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Lignocellulosic biomass is one of the potential sources for biofuel production. Coconut husk, one of the abundant
lignocellulosic biomass in Indonesia, can be explored for such a process. This work evaluated compositions of
raw and pretreated coconut husk powder using modeling and computation of thermogravimetry analysis data.
Lignocellulose compositions and distributed activation energy model employing kinetic parameters were suc-
cessfully obtained with the fit quality values of 0.1-0.35 %, and R-squared values (R%) equal 1. By this method,
raw coconut husk powder was found to contain 30 % hemicellulose, 38.86 % cellulose, and 34.96 % lignin. The
mean activation energy (Ep) was 141-163, 173-181, and 200-230 kJ/mol for hemicellulose, cellulose, and lignin
respectively. Meanwhile, the standard deviation activation energy (¢) was 4.8-7.5, 1.76-3.75, and 19-28 kJ/mol
for hemicellulose, cellulose, and lignin respectively. The pre-exponential factor (A) values ranged from 1.20 x
10! to 5.00 x 10'% s7! where those of hemicellulose, cellulose, and lignin, respectively appeared in ascending

order.

1. Introduction

The recent issues of rapid fossil fuel reserves depletion and climate
change, which is apparently caused by CO, emission, have driven new
policies development on bio-based clean energy usage and consequently
propelled scientific works exploring lignocellulosic biomass (LCB) to
produce alternative fuels and chemicals (Sydney et al., 2019). In 2021
the global CO, emission had increased by 6 % from 2020 when the
pandemic Covid 19 had caused the largest-ever emission decline albeit it
still reached the value of 31.5 Gt and the highest-ever average annual
concentration of 412.5 ppm in the atmosphere. This concentration was
50 % higher than that in the beginning era of the industrial revolution
(IEA, 2021). According to Raud et al. (2019) the temperature increase
had evidently reached 0.85 °C compared to the preindustrial era and
resulted in sea level rise as well as other climate change facts. Bioenergy,
renewable energy sources produced from biomass, is expected to play a
key role in the attempt to manage the Net Zero Emission scenario by
2050. Between 2010 and 2021, its average use increased to 7 % per year,
and this is expected to increase by 2030 in several applications such as
biojet kerosene, liquid biofuel, industry, and electricity generation
(Hodgson et al., 2022). Supporting the fact of LCB conversion to bio-
energy need, the global LCB production yield had been reported
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enormous as it reached 1.3 billion tons per year (Baruah et al., 2018).
Coconut husk is one of the enormous agricultural food wastes in
Indonesia as the largest producer of the coconut fruit. Therefore, it can
be a potential lignocellulose material for alternative fuel and chemical
production.

Biomass to biofuel and biochemical conversion can be accomplished
through thermochemical or biochemical route, by which several types of
biofuels such as gaseous fuel (methane and hydrogen), pyrolysis oil, and
bioethanol can be produced (Menon and Rao, 2012). Despite LCB’s great
potential for alternative fuel and chemical sources, its utilization still
hands over obstacles concerning recalcitrant properties upon biochem-
ical conversion caused by its hardly hydrolytic enzyme accessed struc-
tural components (hemicellulose, cellulose, and lignin) characteristic.
Many pretreatment methods prior to enzymatic hydrolysis had been
applied to LCB to enhance the rate of enzymatic hydrolysis reaction
which is inhibited by the presence of lignin as well as the crystalline
characteristic of cellulose molecule (Menon and Rao, 2012; Raud et al.,
2019). Pretreatment using ultrasound at low frequency (20-80 kHz)
offers a quite promising method to change the surface area and structure
of lignocellulose biomass which can become more amenable to hydro-
lytic enzyme attack. The violent cavitation brought about by low-
frequency ultrasound leads to physical effects such as microjet impact
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and shockwave damage on the solid surface (Kuna et al., 2017).
Meanwhile, the physicochemical process employing subcritical water or
liquid hot water also renders a promising process of lignocellulose
biomass conditioning. Subcritical water, which exists between its
normal boiling point (100 °C) and critical point (374 °C and 22.1 MPa)
with adjusted pressure to maintain liquid phase has drastic changes in its
properties such as the increase in the ionic product (kw), drop in
dielectric constant and density decrease. These changes favor the
chemical transformation of the lignocellulose material being treated.
Incorporating gas CO- into the subcritical water can boost the expected
reaction in the subcritical water pretreatment of lignocellulose biomass
(Prado et al., 2016; Ruiz et al., 2013).

Generally, the design and economic feasibility analysis of a chemical
process plant requires the calculation of mass and energy balance and
process yield. Similarly, the design of LCB to biofuel conversion also
requires such calculations which demand compositional analysis of both
solid and liquid fractions (Templeton et al., 2016). The lignocellulose
compositional analysis of the solid fraction usually uses a suite of sum-
mative methods consisting of two-step sulfuric acid hydrolysis followed
by HPLC analysis of sugar components. The method had been continu-
ously developed by various process temperature and time changes to
obtain the best condition approaching 100 % total closure. Such a
method was also promulgated by a standard organization such as the
Technical Association of the Pulp and Paper Industry (TAPPI). It was
National Renewable Energy Laboratory (NREL) that applied the method
to biofuel feedstock and disseminated it through the American Society
for Testing and Materials (ASTM) to increase its industrial relevance
(Sluiter et al., 2010). The current suite used by NREL consists of 72%w
sulfuric acid treatment of extractive-free biomass at 30 °C for 1 h fol-
lowed by dilution into 4%w sulfuric acid concentration and boiling at
121 °C for 1 h. The solid fraction from this sulfuric acid treatment rep-
resents the acid-insoluble lignin while the liquid fraction, having been
neutralized, can be analyzed for monomeric sugar composing the car-
bohydrate using HPLC (Sluiter et al., 2012). The other even more con-
ventional and widely used gravimetric method, the Chesson-Datta
method, comprises a series of three-step sulfuric acid destruction with
filtration plus washing, drying, and solid mass measurement in between
to obtain the composition of hemicellulose, cellulose, and lignin
following extraction. The first destruction boils the solid sample in 0.5 M
(£4.74 %) sulfuric acid for 2 h while the second destruction employs
soaking the solid in 72%v/v sulfuric acid solution followed by diluting to
0.5 M and boiling (Cheng et al., 2019; Nurika et al., 2022). These reveal
that both gravimetry and summative method suites are time-consuming
and use hazardous treatment solutions. Moreover, incomplete acid
destruction may bias the composition result.

Thermogravimetric analysis (TGA) is a thermo-analytical technique
for solid-phase material degradation studies. Using a TGA analyzer, one
can obtain information on mass changes as a function of temperature
and time under a controlled atmosphere (Emiola-Sadiq et al., 2021;
Xiang et al., 2022). This technique is potential to be exploited for
lignocellulose composition determination to replace the tedious gravi-
metric method (Cai et al., 2017). As mass changes are detectable and
recordable while pyrolysis reaction occurs in this analysis, employing
appropriate kinetic models which incorporate LCB components and
computation methods will allow faster LCB composition determination.
Several attempts to utilize TGA data for LCB compositional analysis have
existed (Cai et al., 2013; Chen et al., 2015; Kim et al., 2022; Lopes and
Tannous, 2020; Rego et al., 2019). According to Hu et al., 2016, the
three-parallel-reaction (TPR) model is the most suitable multi-step re-
action model for representing lignocellulose biomass pyrolysis kinetic,
and there are three calculation procedures corresponding to this model
which are order-based mechanism, distributed activation energy model
(DAEM), and deconvolution. Cai et al., 2013 applied DAEM to obtain the
thermogravimetry (TG) kinetic parameters of xylan and cellulose and
fitted the three-parallel DAEM-reaction model to the derivative ther-
mogravimetry (DTG) data of 8 different LCBs. This fitting resulted in
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lignocellulose compositions in spite of kinetic parameters. Other works
fitted the DTG data without incorporating DAEM to obtain lignocellu-
lose composition (Kim et al., 2022; Lopes and Tannous, 2020). Rego
etal. (2019) applied the deconvolution method using the Gaussian peak
function to evaluate the lignocellulosic composition of Poplar. Hu et al.
(2016) applied DAEM in DTG fitting and also attempted to employ the
Fraser-Susuki deconvolution procedure. Chen et al. (2015) applied the
DAEM to another 5 LCB materials but used experimental TG data for
fitting as this was more accurate than DTG data.

In this work, compositions of raw as well as ultrasonic and subcritical
water pretreated coconut husk powder (CHP) were determined from
thermogravimetric analysis data. The method employed a three-
parallel-reaction model which incorporated distributed activation en-
ergy model (DAEM) in TG data fitting. To the best of authors knowl-
edge, this attempt has not been applied to raw, ultrasonic, and
subcritical water pretreated coconut husk. The assumption used in
developing this model was the existence of reactions with a range of
activation energies during the decomposition of complex biomass. The
Gaussian distribution function was used to characterize the activation
energy distribution.

2. Materials and methods
2.1. Materials

Coconut husk, the mesocarp of the coconut fruit, was acquired from
local market waste. The mesocarp was washed and dried under sunlight.
The dry mesocarp was then cut and ground using a disc mill machine.
The CHP with the size range of 0.21-0.40 mm, studied in this work, was
collected after screening the ground coconut husk. Pure-grade sulfuric
acid (98 %, PT. Smart-Lab, Indonesia) was used as a medium in the
ultrasonic pretreatment. Sodium dodecyl sulfate (Reagent Plus® >98.5
%, Sigma Aldrich, Germany) was used in the subcritical water pre-
treatment. Gas COy (99 %, Samator Co., Indonesia) was used in the
subcritical water pretreatment and Gas Ny (99.999 %, Samator Co.,
Indonesia) was used in TGA.

Proximate and ultimate analysis was conducted to obtain the char-
acteristic of the husk. The analyses were performed according to ASTM
protocol at the certified analysis laboratory of Sucofindo Co. The prox-
imate analysis comprised total moisture, ash, volatile matter, fixed
carbon, total sulfur, and gross caloric value. The total moisture was
determined using an oven-drying method (ASTM E871-82). The ash
content was performed by weight measurement of solid residue after in-
furnace heating of one gram sample at 500 °C for 1 h followed by heating
to 750 °C for 2 h (ASTM D3174-12). The volatile matter (ASTM D3175-
20) corresponded to the weight loss after heating one gram sample at
950 °C for 7 min. The fixed carbon (D3172-13) was the resultant of the
moisture, ash, and volatile matter summation subtracted from 100. The
total sulfur content was determined by sample combustion at 1350 °C to
oxidize sulfur (ASTM D4239-18). The gross caloric value was obtained
after carrying out sample combustion in a calorimeter (ASTMD5865-
19). The ultimate analysis, which included the carbon, hydrogen, and
nitrogen content was performed according to ASTM D5373-21 standard.
The oxygen content was obtained by subtracting the sum of C, H, and N
content in percentage from 100 (ASTM D3176-15).

2.2. Pretreatment

The ultrasonic pretreatment was conducted using an ultrasonic bath
(Elma LC 20H, Germany) with a frequency of 35 kHz and power of 100
W. The equipment was modified by attaching a thermocouple and its
controller (Autonics TC4S). The CHP slurry was made by mixing CHP
and distilled water with a solid-to-liquid ratio of 1:20.

The subcritical water pretreatment used a stainless-steel cylindrical
reactor with a total volume of 420 mL and a working volume of about
150 mL. The reactor was equipped with an electrical heating jacket,
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temperature controller (Autonics TZN4S), and pressure gauge. Gas COy
was supplied to the reactor to attain an initial pressure of 60 bar.

2.3. Thermogravimetric analysis

Thermogravimetry analysis (TGA) was done using a thermogravi-
metric analyzer (TGA/DSC1, Mettler Toledo, Columbus, Switzerland)
run at linear temperature program with 10 °C/min heating rate. The
atmospheric gas used was Ny with the rate of 50 mL min~!. The sample
amounts were 6 mg for raw CHP and 2.8-3.0 mg for treated CHP. The
samples were placed in a 40 pL aluminum crucible and heated from 25 to
600 °C.

2.4. Kinetic modeling

2.4.1. Pyrolysis reaction kinetics

The global reaction kinetic model representing the solid-state py-
rolysis reaction in TGA has been elaborated in several works (Dash et al.,
2022; Van Geem, 2019). The rate is commonly expressed using con-
version instead of concentration (Vyazovkin, 2016). The rate tempera-
ture dependence is described using the Arrhenius equation as shown in
Eq. (1):

=G kD) (@) = e - ) @) W
where r is the reaction rate (K’l), a is the reaction conversion, f (a) is a
conversion dependence function, A is pre-exponential factor (s’l), E is
apparent activation energy (J mol™!), and R is the ideal gas constant
(8.3145 J mol ! K’l). The temperature dependence of the reaction
conversion can be derived based on the relationship shown in Eq. (2):

daidaxdtidaxl @
dT — dT " dT  dT " p

where f is the constant heating rate (K min~1) and T is the absolute
temperature (K). The kinetic equation is then expressed as in Eq. (3):

da A E

i (B .
The independent variable conversion («) is defined as:

o nmgy — nm;

a=—""" C))

my — My

where my, m; and my are the initial, instant, and final mass of the
samples.
The Integration of Eq. (3) results in the following equation:

1 AT E A
g(a):/:f(—a)dazﬁ/mexp(—ﬁ>dT:E\|J(E,T) 5)

where g(a) is the integral of 1/f(a), and y(E,T) is the integral of expo-
nential of minus E/RT. This integral has no analytical solution but it can
be solved using Senum & Yang 4th-degree rational approximation
(Aghili, 2021; Deng et al., 2009):

T E E exp( —x)
y(E,T) ~/T0 exP(iRiT)dT_Efn(x) (6)
where x = E/RT and

_ x>+ 18x% + 86x + 96
T x4 4 20x3 4 120x2 4 240x + 120

(x) )

Using first-order reaction assumption, where f(a) = 1-a, the integral
in the left term of Eq. (5) can be solved and result in the following
expression:
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l—a:exp[—;—:y/(E,T)} (8)

The expression shown in Eq. (8) was then used in this work to
evaluate the CHP devolatilization conversion in each stage as described
in Subsection 2.4.2.

2.4.2. Pyrolysis stages identification from mass loss data

Three pyrolysis stages can be observed through the TG, first deriv-
ative thermogravimetric (DTG), and second derivative thermogravi-
metric (DDTG) curves. From the TGA data, a mass loss profile can be
constructed using a plot of the remaining mass of volatile versus tem-
perature. The normalized remaining volatile mass was calculated ac-
cording to Eq. (9):

m; — my

Y= 9

mo — my

where Y = normalized remaining mass of volatiles. The DTG and DDTG
data were calculated from normalized remaining mass, as follows:

Yroar — Yr
Yy =—"2 __° 10
T AT (10)
Y, -Y!
y// — T+AT T 11
T=TAT an

where Y'7, and Y7 = first, and second derivative of Y.

2.4.3. Three-parallel DAEM and stage conversion modeling

In the distributed activated energy model (DAEM), numerous first-
order independent decomposition reactions of organic material occur.
The model assumes the same pre-exponential factor (A) for those re-
actions and adopts the Gaussian probability distribution function for the
activation energy (Hu et al., 2016; Chen et al., 2015). The continuous
distribution of activation energy is expressed in Eq. (12):

_(EE0)2:| (12)

f(E) = —

s 275)C 20?

where Ej is the mean and ¢ is standard deviation of activation energy.
The temperature-dependence function of conversion therefore can be
expressed as follows:

l—a= ]o exp( 7%1//(E., T) ) f(E)dE 13)

Following the stage division, the pyrolysis reaction kinetic parame-
ters in every stage can be evaluated by combining Egs. (12) and (13), as
follows:

7 A 1
a=1- _ZwET e
/W(ﬁw Qm@”

For each of the stages, the values of A;, Eg;, and o; were determined
numerically such that the following least square objective function is
minimized:

2
_(E-Ey) }dE a4

202

Nai

F, = Z (aj,exp - a/'ralc)z (15)

J=1

where @jexp and @ cqc are the conversions obtained from experiments
and model calculation, respectively while Ng; is the number of data of
the i-th stage.

2.4.4. Mass loss modeling
The instantaneous mass loss for each of infinite volatile substances
involved in the first-order reactions based on DAEM was modeled by
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Table 1

Coconut husk powder characteristic.
Properties This work Other work***

AR* DB** DB

Proximate (%wt):
Moisture 8.09 - -
Volatile matter 64.06 69.90 79.61 + 2.09
Fixed carbon 24.10 26.23 17.50 + 2.43
Ash 3.75 4.08 2.90 + 0.36
Total sulfur 0.07 0.07 0.19 + 0.07
Caloric value (MJ/kg) 18.1837 19.7819 17.70 + 0.07
Ultimate (%wt):
C 46.68 50.79 46.54 + 0.21
H 4.55 4.95 6.88 + 0.29
(0] 36.73 39.97 43.13 £0.01
N 0.13 0.14 0.36 + 0.02

Notes: *AR = as received; **DB = dry basis; *** Lopes and Tannous (2020).
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Fig. 1. (a) TGA, DTG, and DDTG profile with the pyrolysis stage division; (b)
total conversion profile of volatile substances.
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(Chen et al., 2015) as follows:

diupj £ ‘pj Ep i
— =—"exp| ——== |M,,; 1
T 5 e. p( i (16)

where M,; is the instantaneous mass of the volatile substance number p
of the i-th pseudo-component. There are 3 pseudo-components
composing the lignocellulosic biomass. Hence, each of the pseudo-
components (hemicellulose, cellulose, lignin) fractional mass which
comprises a large number of volatile substances was evaluated using the
following expressions:

mi:/ M,,‘,»dE a7

0

and

m;go :/ Mpv,-‘()dE (18)
0

where m; is pseudo-component fractional mass at a certain time or
temperature and m; o is initial pseudo-component fractional mass. As the
lignocellulose biomass produces volatile substances and char upon
decomposing, the total mass of the biomass can be formulated as in Eq.
(19):

3
m= meme (19)
i=1

The expression of the lignocellulose biomass mass change function is
as follows:

(E — Ey,)?

s ©
A; 1
m=m.+ ¢i(1— c/ex <7' E,T) xp | — dE
?:l ( m)o P ﬂw( Ny P 207

(20)

where ¢; (i = 1,2, and 3) represents the composition of hemicellulose,
cellulose,and lignin, respectively. The values of 11 parameters (A1, Az,
A3, Eq 1, Eo2, Eo 3, a1, a2, 3, C1, ¢2) in Eq. (20) were obtained by mini-
mizing the following least square objective function:

Na

F, = Z (mj.exp - mj,m[c)2 (21)

=1
where m; ¢xp, and mj qic are the mass fraction obtained from experiments
and model calculation, respectively while Ny is the number of data.

2.4.5. Computation aid and optimization evaluation

The TGA data, and the calculation of values of Y, and were performed
and stored using Microsoft Excel®. The stored data were called in
MATLAB® m-file for further calculations including Y, Y'r, and Y'r. As
derivation using such discrete data resulted in a noisy curve, a twice-
smoothing procedure was performed for each of the derivations. The
first smoothing used spline function while the second one used mov-
mean function of MATLAB®.

The minimization calculations of objective functions to obtain the
kinetic parameters, as well as lignocellulosic composition, were carried
out using MATLAB® (version R2021b) software. The minimization used
Isqnonlin function with the Levenberg-Marquardt algorithm. The soft-
ware also provided the built-in integral function needed in this work.

The coefficient of determination (R%) was calculated to describe the
quality of optimization result using the following equation:

SSE

R=1-——
SST

(22)
where SSE = sum of squared residuals and SST = total sum of squares,
representing the total amount of fit variations. The SSE values were the
same as objective function (F; for fitting the stage conversion, or F3 for
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Fig. 2. The TG, DTG, and DDTG profile. (a) Raw CHP, (b) sonicated CHP using water medium at 60 °C for 30 min, and sonicated and SCW treated at (c) 150 °C for
60 min without surfactant addition, (d) 150 °C for 60 min with 2 % surfactant addition, and (e) 170 °C for 80 min with 2 % surfactant addition.

Table 2

Pyrolysis stage and peak temperature.
Sample Initial temperature (T;), °C Tpealo °C CI, %

Stage I Stage II Stage III

Raw CHP 150 285.00 368.83 319 69.4416
Sonicated CHP 150 296.00 390.67 336 70.3193
150/60/NSR 150 296.33 387.33 338 82.7632
150/60/SR2% 150 298.83 403.00 349 74.0484
170/80/SR2% 150 299.33 401.33 357 72.1946

Notes: T; = initial temperature; CI = Crystallinity index.

fitting the pseudo component composition) while SST can be calculated
as follows:

SST =" (Giep — Te)” (23)
i=1

for fitting the stage conversion, or

SST =37 (e — ;) (24)

i=1

for mass loss fitting, where @y, is the average experimental stage con-
version, and M.y, is the average experimental normalized mass. Fit
quality was used to assess the fitting results to obtain the model pa-
rameters following the expression below:

100 x /Ni,/—zp—l

A (25)

FO(%) =
where F = F; or F2, N, = number of parameters in equation Eqgs. (14) and
(20), and h = maximum amount of a,y, in Eq. (23) or mey, in Eq. (21).
This fit quality equation is the standard deviation percentage.

2.5. Crystallinity index determination

The sample crystallinity index (CI) was evaluated using the X-Ray
Diffraction (XRD) spectra data. The instrument, X’Pert PRO (PAN-
alytical BV, Netherland), was operated using Cu Ka radiation with 40 kV
and 30 mA electric current. Based on the empirical Segal method (Cheng
et al., 2019; Ling et al., 2017) the following formula for CI calculation
was used:
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Fig. 3. XRD analysis curves. (a) Smoothed diffractograms of all samples, (b) Smoothed diffractogram and linear baseline of raw CHP, (c) baseline-corrected dif-
fractogram of raw CHP, and (d) baseline-corrected diffractograms of all samples.

Table 3
DAEM kinetic parameters of each stage.
Sample Stage I Stage II Stage III
Raw CHP A = 3.2580 x A =59.5211 x A =10.6380 x 10'?
1012 1012
Eo = 149.9880 Eo = 179.6435 Eo = 213.6235
6= 3.5999 6 =3.1530 o =19.3228
R? = 0.9947 R? = 0.9968 R? = 0.9910
FQ=3.33% FQ = 2.63 % FQ=4.21%
Sonicated A = 0.9605 x A = 22,2085 x A = 30.6391 x 102
CHP 10'2 10'2
Eo = 147.2310 Eo = 180.0872 Eo = 222.3320
6 = 3.8606 6 = 3.4653 6 =19.3228
R? = 0.9965 R? = 0.9985 R? = 0.9950
FQ = 3.03 % FQ=1.83% FQ = 3.60 %
150/60/NSR A =4.1012 x A = 20.0632 x A = 6.9568 x 10'?
1012 1012
Eo = 154.5528 Eo = 179.9809 Eo = 218.3786
o = 3.0432 6 = 3.5101 o = 20.4627
R? = 0.9981 R? = 0.9989 R? = 0.9966
FQ=235% FQ = 1.56 % FQ =291 %
150/60/ A = 2.6562 x A=7.3668 x 10'> A = 64.5462 x 102
SR2% 10'2
Eo = 153.6176 E, = 178.0808 Eo = 236.3405
6 = 3.0360 6 = 5.4716 o = 18.9854
R = 0.9971 R? = 0.9972 R? = 0.9977
FQ =291 % FQ =2.42 % FQ = 2.1964 %
170/80/ A =2.6917 x A=7.7375x 102 A =191.0652 x
SR2% 1012 1012
Eo = 153.3228 Eo = 179.4018 Eo = 238.3159
6 =3.0913 6 =5.1158 o = 20.7592
R? = 0.9984 R? = 0.9984 R? = 0.9958
FQ=218% FQ=1.85% FQ =3.03%

(o2 — Lum)
002

I (%) = % 100 (26)

where Iy is the maximum intensity of 002 diffraction plane and I, is
the minimum height between peak 002 and 101 denoting amorphous
scattering. As the XRD spectra generally appear with crowded noise the
signals are usually smoothed. In this work, the smooth function of
Matlab® (version 2021b) with Savitzky-Golay method was used.

3. Results and discussion

This work explored the application of DAEM employing thermog-
ravimetry kinetics to 5 samples to obtain their lignocellulose composi-
tions. The samples were raw CHP, sonicated CHP, and 3 subcritical
water-treated CHP samples. All subcritical water-treated samples were
sonicated first prior to the treatment. Sample code 150/60/NSR repre-
sented subcritical treatment at 150 °C, 60 min with surfactant (sodium
dodecyl sulfate) addition. Sample code 150/60/SR2% represented
subcritical treatment at 150 °C, 60 min, and 2 % surfactant addition
while 170/80/SR2% stood for subcritical treatment at 170 °C, 80 min,
and 2 % surfactant addition.

3.1. Material proximate and ultimate characteristics

Proximate and ultimate analyses provide knowledge of biomass
characteristics based on the compounds, elements, and energy content
of biomass. Table 1 presented the results of proximate and ultimate
analysis, as well as the gross caloric value of raw CHP in this study. The
moisture content was as low as that of several residual agroindustrial
biomass reported by (Cavalaglio et al., 2020), which were in the range of
6-8.5 %. Low moisture characteristic (<10 %) of biomass is desirable as
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tant addition.

it indicates the suitability for combustion and pyrolysis application
(Gogoi et al., 2018; Santos et al., 2020). The highest content of CHP from
the proximate test was the volatile matter. The second-highest compo-
nent in the proximate analysis was fixed carbon. The volatile matter
comprises condensable and no-condensable vapor released upon
biomass heating while the fixed carbon represents the solid combustible
residue after solid heating (Onokwai et al., 2022). The ash content was
low (3.75 %) and the sulfur content was very low (0.07 %). It has been
reported that the main constituents of ash include calcium, sodium,
silicon, phosphorous, and magnesium. Woody biomass contained very
low ash (<1 %). Among biomass, lignocellulose has the lowest ash
content, which is <10 % (Leng et al., 2020).

The ultimate analysis results showed that the material has a high
content of C and O elements. The content of element N was very low,
probably because of the low protein content as reported by (Leng et al.,
2020) that the biomass nitrogen content was positively related to its
protein content. The caloric value represents the heat released upon
combustion and approximates to high heating value (HHV) (Meyer
et al., 2022).

The proximate and ultimate analyses of coconut husk from other
work (Lopes and Tannous, 2020) were also shown in the table as a
comparison. It was shown in Table 1 that the elemental and energy
content of the raw CHP in this study were comparable with the pre-
sented other work. The analyses results revealed the potential of raw
CHP as a thermal conversion feedstock.

3.2. Thermogravimetric profiles

Thermogravimetry analysis (TGA) performed at nonisothermal
conditions was generally used to study the pyrolysis reaction kinetic as
reactor design for biomass pyrolysis for alternative biofuel production
gains much interest. A kinetic investigation based on the multistep re-
action mechanism of lignocellulose had been performed by several in-
vestigators (Chen et al., 2015; Kim et al., 2022; Lopes and Tannous,
2020). Due to biomass complexity and pyrolysis products, another
model-fitting approach involving three-parallel decomposition reactions
of main components (hemicellulose, cellulose, and lignin) using DAEM
was proposed for thermogravimetry (TG) kinetic elaboration. DAEM is
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very accurate in representing the devolatilization kinetic of biomass
(Arenas et al., 2019). In a such kinetic analysis of biomass, the compo-
sitions of its three main components were simultaneously evaluated.
The general profile of the biomass thermogram (TG curve) depicted
the remaining weight of volatile substances as a function of temperature
as shown in Fig. 1a for raw CHP. The weight loss resulted from the
numerous reactions in each of the three main component (hemicellu-
lose, cellulose, and lignin) decompositions. The devolatilization or
decomposition of the biomass started after all the moisture content
evaporates upon heating. The total reaction conversion profile (obtained
using Eq. (4), in Subsection 2.4.1) for raw CHP was shown in Fig. 1b. It
has been reported that there were decomposition zones appearing in the
weight loss (TG) curve. Hemicellulose decomposed at 220-315 °C
(Dhyani and Bhaskar, 2018; Hu et al., 2016). Cellulose decomposed at
315-400 °C (Dhyani and Bhaskar, 2018). Lignin had the slowest
decomposition rate among the others and a wider decomposition tem-
perature at 160-900 °C (Hu et al., 2016; Huang et al., 2011). However,
those three reaction regions tend to overlap and the weight loss curve or

TG curve does not sharply separate into the decomposition zones (Cheng
et al., 2015).

DTG and DDTG curves can be employed to obtain biomass decom-
position zones (Chen et al., 2015). Hemicellulose and cellulose decom-
posed independently of one another and hemicellulose was the first
component that devolatilizes. This was shown by the increase of the DTG
curve until a shoulder was reached. The following peak showed the
highest cellulose decomposition rate. This first shoulder of the DTG
curve was marked by the attainment of the first minimum point of the
DDTG curve. Lignin decomposed slowly over a very broad temperature
range and the peak of this decomposition was attained at the lowest rate
of cellulose decomposition. This was represented by the second shoulder
of the DDTG curve. The construction of DDTG curve for each of the
samples enabled the estimation of temperature ranges at which hemi-
cellulose, cellulose, and lignin decomposed.
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Table 4
Three parallel DAEM kinetic parameter and lignocellulosic composition.
Sample Hemicellulose Cellulose Lignin R?
(F)
(FQ)
Raw CHP A =1.5582 x A =5.0000 x A=1.16831 1.00
10'2 103 x 10"
Eo = 150.4862 Eo=177.9628  Eo=210.6992  (0.0033)
6 = 7.4959 o = 3.7456 6 = 26.4131 (0.34 %)
cu = 0.3000 cc = 0.3886 ¢, = 0.3496
%wt = 30 %wt = 38.86 %wt = 34.96
Sonicated A =1.2020 x A =2.31081 A = 3.41834 1.00
CHP 10! x 10%3 x 10'3
Eo = 141.8962 Eo=180.4165 Eo=200.8217  (7.837e-
04)
6 = 4.8349 6 =1.75935 6 = 30.0196 0.17 %)
cy = 0.2949 cc = 0.4538 ¢, = 0.2513
%wt = 29.49 %wt = 45.38 %wt = 25.13
150/60/ A =5.3581 x A = 2.06195 A =1.18691 1.00
NSR 10'2 x 1013 x 1013
Eo = 159.3543 Eo=180.7184  Eo,=210.2218  (0.0026)
6 = 5.0594 o = 2.1344 6 = 27.554 (0.30 %)
ey = 0.31 ¢, = 0. 4800 ¢ =0.2100
%wt = 31 %wt = 48 %wt = 21
150/60/ A=1.0 x 103 A=28477 x  A=5.0000x  1.00
SR2% 1012 10'3
Eo = 162.9191 Eo=173.1915  Eo=228.0802  (0.0016)
6 = 5.0252 o = 2.0084 6 = 23.6944 0.24 %)
ey = 0.2929 c¢ = 0.5025 ¢, = 0.2046
%wt = 29.29 %wt = 50.25 %wt = 20.46
170/80/ A =1.3822 x A=7.6521 x  A=5.000 x 1.00
SR2% 1012 1012 10'3
Eo = 153.6578 Eo=179.7031  Eo=229.2353  (0.0023)
6 =5.1768 6 = 2.6232 6 =19.9721 (0.28 %)
¢y = 0.300 cc = 0.5804 ¢, = 0.1196
%wt = 30 %wt = 58.04 %wt = 11.96

3.3. Raw and pretreated CHP thermogravimetric stage

The TG, DTG, and DDTG curves of raw and treated CHP of this work
were shown in Fig. 2a—e. The shape of the curves exactly followed the
pattern shown in Fig. la. In each of the figures (Fig. 2a-e), the
normalized remaining mass fraction (m) was constant up to above
200 °C at which it started to decline very rapidly. From Fig. 2, the stages
of decomposition can be identified and presented in Table 2. The initial
temperatures of each stage (T;) were displayed in that table.

As shown in Table 2, all samples, raw and pretreated CHP, started the
first stage at 150 °C where the water vaporization had stopped. At this
temperature, the DTG and DDTG values were zero. The temperature
where a shoulder existed on the DTG curve and marked the end of stage I
(hemicellulose decomposition) was found at 285-300 °C. This agreed
with other works reporting at 250-300 °C (Hu et al., 2016). The third
stage started at around 368.83-401.33 °C. These stage temperature
ranges assignment were used for obtaining the stage kinetic parameters
(Ai, Eo’i, and (Fi).

The peak temperatures of DTG curves (Tpeqx) Were in the range of
319-357 °C. It is similar to other lignocellulose materials. Chen et al.
(2015) reported Tpeqx in the range of 321.79-350 °C for pinewood
sawdust, fern, wheat stalk, sugarcane bagasse, and jute. Hu et al. (2016)
also revealed the peak temperature to be in a similar range
(300-350 °C). Kim et al. (2022) reported DTG peak at 361-385 °C for
Hinoki cypress, pinewood, birchwood, and wood pellets. As shown in
Table 2, the pretreatment (sonication and subcritical waer) shifted the
peak to higher temperatures. This implied that the pretreated CHP
become more thermally stable. According to Jiang et al. (2019), less
crystalline material would show less endothermic activity and decom-
pose more rapidly upon heating. Another work by (Hideno, 2020) re-
ported that alkaline-peroxide biomass treatment caused increases in
thermal decomposition temperature as their cellulose content increased
while their hemicellulose and lignin decreased.
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In order to relate the peak temperature shifting with sample crys-
tallinity, the crystallinity index values of the samples were evaluated
from the XRD spectra by using Eq. (26). The XRD spectra of the samples
after being smoothed using the Savitzky-Golay method as explained in
Subsection 2.5 were shown in Fig. 3a. In Fig. 3b, the baseline correction
process of subcritical water pretreated CHP sample (150/60/SR2%) was
exemplified. Some manually chosen baseline points were visualized as
star bullets. Two adjacent points were connected with linear lines and
hence linear functions were used to represent the baselines between two
adjacent chosen points. After subtracting the baseline values from the
corresponding intensity, the diffractogram shape shown in Fig. 3b
changed as shown in Fig. 3c. On that figure, the Ippz and I, used for the
CI evaluation, appearing at 2 theta angles of 22.2043°, and 17.8593°,
were 132.5563, and 34.4005, respectively. This resulted in a CI value of
74.0484 %. The Iyp2 and I, peaks for the treated CHP samples in Fig. 3d
were relatively similar to those of raw CHP, which were in the vicinity of
22°, and 18°, respectively. The CI values for all of the samples were also
shown in Table 2. The treatment of CHP increased crystallinity as it
increased the cellulose compositions of the treated samples. The highest
CI, which was 82.7632 %, resulted from subcritical water-treated CHP at
150 °C and 60 min with no surfactant addition. However, surfactant
addition in subcritical water treatment reduced crystallinity from
82.7632 to 74.0484 %. The increasing severity attempted by increasing
temperature (from 150 to 170 °C) and time (from 60 to 80 min) for
subcritical water treatment further reduced CI slightly to 72.1946 %.
The increasingly severe condition may affect the destruction of the
material internal crystalline structure by providing energy to break
hydrogen bonds as the H-bond is one of the physical interactions that
stabilize the cellulose microfibril (Sarker et al., 2021; Shen and Gna-
nakaran, 2009). The results of crystallinity index showed that they did
not directly correlate with the peak temperature shifting in this work.

3.4. Three stage and pseudocomponent kinetic parameters

The identified stage temperature ranges were used for the determi-
nation of non-isothermal kinetic parameters of the single reaction
occurring in each stage. Those parameters were a pre-exponential factor,
mean, and standard deviation activation energy (A, Ey, and o). This
required that the stage initial and final temperatures, shown in Table 2,
be applied for the iterative calculations according to Eq. (14). For each
of the stages, initial guess values of A, Ey, and ¢ were chosen based on the
results of other works for different systems. Cai et al. (2013) investigated
the DAEM adopting pyrolysis kinetics of xylan, cellulose, and several
biomass. The preexponential factors (1/s) were 5.0350 x 10*2 for xylan,
8.0168 x 10' for cellulose, as well as 0.50119-1.2552 x 10'3,
4.1495-8.892 x 10'3, and 0.10139-3.4356 x 10'° for the first, second,
and third pseudocomponent of the biomass, respectively. The mean
activation energy values (kJ/mol) were 178.311 + 2.127 for xylan,
210.037 + 2.924 for cellulose, as well as 169.710-186.776,
199.966-207.381, and 236.344-271.758 for the first, second, and third
pseudocomponent of the biomass, respectively. The standard deviation
activation energy values (kJ/mol) were 5.848 + 0.063 for xylan, 0.944
4+ 0.013 for cellulose, as well as 5.375-5.888, 1.126-1.339, and
26.583-41.767 for the first, second, and third pseudocomponent of the
biomass, respectively. In this work, upon the introduction of initial guess
values, then iterative computations were carried out subject to the
fulfillment of the objective function of Eq. (15) to obtain the kinetic
parameters for each stage. For each of those 3 stages, the calculation
involved 200-300 data within the stage temperature range. The results
shown in Table 3 were comparable to the work of Chen et al. (2015). The
model-fitting results were also very good as seen in Table 3 that the R?
values of higher than 0.99 and the fit quality (FQ) values of <4.5 %. It
suggested that DAEM had satisfyingly approached the decomposition
reaction. This is reflected in the conversion profile of each stage in
Fig. 4a—-d. Although relatively large deviations of the calculated con-
version from experimental values appeared at low conversion for stage I



A. Fatmawati et al.

Bioresource Technology Reports 22 (2023) 101500

8 x10°3
{  Experiment Sonicated CHP
[a] Fit
06 Hemicellulose § .~ 6|
_ ssassnns Cellulose é-’
= == === Lignin ]
5 4 Raw CHP =41
€ 3
S £
1 T
2 ' 2}
0¢ . 0 S
150 300 452 600 150 300 450 600
103 Temperature (°C) 3 Temperature (°C)
g 10 . g 10 . .
[c] [d]
o 6f Sonicated+SCW 1 —~6 Sonicated+SCW 1
o No R o 150 SRO
- -
4} - 4
5 5
_g £
T2k ? 2F
0% 0§
150 300 4%0 600 150 300 450 600
Temperature ( (310_3 Temperature (°C)
8r[e
[ ] Sonicated+SCW

170 SRO

450
Temperature (°C)

600

Fig. 6. The total and lignocellulosic component DTG profile. (a) Raw CHP, (b) sonicated CHP using water medium at 60 °C for 30 min, and sonicated and SCW
treated at (c¢) 150 °C for 60 min without surfactant addition, (d) 150 °C for 60 min with 2 % surfactant addition, and (e) 170 °C for 80 min with 2 % surfac-

tant addition.

or at high conversion for stage II and III, the DAEM assuming kinetic
model estimated the conversion very closely at the rest of the data.
Fig. 5 illustrated the fractional total mass loss curves of the investi-
gated samples, both from the experimental, and computed (fit) data. The
graphs in that figure also depicted the three pseudocomponent mass
losses. The fitted fractional total and component mass loss curves were
the results of iterative computation of Eq. (20). The accomplishment of
the computations acquired the introduction of initial guess values for 11
parameters to be determined. Nine of the 11 parameters were kinetic
parameters of the three pseudocomponents, where each of those com-
ponents had 3 kinetic parameters (4;, Eg;, and ¢;). The rest 2 parameters
were the compositions of hemicellulose and cellulose. The lignin
composition was obtained using the unity composition summation rule
requirement. Similar to the iterative computation process of the afore-
mentioned 3-stage kinetic parameters, this 11-parameter calculation
also needed an establishment of initial guess values. This was done using
9 values of previously obtained stage kinetic parameters. Meanwhile, 2
initial guess values for pseudocomponent composition were given based
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on the general elsewhere published data of lignocellulose composition.

Table 4 presented the results for decomposition kinetic parameters as
well as the composition for hemicellulose, cellulose, and lignin. The
mean activation energy (Ep) was 141-163, 173-181, and 200-230 kJ/
mol for hemicellulose, cellulose, and lignin, respectively. The standard
deviation activation energy (o) was 4.8-7.5, 1.76-3.75, and 19-28 kJ/
mol for hemicellulose, cellulose, and lignin respectively. The pre-
exponential factor (A) values ranged from 1.20 x 10" to 5.00 x 102
sL. The work of Kim et al. (2022) also employed a multi-step kinetic
model but did not use DAEM and showed that lignin has the lowest
activation energy (27.4-35.2 kJ/mol) followed by hemicellulose
(109-117 kJ/mol) and cellulose (193-232 kJ/mol), respectively. This
trend was similar to the work of Lopes and Tannous (2020). Kristanto
et al. (2021) reported the value of Ey and ¢ for commercial cellulose
which were 178.6488 and 1.6320 kJ/mol, respectively by using
Gaussian distribution function for DAEM. The value of E, was similar to
that in this work. From Table 4 it can also be seen that the mean acti-
vation energy value trend for all samples are Eg jignin > Eo,celtutose > Eo,
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hemicellulose- The activation energy represents the reaction obstacle that
should be overcome for a reaction to occur. The highest value of mean
activation energy of lignin revealed that lignin was the most thermally
stable component of these raw and treated CHP. According to the table,
the activation energy standard deviation trend was 6jignin > Gcellulose >
Ohemicellulose- This trend results agreed with the other work by (Chen
et al., 2015; Hu et al., 2016). The highest standard deviation activation
energy attribution of lignin among the other two components showed
that lignin had the widest range of activation energy. Those trends of
activation energy and its standard deviation imparted the slowest
decomposition reaction rate and the widest reaction temperature range
to the lignin component of the investigated raw and treated CHP. There
was no trend for the pre-exponential values in this work and this agreed
with Chen et al. (2015). By using a different procedure, three indepen-
dent parallel schemes for raw coconut fiber thermogravimetry kinetics
had also been studied by (Lopes and Tannous, 2020), who applied DTG
deconvolution procedure without incorporating DAEM and used an 8th-
degree rational function approximation instead of that shown in Eq. (7).
The conversions of volatile substances were fitted using a first-order
reaction model for hemicellulose and cellulose, while a second-order
reaction model for lignin at 3 different heating rates (5, 10, and
15 °C/min) in that work. The lignocellulose compositions obtained were
exactly the same for those 3 heating rates, and surprisingly the values
were very close to those obtained in this work here (shown in Table 4)
which were 0.3, 0.4, and 0.35 for hemicellulose, cellulose, and lignin,
respectively despite its larger fit quality (2.8-3 %).

The DTG curves implying the decomposition rate in Fig. 6a-d
exhibited that the model fit approximated the experiment data very well
for all the samples. The fit DTG curves were obtained by numerically
computing the first derivatives of the lignocellulose biomass mass
changes obtained in Eq. (20). The shoulder part of the DTG curves was
clearly observed on the model fit curves (Fig. 6b—d) except for the raw
CHP (Fig. 6a). The inexistence of the shoulder on the model fit curve of
Fig. 6a indicated sharper overlap between the hemicellulose and cellu-
lose. This caused the end deconvolution peak curves of hemicellulose
closely approach that of cellulose. Since the mass changes data can be
obtained from the model for each of the three components (hemicellu-
lose, cellulose, and lignin) and depicted in Fig. 5, the component DTG
curves can also be constructed and shown in Fig. 6 as the deconvolution
peak curves of the corresponding biomass model fit DTG curves. These
were done by numerically computing the first derivatives of mass
changes data of hemicellulose, cellulose, and lignin. The DTG curves of
the three components in Fig. 6 showed the peak temperatures of hemi-
cellulose, cellulose, and lignin in the vicinity of 270-290, 314-354, and
390-480 °C, respectively. The deconvolution peak curves of lignin
described slow rate lignin decomposition which occurred at a wide
range of temperatures (160-600 °C).

4. Conclusions

The TGA pyrolysis kinetics employing DAEM has been favorably
applied to determine the raw and pretreated coconut husk powder
composition. The stage simulation results are very satisfying, with R?
>0.99 and the fit quality <4.5 %. The fractional mass losses are excel-
lently simulated with R? attaining 1 and the fit quality <0.5 %. The raw
and pretreated CHP compositions (%wt) for hemicellulose, cellulose,
and lignin are 29-31, 38-58, and 11-35, respectively. The raw CHP
composition obtained agrees with the other work. The developed
method can be used as an alternative for time-saving lignocellulose
compositional analysis for industrial purposes.
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