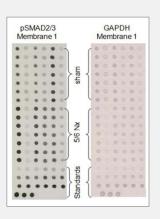


Figure 3. A typical result from ODTDS dot blot method. Six sham and 5/6 Nx protein samples were spotted in heptaplicates in the amount of 5 µg. Standard protein was spotted in triplicates in the amounts of 2.1, 2.8, 3.8, 5, 7.5, 10, and 20 µg per dot.

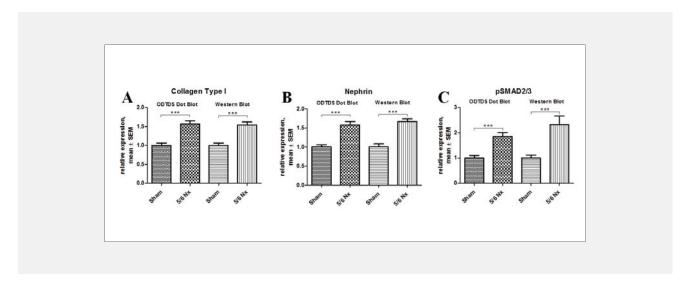


Figure 4. Relative protein expression of collagen type I (A), nephrin (B) and pSMAD2/3 in whole kidney assessed by ODTDS dot blot and western blot methods.

Values are given as mean ± SEM; **** - p < 0.001.

RESULTS

Pure protein positive control samples were prepared to investigate interplay correlation of the first and second signal development system in the same blot. The presence of collagen I in the sample (1%, 5%, and 20%) had no impact on the signal intensity obtained from the added amount of GAPDH (0.125 μ g; 0.25 μ g; 0.5 μ g; 1 μ g, Figure 1a). The same results were observed for samples of collagen 1 with added amounts of GAPDH (Figure 1b).

This proves that complexes of *collagen I-anti collagen I antibody-secondary antibody* did not impact the development of the alkaline phospatase signal of *GAPDH*anti GAPDH antibody-secondary antibody complexes. AP signal development for detection of GAPDH-anti GAPDH-secondary antibody was not impaired by complex formations of collagen I-anti collagen I antibodysecondary antibody.

As shown in Figure 1, there was no significant difference (n. s.) between the signal from 0.125 μ g collagen I added with 1%, 5%, and 20% GAPDH. The same results were obtained for 0.25 μ g, 0.5 μ g, and 1 μ g collagen I with added amounts of GAPDH (A). Addition of collagen I also had no impact on the GAPDH signal (B).

Protein extract samples of normal and 5/6 nephrectomized rat kidneys were used to test the ODTDS dot blot method in comparison to western blot regarding the detection of kidney biomarkers. Western blot was used as comparison, as it is the best established method to investigate up/down-regulation of selected biomarkers. Western blot was also performed to ensure that the signal given by ODTDS dot blot method came only from the protein of interest. Phosphorylated SMAD2/3, nephrin, and GAPDH gave a single band at about 57 kDa, 70 kDa [18], and 37 kDa, respectively. Collagen I gave three different bands, one at about 70 kDa representing mature collagen [19,20], and two bands at 130 kDa and 190 kDa representing collagen I precursors [21] (Figure 2).

The calibration curve for the ODTDS dot blot method was built based on 2.1, 2.8, 3.8, 5, 7.5, 10, and 20 µg standard protein triplicates and linearity coefficients (R^2) from 0.965 to 0.988 were observed (Table 2). In order to get the best results for the ODTDS dot blot method, 5 µg protein per dot was used for all proteins of interest and the typical result is presented in Figure 3. The coefficient of variation (CV) is widely used as an indicator of a newly established method performance [22]. In the current study, CV was used to investigate the inter-assay results variations within the ODTDS dot blot and western blot as well as intra-assay variations between both methods (Table 3). Inter-assay variation between the ODTDS method results gave CVs between 1.55% and 3.24% for all detected proteins. Evaluation of the ODTDS method in regard to western blot gave CVs between 1.72% and 5.71%.

The differences in protein expression levels between the study groups were found to be the same as measured by both ODTDS dot blot and western blot methods. Furthermore, the statistical differences between the groups as elucidated by p value, were at the same level of p < 0.001 (Figure 4).

DISCUSSION

Western blot is the most common method for evaluating and quantifying protein expression; however, it is very labor intensive and time consuming when dealing with large sample sizes.

Since dot blot has almost the same reaction scheme as western blot, except for the protein separation step (SDS-PAGE), this method is frequently chosen as a replacement for western blot. Some routine dot blots have been developed to replace western blot and to standardize dot blot for large sample sizes [6,8]. However, to the best of our knowledge, there is no report about signal normalization of dot blot results. Since pipetting mistakes are quite common during a dot blot procedure, it is very important to develop signal normalization of the dot blot results. To address this we developed the ODTDS (One Dot Two Development Signals) dot blot method. Steric hindrance is a potential problem in developing ODTDS because the first complex antigen 1 - primary antibody 1 - secondary antibody 1 may block or reduce the formation of the second complex antigen 2 - primary antibody 2 - secondary antibody 2. In this study collagen I was used to test for the aforementioned potential problem. Collagen I belongs to a class of heavy molecular weight proteins and accordingly has a higher blocking potential. GAPDH was chosen because it is a housekeeping gene that is often used to normalize the results of the western blot signal. The comparison of GAPDH signals from samples containing 1%, 5%, and 20% collagen type I gave no significant differences (t-test, 95%) confidence interval), indicating no steric hindrance of collagen I on the development of the GAPDH signal. The same result was observed for collagen I added with 1%, 5%, and 20% GAPDH. Guillemin et al. (2009) observed the same result when using a conventional dot blot to detect other proteins which have variations in their molecular weight, cellular abundance, and dimensional structure [6]. Our data suggest that the ODTDS dot blot method can be used to analyze the expression level of proteins of interest and also to normalize the signal using GAPDH.

Linear response is a very critical approach due to the importance of recalibrating the developing method [23, 25]. The linearity of the signal derived from protein standards used in the ODTDS dot blot method was confirmed by high linearity coefficients (0.965 to 0.988, Table 2). This fact indicates that the signal was derived from the same protein species even though the total protein standard amount was increased, or in other words, we excluded the signal coming from background.

Statistical testing is frequently used to evaluate a newly established method. For this purpose the coefficient of variation (CV) was used to examine the experimental results for absence of technical biases. In this study, inter-assay CV values of the ODTDS dot blot method were 1.55 - 3.24% and the intra-assay CV values with western blot were 1.72 - 5.71% (Table 3). Moreover, inter-assay CV values of the ODTDS dot blot were almost in the same range compared to the ones for western blot (1.04 - 2.94%). CV values below 10% are known to be a characteristic of a good method [26].

Conventional dot blot method belongs to a yes/no assay type [8,27]. Častorálová et al. used dot blot for quantification of protein expression, although this was done without signal normalization to a housekeeping protein [12].

Guillemin et al. (2009) showed that conventional dot blot is as good as western blot for use as a quantitative method for measuring protein expression [6]. However, there is no evidence about using the same blot to develop two different signals in a dot blot method. Herein, we introduce the ODTDS dot blot method as a quantitative assay for measurement of single protein of interest expression. In the method we established, the pipetting inaccuracies are normalized by measuring a housekeeping protein with another detection system on the same blot. We clearly showed that the ODTDS dot blot method is as good as western blot to examine expression of certain proteins. As a new variant of the dot blot method, ODTDS has no/minimal technical biases and can be used in large numbers of samples since it is simple and fast to apply.

Declaration of Interest:

There is no conflict of interest for any of the authors.

References:

- Falconar AKI, Romero-Vivas CME. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes. Virol J 2013;10:126.
- Gambino M, Cappitelli F, Cattò C, et al. A simple and reliable methodology to detect egg white in art samples. J Biosci 2013; 38:397-408.
- Lavebratt C, Dalhammar G, Adamafio NA, et al. A simple dot blot assay adaptable for field use in the diagnosis of onchocerciasis: preparation of an adult worm antigen fraction which enhances sensitivity and specificity. Trans R Soc Trop Med Hyg 1994;88: 303-6.
- Ermens AA, Bayens AJ, Crooymans A, Broekman-Van Hout AA, van Duijnhoven HL. Evaluation of a simple dot-blot method for the detection of anti-neutrophil cytoplasmic antibodies directed against proteinase 3 and myeloperoxidase. Clin Chem 2000;46: 1717-9.
- Zalis M, Jaffe CL. Routine dot-blot assay of multiple serum samples using a simple apparatus. J Immunol Methods 1987;101:261-4.
- Guillemin N, Meunier B, Jurie C, et al. Validation of a Dot-Blot quantitative technique for large scale analysis of beef tenderness biomarkers. J Physiol Pharmacol Off J Pol Physiol Soc 2009; 60 Suppl 3:91-7.
- Bernstein JM, Stokes CE, Fernie B. Comparative sensitivity of 1251-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins. J Clin Microbiol 1987;25:72-5.
- Fawcett PT, Rosé CD, Gibney KM, Doughty RA. Comparison of immunodot and western blot assays for diagnosing Lyme borreliosis. Clin Diagn Lab Immunol 1998;5:503-6.
- Unver A, Rikihisa Y, Ohashi N, Cullman LC, Buller R, Storch GA. Western and dot blotting analyses of Ehrlichia chaffeensis indirect fluorescent-antibody assay-positive and -negative human sera by using native and recombinant E. chaffeensis and E. canis antigens. J Clin Microbiol 1999;37:3888-95.
- Ravanshad M, Sabahi F, Mahboudi F, Roostaee MH, Forooshani RS, Kazemnejad A. An Accurate Confirmation of Human Immunodeficiency Virus Type 1 (HIV-1) and 2 (HIV-2) Infections with a Dot blot assay Using Recombinant p24, gp41, gp120 and gp36 Antigens. Int J Med Sci 2004;1:193-200.
- Salazar-Anton F, Tellez A, Lindh J. Evaluation of an immunodot blot technique for the detection of antibodies against Taenia solium larval antigens. Parasitol Res 2012;110:2187-91.
- Castorálová M, Ruml T, Knejzlík Z. Using dot blot with immunochemical detection to evaluate global changes in SUMO-2/3 conjugation. BioTechniques 2012;0:1-4.

- Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 2005;5:566-71.
- Sullivan-Gunn M, Hinch E, Vaughan V, Lewandowski P. Choosing a stable housekeeping gene and protein is essential in generating valid gene and protein expression results. Br J Cancer 2011; 104:1055; author reply 1056.
- Chaykovska L, von Websky K, Rahnenführer J, et al. Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy. PloS One 2011;6:e27861.
- Kalk P, Eggert B, Relle K, et al. The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol 2007;151:1025-32.
- Atherton AJ, Warburton MJ, O'Hare MJ, Monaghan P, Schuppan D, Gusterson BA. Differential expression of type XIV collagen/ undulin by human mammary gland intralobular and interlobular fibroblasts. Cell Tissue Res 1998;291:507-11.
- Zhao S, Gu Y, Coates G, et al. Altered nephrin and podoplanin distribution is associated with disturbed polarity protein PARD-3 and PARD-6 expressions in podocytes from preeclampsia. Reprod Sci Thousand Oaks Calif 2011;18:772-80.
- Hasegawa D, Fujii R, Yagishita N, et al. E3 ubiquitin ligase synoviolin is involved in liver fibrogenesis. PloS One 2010;5:e13590.
- Peters DM, Kintner RL, Steger C, Bultmann K, Brandt CR. Maturation of collagen fibrils in the corneal stroma results in masking of tyrosine-rich region of type V procollagen. Invest Ophthalmol Vis Sci 1996;37:2047-59.
- Techatanawat S. Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: a comparative study. Asian Biomed 2011;5:787.
- Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 2002;9:1235-9.
- Pohanka M, Skládal P, Pavlis O. Label-free piezoelectric immunosensor for rapid assay of Escherichia coli. J Immunoassay Immunochem 2008; 29:70-9.
- Delvaux M, Friedman S, Keuchel M, et al. Structured terminology for capsule endoscopy: results of retrospective testing and validation in 766 small-bowel investigations. Endoscopy 2005;37: 945-50.
- Privman V, Fratto BE, Zavalov O, Halámek J, Katz E. Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J Phys Chem B 2013; 117:7559-68.
- Schultheiss OC. Assessment of salivary hormones. In E. Harmon-Jones & J. S. Beer (Eds.), Methods in Social Neuroscience. New York, NY: Guilford Press 2009, pp 17-44.
- Salazar-Anton F, Tellez A, Lindh J. Evaluation of an immunodot blot technique for the detection of antibodies against Taenia solium larval antigens. Parasitol Res 2012;110:2187-91.

140317-Dwi_Putra.pdf

by Sulistyo Ritter

Submission date: 22-Mar-2021 08:31PM (UTC-0700) Submission ID: 1539978382 File name: 140317-Dwi_Putra.pdf (479.76K) Word count: 3940 Character count: 19992 Clin. Lab. 2014;60:XXX-XXX ©Copyright

ORIGINAL ARTICLE

Dealing with Large Sample Sizes: Comparison of a New One Spot Dot Blot Method to Western Blot

SULISTYO EMANTOKO DWI PUTRA^{1, 3, *}, OLEG TSUPRYKOV^{1, 2, *}, KAROLINE VON WEBSKY¹, TERESA RITTER², CHRISTOPH REICHETZEDER¹, BERTHOLD HOCHER¹

> ⁶ Equal contributors ⁷ Institute for Nutritional Science, University of Potsdam, Potsdam, Germany ² Center for Cardiovascular Research, Charité, Berlin, Germany ³ University of Surabaya, Indonesia

SUMMARY

Background: Western blot is the gold standard method to determine individual protein expression levels. However, western blot is technically difficult to perform in large sample sizes because it is a time consuming and labor intensive process. Dot blot is often used instead when dealing with large sample sizes, but the main disadvantage of the existing dot blot techniques, is the absence of signal normalization to a housekeeping protein.

Methods: In this study we established a one dot two development signals (ODTDS) dot blot method employing two different signal development systems. The first signal from the protein of interest was detected by horseradish peroxidase (HRP). The second signal, detecting the housekeeping protein, was obtained by using alkaline phosphatase (AP).

Results: Inter-assay results variations within ODTDS dot blot and western blot and intra-assay variations between both methods were low (1.04 - 5.71%) as assessed by coefficient of variation.

Conclusions: ODTDS dot blot technique can be used instead of western blot when dealing with large sample sizes without a reduction in results accuracy.

(Clin. Lab. 2014;60:xx-xx. DOI: 10.7754/Clin.Lab.2014.140317)

Correspondence: Prof. Berthold Hocher, MD, PhD Institute of Nutritional Science University of Potsdam 14558 Nuthetal, Germany Email: hocher@uni-potsdam.de

KEY WORDS

one dot two development signals (ODTDS) dot blot, western blot, protein quantification, large sample size studies, comparison

INTRODUCTION

Western blot is the gold standard method to determine individual protein expression levels. However, western blot is technically difficult to perform in large sample sizes because it is a time consuming and labor intensive process. Dot blot is often used instead when dealing with large sample sizes [1-5]. Dot blot has similar technical features and specificity as western blot, but is the more sensitive method [6,7]. Currently dot blot is used in routine sample analysis [8-11], and at the same time

Manuscript accepted May 8, 2014

it has been proven to work well with proteins over a wide range of molecular weights [12]. Most of the dot blot methods which have been developed use only one developing signal [13,14]. The main disadvantage of the existing dot blot techniques, which limits their application, is the absence of signal normalization to a housekeeping protein. Stripping off previously used antibodies is one possibility to apply further antibodies for the detection of a housekeeping protein. However the stripping procedure often leads to a partial protein detachment from the membrane and thus to a signal lowering of the protein of interest.

In this study we established a one dot two development signals (ODTDS) dot blot method employing two different signal development systems. The first signal from the protein of interest was detected by horseradish peroxidase (HRP). The second signal, detecting the housekeeping protein, was obtained by using alkaline phosphatase (AP). Collagen I, nephrin, and p\$MAD2/3 were used as proteins of interest whereas glyceraldehyde-3phosphate dehydrogenase (GAPDH) was used as a housekeeping protein. We tested the efficiency of dot blot using urea/thiourea lysis buffer on kidney samples derived from sham-operated and 5/6 neplrectomized animals, which were taken from another study conducted by our group [15].

MATERIALS AND METHODS

Sample Preparation

Deep frozen pieces of 1/8 of the left kidney containing both medulla and cortex were mechanically turned into powder using a laboratory metal mortar and pestle precooled with liquid nitrogen. Urea/thiourea buffer [2 M thiourea, 7 M urea, 2% SDS, 1% DTT, and protease inhibitor (Complete Mini, Cat. No.: 11 697 498 001, Roche)] was used for protein extraction. Samples were sonicated on ice using the Bandelin Sonopuls GM 2070 sonicator (Bandelin electronic, Berlin, Germany) for 1.5 minutes (1 second on/1 second off cycles) at medium intensity, kept for 10 minutes at room temperature, centrifuged for 10 minutes at full speed. Afterwards, the supernatant was collected. Protein concentration was determined by spectrophotometry with Roti-Nanoquant (Cat. No. K800.1, Carl Roth). Standard samples were prepared using standard protein dilutions provided by the manufacturer.

Pure Protein Positive Controls

Pure protein positive control solutions were prepared by diluting pure collagen I from rat tail tendon (sc-136157, Santa Cruz Biotechnology, Inc., CA, USA) and pure GAPDH (ab77109, Abcam) as shown in Table 1 in urea/thiourea lysis buffer.

Animal models

Male Wistar rats (Charles River Laboratories International, Inc., Wilmington, MA, USA) were allocated into two groups: 5/6 nephrectomized (5/6 Nx) or sham operated. Surgery was performed as previously described [16].

Dot blot analysis

1 μ L urea/thiourea lysed samples at a concentration of 5 μ g/ μ L were spotted onto a nitrocellulose membrane (AmershamTM HybondTM ECL, GE Healthcare). The same procedure was applied for membranes, which were spotted with 0.125 μ g, 0.25 μ g, 0.5 μ g, and 1 μ g *pure protein positive control*. After complete drying for 5 minutes at room temperature, the membrane was washed with TBS-T three times for ten minutes.

The membranes were blocked in 5% non-fat milk/TBS-T (20 mM Tris, 140 mM NaCl, 0.1% Tween-20 at pH 7.6) for 1 hour at room temperature. First, the primary antibody incubation was performed overnight at +4°C. The anti-nephrin antibody (sc-28192, Santa Cruz Biotechnology, Inc.,) was used at a dilution of 1:2000, the anti-collagen I antibody (a gift from Prof. Schuppan [17]) at a dilution of 1:10000, the anti-pSMAD2/3 antibody (sc-11769-R, Santa Cruz Biotechnology, Inc.,) at a dilution of 1:5000, and the anti-housekeeping protein GAPDH antibody (MAB 374, Millipore) at a dilution of 1:10000. Membranes were washed with TBS-T three times for ten minutes and incubated with HRP-conjugated secondary antibodies (sc-2054, Santa Cruz Biotechnology, Inc.,). The signal was developed using enhanced chemiluminescence (ECL). Second, the same membranes were incubated with anti-GAPDH primary antibodies overnight at +4°C, washed three times in TBS-T and incubated with AP-conjugated secondary antibodies (sc-2008, Santa Cruz Biotechnology, Inc.,) for 1 hour at room temperature. The signal was developed using 5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium chloride (BCIP/NBT) substrate. The developed membranes were digitalized using a 600 dpi scanner resolution. Quantitative analysis was performed using AlphaEaseFCTM software version 3.1.2. (Alpha Innotech Corporation). The signal protein expression was determined using integrated density value (IDV). The background expression was determined individually for every given sample and was subtracted from the main signal. The final results were calculated as a ratio between the protein of interest expression and GAPDH. A standard sample was constituted by mixing aliquots of all samples.

Western Blot Analysis

15 μg protein extract was loaded into each separation well of the gel. 10% polyacrylamide gels were used for SDS-PAGE. After SDS-PAGE gels were blotted to nitrocellulose membrane (AmershamTM HybondTM ECL, GE Healthcare) using a Biorad Trans-Blot semidry blotter and transfer buffer (184 mM glycine, 24 mM Tris,

NEW DOT BLOT METHOD FOR PROTEIN QUANTIFICATION

Table 1. Pure Protein Positive Control Composition.

	Pure Protein Positive Control	Collagen I concentration (µg/µL)	GAPDH concentration (µg/µL)
Collagen I	Col I with 20% GAPDH	1	0.2
added	Col I with 5% GAPDH	1	0.05
GAPDH	Col I with 1% GAPDH	1	0.01
GAPDH	GAPDH with 20% Col I	0.2	1
added collagen I	GAPDH with 5% Col I	0.05	1
	GAPDH with 1% Col I	0.01	1

Table 2. Linear regression analysis of dot blot standard curves.

Protein of Interest	Corresponding GAPDH
pSMAD2/3: y = 186110x - 205622 R ² = 0.9850	y = 161619x - 199205 R ² = 0.9785
Collagen I: y = 244643x + 398354 $R^2 = 0.9652$	y = 35663x - 34914 R ² = 0.9797
Nephrin: y = 1052,2x - 435,07 R ² = 0.9879	y = 15708x - 1753,5 R ² = 0.9877

x - protein amount (µg), y - IDV (Integrated DensityValue).

Table 3. Inter-assay results variations within ODTDS dot blot and western blot and intra-assay variations between both methods.

Protein	Inter-assay		Intra-assay
Trotein	WB	ODTDS Dot Blot	WB and ODTDS Dot Blot
Collagen I	1.04 ± 0.98	1.55 ± 2.00	1.72 ± 1.71
pSMAD2/3	2.16 ± 2.18	$\textbf{2.78} \pm \textbf{2.84}$	5.49 ± 5.31
Nephrin	2.94 ± 2.87	3.24 ± 2.53	5.71 ± 7.29

Coefficient of variation in percent. The values are given as mean $\pm\,SD.$

20% methanol) at 25 V for 1 hour. All subsequent steps were exactly the same as in the dot blot.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 5 software. Student's *t*-test was performed if the variables were parametric and normally distributed, as determined by the Kolmogorov-Smirnov test; otherwise, the Mann-Whitney U-test was used. A confidence interval of 0.05 was used. Coefficient of variation (CV) was determined as the ratio of the standard deviation to the mean value of protein signal. Linear regression analysis was performed to prove that IDV signal origins were from the protein of interest and not from the background signal.

S. E. DWI PUTRA et al.

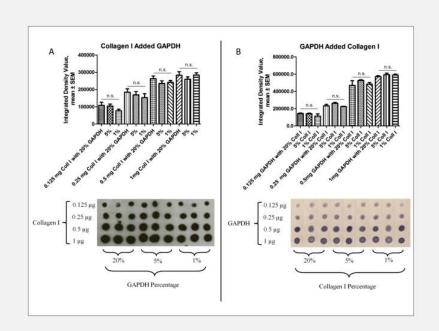
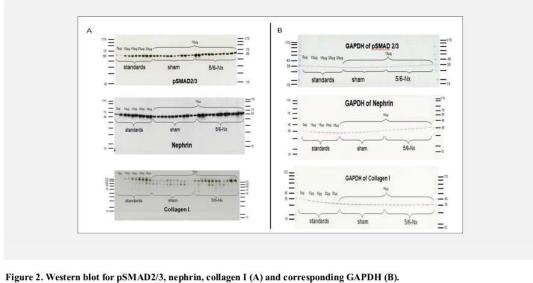



Figure 1. There was no significant difference (n.s.) between the signal from 0.125 µg collagen I added with 1%, 5%, and 20% GAPDH. The same results were obtained in the case of 0.25 µg, 0.5 µg, and 1 µg collagen I with added GAPDH samples (A). Addition of collagen I also had no impact on the GAPDH signal (B).

NEW DOT BLOT METHOD FOR PROTEIN QUANTIFICATION

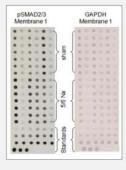


Figure 3. A typical result from ODTDS dot blot method. Six sham and 5/6 Nx protein samples were spotted in heptaplicates in the amount of 5 µg. Standard protein was spotted in triplicates in the amounts of 2.1, 2.8, 3.8, 5, 7.5, 10, and 20 µg per dot.

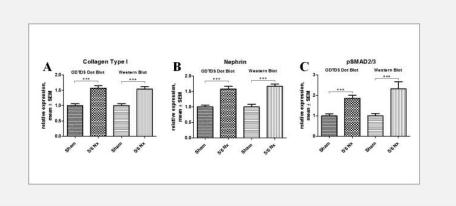


Figure 4. Relative protein expression of collagen type I (A), nephrin (B) and pSMAD2/3 in whole kidney assessed by ODTDS dot blot and western blot methods.

Values are given as mean ± SEM; *** - p < 0.001.

RESULTS

Pure protein positive control samples were prepared to investigate interplay correlation of the first and second signal development system in the same blot. The presence of collagen I in the sample (1%, 5%, and 20%) had no impact on the signal intensity obtained from the added amount of GAPDH (0.125 μ g; 0.25 μ g; 0.5 μ g; 1 μ g, Figure 1a). The same results were observed for samples of collagen 1 with added amounts of GAPDH (Figure 1b).

This proves that complexes of *collagen I-anti collagen I* antibody-secondary antibody did not impact the devel-

Clin. Lab. 11/2014

opment of the alkaline phospatase signal of *GAPDH*anti *GAPDH* antibody-secondary antibody complexes. AP signal development for detection of GAPDH-anti GAPDH-secondary antibody was not impaired by complex formations of collagen I-anti collagen I antibodysecondary antibody.

As shown in Figure 1, there was no significant difference (n. s.) between the signal from $0.125 \ \mu g$ collagen I added with 1%, 5%, and 20% GAPDH. The same results were obtained for $0.25 \ \mu g$, $0.5 \ \mu g$, and 1 μg collagen I with added amounts of GAPDH (A). Addition of collagen I also had no impact on the GAPDH signal (B). Protein extract samples of normal and 5/6 nephrectomized rat kidneys were used to test the ODTDS dot blot method in comparison to western blot regarding the detection of kidney biomarkers. Western blot was used as comparison, as it is the best established method to investigate up/down-regulation of selected biomarkers. Western blot was also performed to ensure that the signal given by ODTDS dot blot method came only from the protein of interest. Phosphorylated SMAD2/3, nephrin, and GAPDH gave a single band at about 57 kDa, 70 kDa [18], and 37 kDa, respectively. Collagen I gave three different bands, one at about 70 kDa representing mature collagen [19,20], and two bands at 130 kDa and 190 kDa representing collagen I precursors [21] (Figure 2).

The calibration curve for the ODTDS dot blot method was built based on 2.1, 2.8, 3.8, 5, 7.5, 10, and 20 µg standard protein triplicates and linearity coefficients (R²) from 0.965 to 0.988 were observed (Table 2). In order to get the best results for the ODTDS dot blot method, 5 µg protein per dot was used for all proteins of interest and the typical result is presented in Figure 3. The coefficient of variation (CV) is widely used as an indicator of a newly established method performance [22]. In the current study, CV was used to investigate the inter-assay results variations within the ODTDS dot blot and western blot as well as intra-assay variations between both methods (Table 3). Inter-assay variation between the ODTDS method results gave CVs between 1.55% and 3.24% for all detected proteins. Evaluation of the ODTDS method in regard to western blot gave CVs between 1.72% and 5.71%.

The differences in protein expression levels between the study groups were found to be the same as measured by both ODTDS dot blot and western blot methods. Furthermore, the statistical differences between the groups as elucidated by p value, were at the same level of p < 0.001 (Figure 4).

DISCUSSION

Western blot is the most common method for evaluating and quantifying protein expression; however, it is very labor intensive and time consuming when dealing with large sample sizes.

Since dot blot has almost the same reaction scheme as western blot, except for the protein separation step (SDS-PAGE), this method is frequently chosen as a replacement for western blot. Some routine dot blots have been developed to replace western blot and to standardize dot blot for large sample sizes [6,8]. However, to the best of our knowledge, there is no report about signal normalization of dot blot results. Since pipetting mistakes are quite common during a dot blot procedure, it is very important to develop signal normalization of the dot blot results. To address this we developed the ODTDS (One Dot Two Development Signals) dot blot method. Steric hindrance is a potential problem in developing ODTDS because the first complex antigen 1 - primary antibody 1 - secondary antibody 1 may block or reduce the formation of the second complex antigen 2 - primary antibody 2 - secondary antibody 2. In this study collagen I was used to test for the aforementioned potential problem. Collagen I belongs to a class of heavy molecular weight proteins and accordingly has a higher blocking potential. GAPDH was chosen because it is a housekeeping gene that is often used to normalize the results of the western blot signal. The comparison of GAPDH signals from samples containing 1%, 5%, and 20% collagen type I gave no significant differences (t-test, 95% confidence interval), indicating no steric hindrance of collagen I on the development of the GAPDH signal. The same result was observed for collagen I added with 1%, 5%, and 20% GAPDH. Guillemin et al. (2009) observed the same result when using a conventional dot blot to detect other proteins which have variations in their molecular weight, cellular abundance, and dimensional structure [6]. Our data suggest that the ODTDS dot blot method can be used to analyze the expression level of proteins of interest and also to normalize the signal using GAPDH.

Linear response is a very critical approach due to the importance of recalibrating the developing method [23, 25]. The linearity of the signal derived from protein standards used in the ODTDS dot blot method was confirmed by high linearity coefficients (0.965 to 0.988, Table 2). This fact indicates that the signal was derived from the same protein species even though the total protein standard amount was increased, or in other words, we excluded the signal coming from background.

Statistical testing is frequently used to evaluate a newly established method. For this purpose the coefficient of variation (CV) was used to examine the experimental results for absence of technical biases. In this study, inter-assay CV values of the ODTDS dot blot method were 1.55 - 3.24% and the intra-assay CV values with western blot were 1.72 - 5.71% (Table 3). Moreover, inter-assay CV values of the ODTDS dot blot were almost in the same range compared to the ones for western blot (1.04 - 2.94%). CV values below 10% are known to be a characteristic of a good method [26].

Conventional dot blot method belongs to a yes/no assay type [8,27]. Častorálová et al. used dot blot for quantification of protein expression, although this was done without signal normalization to a housekeeping protein [12].

Guillemin et al. (2009) showed that conventional dot blot is as good as western blot for use as a quantitative method for measuring protein expression [6]. However, there is no evidence about using the same blot to develop two different signals in a dot blot method. Herein, we introduce the ODTDS dot blot method as a quantitative assay for measurement of single protein of interest expression. In the method we established, the pipetting inaccuracies are normalized by measuring a housekeeping protein with another detection system on the same

NEW DOT BLOT METHOD FOR PROTEIN QUANTIFICATION

blot. We clearly showed that the ODTDS dot blot method is as good as western blot to examine expression of certain proteins. As a new variant of the dot blot method, ODTDS has no/minimal technical biases and can be used in large numbers of samples since it is simple and fast to apply.

17

Declaration of Interest:

There is no conflict of interest for any of the authors.

References:

- Falconar AKI, Romero-Vivas CME. A simple, inexpensive, robust and sensitive dot-blot assay for equal detection of the nonstructural-1 glycoprotein of all dengue virus serotypes. Virol J 2013;10:126.
- Gambino M, Cappitelli F, Cattò C, et al. A simple and reliable methodology to detect egg white in art samples. J Biosci 2013; 38:397-408.
- Lavebratt C, Dalhammar G, Adamafio NA, et al. A simple dot blot assay adaptable for field use in the diagnosis of onchocerciasis: preparation of an adult worm antigen fraction which enhances sensitivity and specificity. Trans R Soc Trop Med Hyg 1994;88: 303-6.
- Ermens AA, Bayens AJ, Crooymans A, Broekman-Van Hout AA, van Duijnhoven HL. Evaluation of a simple dot-blot method for the detection of anti-neutrophil cytoplasmic antibodies directed against proteinase 3 and myeloperoxidase. Clin Chem 2000;46: 1717-9.
- Zalis M, Jaffe CL. Routine dot-blot assay of multiple serum samples using a simple apparatus. J Immunol Methods 1987;101:261-
- Guillemin N, Meunier B, Jurie C, et al. Validation of a Dot-Blot quantitative technique for large scale analysis of beef tenderness biomarkers. J Physiol Pharmacol Off J Pol Physiol Soc 2009; 60 Suppl 3:91-7.
- Bernstein JM, Stokes CE, Fernie B. Comparative sensitivity of 1251-protein A and enzyme-conjugated antibodies for detection of immunoblotted proteins. J Clin Microbiol 1987;25:72-5.
- Fawcett PT, Rosé CD, Gibney KM, Doughty RA. Comparison of immunodot and westem blot assays for diagnosing Lyme borreliosis. Clin Diagn Lab Immunol 1998;5:503-6.
- Unver A, Rikihisa Y, Ohashi N, Cullman LC, Buller R, Storch GA. Western and dot blotting analyses of Ehrlichia chaffeensis indirect fluorescent-antibody assay-positive and n-egative human sera by using native and recombinant E. chaffeensis and E. canis antigens. J Clin Microbiol 1999;37:3888-95.
- Ravanshad M, Sabahi F, Mahboudi F, Roostaee MH, Forooshani RS, Kazemnejad A. An Accurate Confirmation of Human Immunodeficiency Virus Type 1 (HIV-1) and 2 (HIV-2) Infections with a Dot blot assay Using Recombinant p24, gp41, gp120 and gp36 Antigens. Int J Med Sci 2004;1:193-200.
- Salazar-Anton F, Tellez A, Lindh J. Evaluation of an immunodot blot technique for the detection of antibodies against Taenia solium larval antigens. Parasitol Res 2012;110:2187-91.
- Castorálová M, Ruml T, Knejzlík Z. Using dot blot with immunochemical detection to evaluate global changes in SUMO-2/3 conjugation. BioTechniques 2012;0:1-4.

- Ferguson RE, Carroll HP, Harris A, Maher ER, Selby PJ, Banks RE. Housekeeping proteins: a preliminary study illustrating some limitations as useful references in protein expression studies. Proteomics 2005;5:566-71.
- Sullivan-Gunn M, Hinch E, Vaughan V, Lewandowski P. Choosing a stable housekeeping gene and protein is essential in generating valid gene and protein expression results. Br J Cancer 2011; 104:1055; author reply 1056.
- Chaykovska L, von Websky K, Rahnenführer J, et al. Effects of DPP-4 inhibitors on the heart in a rat model of uremic cardiomyopathy. PloS One 2011;6:e27861.
- Kalk P, Eggert B, Relle K, et al. The adenosine A1 receptor antagonist SLV320 reduces myocardial fibrosis in rats with 5/6 nephrectomy without affecting blood pressure. Br J Pharmacol 2007;151:1025-32.
- Atherton AJ, Warburton MJ, O'Hare MJ, Monaghan P, Schuppan D, Gusterson BA. Differential expression of type XIV collagen/ undulin by human mammary gland intralobular and interlobular fibroblasts. Cell Tissue Res 1998;291:507-11.
- Zhao S, Gu Y, Coates G, et al. Altered nephrin and podoplanin distribution is associated with disturbed polarity protein PARD-3 and PARD-6 expressions in podocytes from preeclampsia. Reprod Sci Thousand Oaks Calif 2011;18:772-80.
- Hasegawa D, Fujii R, Yagishita N, et al. E3 ubiquitin ligase synoviolin is involved in liver fibrogenesis. PloS One 2010;5:e13590.
- Peters DM, Kintner RL, Steger C, Bultmann K, Brandt CR. Maturation of collagen fibrils in the comeal stroma results in masking of tyrosine-rich region of type V procollagen. Invest Ophthalmol Vis Sci 1996;37:2047-59.
- Techatanawat S. Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: a comparative study. Asian Biomed 2011;5:787.
- Reed GF, Lynn F, Meade BD. Use of coefficient of variation in assessing variability of quantitative assays. Clin Diagn Lab Immunol 2002;9:1235-9.
- Pohanka M, Skládal P, Pavlis O. Label-free piezoelectric immunosensor for rapid assay of Escherichia coli. J Immunoassay Immunochem 2008; 29:70-9.
- Delvaux M, Friedman S, Keuchel M, et al. Structured terminology for capsule endoscopy: results of retrospective testing and validation in 766 small-bowel investigations. Endoscopy 2005;37: 945-50.
- Privman V, Fratto BE, Zavalov O, Halámek J, Katz E. Enzymatic AND logic gate with sigmoid response induced by photochemically controlled oxidation of the output. J Phys Chem B 2013; 117:7559-68.
- Schultheiss OC. Assessment of salivary hormones. In E. Harmon-Jones & J. S. Beer (Eds.), Methods in Social Neuroscience. New York, NY: Guilford Press 2009, pp 17-44.
- Salazar-Anton F, Tellez A, Lindh J. Evaluation of an immunodot blot technique for the detection of antibodies against Taenia solium larval antigens. Parasitol Res 2012;110:2187-91.

140317-Dwi_Putra.pdf

ORIGINALITY REPORT

SIMILA	4% ARITY INDEX	10% INTERNET SOURCES	7% PUBLICATIONS	4% STUDENT PAPERS
PRIMAR	Y SOURCES			
1	etheses.	whiterose.ac.uk		1%
2	krishikosl	n.egranth.ac.in		1%
3	Websky, on Top of a New Th	. Alter, Ina M. Of Oleg Tsuprykov f Angiotensin Re nerapeutic Appro athy", Kidney and n, 2012	et al. "DPP-4 ceptor Blocka bach for Diabe	Inhibition de Offers tic
4	Submitte Student Paper	d to Institute of T	echnology, Sl	ligo 1%
5	link.spring	•		1%
6	sintadev.	ristekdikti.go.id		1%
7	WWW.ONC	otarget.com		1%

8 Gonçalo da Costa. "Beyond Genetic Factors in Familial Amyloidotic Polyneuropathy: Protein Glycation and the Loss of Fibrinogen's Chaperone Activity", PLoS ONE, 10/28/2011 Publication

9	Ott, Ina M., Markus L. Alter, Karoline von Websky, Axel Kretschmer, Oleg Tsuprykov, Yuliya Sharkovska, Katharina Krause-Relle, Jens Raila, Andrea Henze, Johannes-Peter	1%
	Stasch, and Berthold Hocher. "Effects of Stimulation of Soluble Guanylate Cyclase on Diabetic Nephropathy in Diabetic eNOS Knockout Mice on Top of Angiotensin II Receptor Blockade", PLoS ONE, 2012. Publication	

10	Submitted to University of Keele Student Paper	1%
11	www.karger.com	1%

<1%

12 ar.iiarjournals.org

S. Jeson Sangaralingham. "Estrogen delays the progression of salt-induced cardiac hypertrophy by influencing the renin-angiotensin system in heterozygous proANP gene-disrupted mice", Molecular and Cellular Biochemistry, 10/18/2007

14	Submitted to Sunway Education Group Student Paper	<1%
15	doczz.es Internet Source	<1%
16	pubs.rsc.org Internet Source	<1%
17	Submitted to Mansoura University Student Paper	<1%
18	bmcgenomics.biomedcentral.com	<1%
19	HH. Chen, YM. Sue, CH. Chen, YH. Hsu, CC. Hou, CY. Cheng, SL. Lin, WL. Tsai, TW. Chen, TH. Chen. "Peroxisome proliferator-activated receptor alpha plays a crucial role in L-carnitine anti-apoptosis effect in renal tubular cells", Nephrology Dialysis Transplantation, 2009 Publication	<1%
20	Submitted to University College London Student Paper	<1%
21	tessera.spandidos-publications.com	<1%
22	Graham MacLeod, Danielle A. Bozek, Nishani Rajakulendran, Vernon Monteiro et al. "The	<1%

functional genomic circuitry of human glioblastoma stem cells", Cold Spring Harbor Laboratory, 2018 Publication

23	Isabel Smart, Tobias Goecke, Robert Ramm, Björn Petersen, Doreen Lenz, Axel Haverich, Heiner Niemann, Andres Hilfiker. "Dot blots of solubilized extracellular matrix allow quantification of human antibodies bound to epitopes present in decellularized porcine pulmonary heart valves", Xenotransplantation, 2020 Publication	<1%
24	joe.endocrinology-journals.org	<1%
25	journals.physiology.org	<1%

Exclude quotes	Off	Exclude matches	Off
Exclude bibliography	Off		

140317-Dwi_Putra.pdf

GRADEMARK REPORT

FINAL GRADE	GENERAL COMMENTS
/0	Instructor

PAGE 1	
PAGE 2	
PAGE 3	
PAGE 4	
PAGE 5	
PAGE 6	
PAGE 7	