ISSN: 2252-8814, DOI: 10.11591/ijaas.v14.i3.pp782-792

Eco-friendly durable asphalt using maleic-modified rosin ester

Emma Savitri, Edy Purwanto, Restu Kartiko Widi, Aloisiyus Yuli Widianto, Reyhan Sava Pratama, Yosafat Gary Tegar Harijono

Department of Chemical Engineering, Faculty of Engineering, University of Surabaya, Surabaya, Indonesia

Article Info

Article history:

Received Sep 16, 2024 Revised May 23, 2025 Accepted Jun 8, 2025

Keywords:

Asphalt pen 60/70 Maleic rosin ester Modified asphalt Penetration Softening point

ABSTRACT

Asphalt, a crucial component of transportation infrastructure, particularly in regions with high traffic loads and extreme climates, often lacks the necessary elasticity, strength, and durability. Various asphalt modifiers have been explored, but many struggle with cost, thermal stability, and environmental impact. This study, however, investigates maleic-modified rosin ester, a gum rosin derivative, as a sustainable and cost-effective asphalt modifier. The base asphalt was heated to 150-190 °C, sheared at 100 rpm, and combined with 4-20% maleic rosin ester and sulfur. The modified asphalt was subjected to tests, including penetration, softening point, ductility, density, kinematic viscosity, Fourier transform infrared (FTIR), and dynamic shear rheometer (DSR) tests. The results are promising, showing that maleic rosin ester enhances penetration resistance and softening points while maintaining ductility and viscosity within acceptable limits. Chemical analysis confirmed improved adhesion, crosslinking, and thermal stability, making the modified asphalt more deformation-resistant. This suggests that maleic-modified rosin ester is a viable alternative to synthetic polymers, offering improved durability and sustainability. The enhanced durability of the modified asphalt provides confidence in its longterm performance, making it a reliable choice for transportation infrastructure.

This is an open access article under the **CC BY-SA** license.

782

Corresponding Author:

Emma Savitri

Department of Chemical Engineering, Faculty of Engineering, University of Surabaya Raya Kalirungkut, Tenggilis, Surabaya 60290, Indonesia

Email: savitri ma@staff.ubaya.ac.id

1. INTRODUCTION

The rapid population growth and economic expansion in Indonesia and several other Asian countries have led to increasing traffic crowding, which, combined with the high volume of land transportation, has resulted in significant pavement issues. The extreme equatorial climate, indicated by high temperatures and intense rainfall, has significantly contributed to the degradation of road surfaces, making asphalt pavement failures a critical issue. Common types of road failures include rutting due to excessive traffic loads, fatigue cracking from cyclic stress, and thermal cracking due to temperature fluctuations [1]. These issues lead to high maintenance costs and frequent repairs, creating economic burdens for developing nations. Consequently, there is an urgent need for cost-effective and high-performance asphalt modifications that can enhance road durability under severe environmental and loading conditions [2]–[5].

The research has focused on modifying asphalt with a renewable substance to improve the longevity of asphalt mixtures and, consequently, asphalt pavements to prevent road pavement failure. Various modifications have been explored to enhance their mechanical properties, including altering the asphalt binder with synthetic polymers or chemicals [6]–[10], incorporating crumb rubber [11], fibers [12], and

biomass-derived materials [13] into the mixture [14], among others [15]. Mahmood and Kattan [16] found that adding a low concentration of styrene-butadiene-styrene (SBS) at 5-10% to asphalt mixtures enhanced the composite's viscosity, penetration resistance, and tensile strength. However, SBS is expensive, limiting its feasibility for large-scale applications in developing countries. Furthermore, the water stability performance of the asphalt mixture improved with the inclusion of glass, nylon, and polyester fibers. Various synthetic and natural fibers, such as coconut, corn, palm, and sisal, improved the tensile strength and cracking resistance [17], [18]. Polyester fibers in the asphalt mixture notably improved low-temperature durability and cracking resistance [19]. However, natural fibers tend to absorb water, which can weaken the asphalt matrix over time. This could lead to premature degradation and increased susceptibility to loss of adhesion between binder and aggregate. Additionally, concerns have been raised regarding the long-term environmental impact and sustainability of synthetic fiber. Biomass-derived asphalt modifiers, such as waste vegetable oils and biobased polymers, have been investigated to enhance asphalt flexibility and performance. However, these modifiers often face challenges related to thermal stability and aging resistance, highlighting the ongoing need for research and development in the field of asphalt technology [18]–[20].

Despite advancements in asphalt modification using various materials, including synthetic polymers, fibers, and biomass-derived substances, a notable research gap remains concerning the application of maleicmodified rosin ester as an asphalt modifier. While previous studies have explored the use of pine resin derivatives, such as crude pine resin and gum rosin, to enhance the properties of asphalt mixtures [20], they did not explicitly address maleic-modified rosin ester influence on asphalt's mechanical and rheological properties. Rosin ester is a promising material for enhancing the quality of asphalt. It is a natural, sustainable, low-cost, thermally stable asphalt modifier derived from pine resin and readily modifiable through chemical processes. Pine resin, mainly from tropical regions, is a valuable and abundant resource with a wide range of potential applications [20]-[22]. Rosin ester exhibits viscoelastic properties, combining the characteristics of both solids and liquids. Its versatility makes it a valuable component in various industries [23]. The addition of maleic anhydride to modified rosin has been found to significantly improve the mechanical and crystallization properties of aliphatic polyesters. This improvement is primarily due to the presence of polar functional groups such as carboxylic acid groups (-COOH) or anhydride (-COCO-), which enhance adhesion and form strong chemical bonds with polar compounds. The maleic-modified rosin also demonstrates excellent thermal stability, making it ideal for heat-resistant applications and resistant to oxidation due to the formation of stable chemical bonds. Furthermore, the maleic modification promotes crosslinking within the resin's structure, creating a robust three-dimensional network that further enhances thermal stability and inhibits oxidation at elevated temperatures [22], [24]. Maleic anhydride groups can improve the resin's glass transition temperature (Tg). This modification can result in a higher melting or softening point by reducing its susceptibility to deformation or flow at high temperatures [25]. It enhances mechanical properties while maintaining economic feasibility and making it a promising alternative for developing nations. It also addresses critical performance limitations observed in conventional bio-based asphalt modifiers.

The commonly used base asphalt in highway infrastructure construction is the 60/70 penetration asphalt type (Asphalt pen 60/70) with a softening point value of 48 °C. In response to extreme weather conditions and high traffic loads, the addition of maleic-modified asphalt has emerged as a practical and cost-effective alternative for producing a suitable performance asphalt binder. By combining maleic-modified rosin and sulfur in the proper mass ratio with asphalt and carrying out the mixture operation at a suitable temperature, we can produce an improved asphalt binder at a lower cost. Therefore, this study investigates the practical implications of using maleic-modified rosin ester on the viscosity, softening point, and thermal stability of asphalt, providing valuable insights for future construction projects.

2. RESEARCH METHOD

2.1. Raw materials

PT. Dhisa Manunggal Karya of Surabaya, Indonesia, provided the 60-70 pen base asphalt, and its performance index test results are listed in Table 1. The maleic-modified rosin was provided by PT. Indopicri, also located in Surabaya, Indonesia, and its technical properties are listed in Table 2. Both the 60/70 pen base asphalt and maleic-modified rosin are used without prior treatment. Sulfur was supplied by Bratachem Surabaya.

2.2. Preparation method

The preparation of modified asphalt follows a systematic process to ensure optimal dispersion, chemical interaction, and performance enhancement [26]. First, the base asphalt is heated to 150-190 °C and sheared at 100 rpm. It is equipped with temperature control to facilitate uniform blending and prevent premature degradation of components. Then, 4-20 wt.% of maleic-modified rosin ester was gradually added to the molten asphalt while maintaining continuous stirring to achieve progressive incorporation and even

784 🗖 ISSN: 2252-8814

distribution within the asphalt matrix. The appropriate amount of sulfur was added to the mixture to promote crosslinking, and the mixture was sheared at the same rotating speed for one hour to ensure a homogeneous mixture. The experimental variations of modified rosin composition on pen 60/70 base asphalt are detailed in Table 3.

Table 1. The properties of base asphalt

1 40014	1. 1110 p.	coperities or our	- dispinant
Parameter	Unit	Measured value	Technical requirement
Penetration (25 °C)	0.1 mm	66	60-70
Softening point	$^{\circ}\mathrm{C}$	49.5	48-56
Ductility (25 °C)	cm	140	≥100
Density	g/mL	1.03	1.01-1.06
Kinematic viscosity	cst	495	-

Table 2. The properties of the modified maleic rosin ester

Parameters	Unit	Properties
Appearance	-	Particles
Viscosity (Gardner, 70% in toluene)	-	Z2-Z4
Acid value	mg KOH/g	≤35
Color (Gardner)	-	≤3
Softening point	°C	130±5

Table 3. The maleic rosin ester mass ratio experiments

Sample	Pen 60/70 base asphalt (%)	Rosin ester (%)	Sulphur (%)
A	100	0	0
В	96	4	0.0013
C	95	5	0.0013
D	90	10	0.0013
E	85	15	0.0013
F	80	20	0.0013

2.3. Characterization of modified asphalt

After the production of the asphalt-modified mixture, physical tests were conducted to assess various key properties. These tests included measuring asphalt penetration at 25 °C, determining the specific gravity, assessing kinematic viscosity at 135 °C, evaluating the softening point, and testing ductility at 25 °C. Each of these properties was tested under specific Indonesian National Standards: SNI 2456: 2011 for asphalt penetration, SNI 2441: 2011 for specific gravity, SNI 03-6641-2000 for kinematic viscosity, SNI 2434: 2011 for softening point, and SNI 2442: 2011 for ductility. The results of these tests were carefully analyzed to ensure the asphalt mixture met the quality and performance criteria set by these national standards.

Fourier transform infrared (FTIR) spectroscopy is a valuable tool for analyzing the changes in functional groups and molecular structures in asphalt after adding modifiers. This technique helps to reveal the modification mechanisms of the additives on the asphalt. The FTIR spectra of the base asphalts, binders, and modified asphalts were obtained using a Cary 630 FTIR spectrometer manufactured by Agilent Technologies (California, USA). The scanning range for the FTIR analysis was from 4,000-650 cm⁻¹, ensuring a comprehensive view of the relevant infrared absorption bands. The spectrometer was set to a resolution of 4 cm⁻¹, allowing for precise and detailed spectral data collection.

The dynamic shear rheometer (DSR) test method was employed to analyze the viscoelastic characteristics of both asphalt and modified asphalt. This test measures key parameters such as the rutting factor ($G^*/\sin \delta$) and phase angle (δ), which are crucial for evaluating the high-temperature performance of the asphalt. For the base asphalt, the test was conducted at 52, 58, 64, and 70 °C temperatures. In contrast, the modified asphalt was tested at a broader range of temperatures, including 52, 58, 64, 70, and 76 °C. The DSR test was conducted at a mean frequency of 1.59 Hz to obtain accurate and consistent results.

3. RESULTS AND DISCUSSION

This study explores the impact of the mass ratio of modified maleic rosin ester and temperature on modified asphalt's physical and chemical properties. The research focuses on understanding how variations in these factors influence the performance and characteristics of the asphalt mixture. In addition to the mass ratio and temperature, other key variables, such as sulfur composition, mixing duration, and shear speed, are

also being considered. By examining these factors, the study identifies the optimal conditions for modifying asphalt to improve its quality and durability.

3.1. The effect of maleic rosin ester mass ratio on physical properties of modified asphalt

The study aimed to examine how maleic rosin ester's composition affects modified asphalt's properties. The process involved mixing 60/70 base asphalt with maleic rosin ester and sulfur at a shear speed of 100 rpm and a mixing temperature of 190 °C for 1 hour. During the experiments, the asphalt used was a 60/70 pen base, and the composition ranged from 80 to 100%. The modified rosin ester used ranged from 0-20%, while the sulfur, which acts as a crosslinking agent, was either present at 0.0013% or not used. Sulfur can enhance the elasticity and flexibility of asphalt, making it more resistant to cracking, deformation, and rutting.

Table 4 presents the physical properties of maleic-modified rosin ester-modified asphalt and compares it with the technical requirements of synthetic elastomer-modified asphalt. The key parameters analyzed include penetration at 25 °C, kinematic viscosity at 135 °C, softening point, ductility at 25 °C, and specific density. Base asphalt has a high penetration value (66 mm), indicating its relative softness. As the rosin ester content increases, penetration gradually decreases, reaching 4 mm at 20% rosin ester. The 95:5 and 96:4 compositions meet the minimum penetration requirement (≥40 mm), making them optimal for applications requiring balanced hardness and flexibility. Compositions with >10% rosin ester become excessively hard, which may cause brittleness and cracking under thermal stress. We found that the maleic rosin ester increases the viscosity of asphalt, making the asphalt harder. It correlates with incorporating maleic rosin ester, which contributes to greater hardness in the modified asphalt system. Maleic rosin ester is associated with increased crosslinking, encouraging the development of a three-dimensional network within the modified asphalt. Due to its acid group, maleic rosin ester can release protons (H+), initiating a reaction with asphalt molecules containing carboxylic groups (COOH). This crosslinking enhances the strength and stability of the asphalt but simultaneously makes it harder and less penetrable. The interaction between maleic rosin esters and carboxylic groups in asphalt significantly impacts the viscoelastic properties of the material, thus influencing the penetration value. The results are findings that align with existing research [14], [27], [28] where rosin ester modified asphalt exhibits improved hardness and rutting resistance, but needs optimization to prevent excessive rigidity.

Additionally, Table 4 demonstrates an increase in the modified asphalt's kinematic viscosity compared to the base asphalt pen 60/70. All compositions meet the viscosity requirement (≤3,000 cSt). The viscosity increases with the rosin ester content from 495 cSt in the 100:0 (A) composition to 956 cSt in the 90:10 (D) composition, showing a more structured network due to enhanced molecular interactions. However, at 20% rosin ester (F), viscosity drops to 152 cSt, which may indicate a change in the material's flow properties, possibly due to phase separation or reduced compatibility at high modification levels. Our findings confirm that rosin ester increases viscosity in moderate amounts, but excessive use may disrupt optimal flow properties. The incorporation of maleic rosin ester leads to an enhancement in asphalt viscosity. Not only does the molecular structure of rosin ester contribute to higher viscosity, but the chemical interactions between rosin ester and asphalt molecules also substitute a more complex and interconnected molecular network, thus elevating asphalt viscosity. This bonding leads to stronger intermolecular interactions and improved cohesion among asphalt molecules, further increasing asphalt viscosity. Arabani *et al.* [29] found that acid-treated asphalt increased viscosity, improving rutting resistance but sometimes making mixing difficult. Karahançer [26] also noted that rosin-based curing agents increased asphalt viscosity, similar to the trend observed in this study.

Adding rosin ester to the modified asphalt can enhance the softening point, as demonstrated in Table 4. The compositions from 96:4 (B) onwards meet this requirement, with the softening point increasing as the elastomer content increases, indicating improved temperature resistance. Adding 4-20% rosin ester can elevate the softening point of modified asphalt by up to 33% compared to the softening point of the base pen 60/70 asphalt. Compositions B-F (≥4% rosin ester) meet the softening point requirement, confirming that rosin ester enhances high-temperature stability. Rosin ester modifications effectively increase heat resistance, making it comparable to synthetic polymers. It aligned with Jia et al. [12] showed that synthetic fiberreinforced asphalt increased the softening point but sometimes reduced ductility, and Yan et al. [30] found that petroleum resin modifications increased the softening point by up to 15%. This situation occurs because maleic rosin ester makes the network structure formed inside the asphalt denser, more stable, and improves the structural strength and the high-temperature performance of the modified asphalt. The study indicates that the resistance of modified asphalt to high-temperature deformation is remarkably improved by incorporating modified rosin ester. A higher rosin ester content enhances the softening point of modified asphalt. This improvement is attributed to the chemical bond between modified rosin ester and asphalt and the high melting point of rosin ester. The mixture's melting point tends to increase when rosin ester is mixed with asphalt, limiting the movement of asphalt molecules and enhancing high-temperature stability.

TO 1 1 4 3 4 1 C 1	1 1, 1	C 1.00	1	
Lable 4 Modified as	nhalf nhyetea	properties of different	maleic rocin	ecter mace ratios
Table T. Modified as	phan physica	i properiies or uniterent	maicic rosm	Cotte mass rands

Parameters	Technical requirements	Composition [asphalt: rosin ester]; Sulphur 0.0013%; T=190 °C;				
	of synthetic elastomer	n=100 rpm; t=1 h)				
	modified asphalt	100:0 (A)	96:4 (B)	95:5 (C)	90:10 (D)	85:15 (E)
Penetration 25 °C (0.1 mm)	≥40	66	39	35	20	10
Kinematic viscosity 135 °C (cSt)	≤3,000	495	766	779	956	915
Softening point (°C)	≥54	49.5	55	55	58.9	62
Ductility 25 °C (cm)	≥100	140	140	140	140	20
Specific density	≥1	1.03	1.04	1.04	1.04	1.05

The study also reveals that ductility remains stable by adding up to 10% rosin ester. However, exceeding 10% makes the asphalt very brittle, significantly reducing ductility to 98.6% of the base asphalt's ductility value. This is consistent with the observed trends, where compositions from 100:0 (A) to 90:10 (D) maintain a high ductility, exceeding the required standards. However, at 15-20% rosin ester, ductility drops drastically, making the asphalt brittle and susceptible to cracking. The trend is similar to Mahmood and Ahmed [17], who observed that natural fibers enhanced tensile strength but reduced ductility. Karahançer [26] also found that rosin modification increased hardness but decreased ductility. It confirms that moderate rosin ester content maintains ductility, but excessive content leads to brittleness.

The specific gravity of modified asphalt increases due to the higher specific gravity of rosin ester than asphalt. Consequently, an increased rosin ester composition leads to higher specific gravity in modified asphalt than in the base pen 60/70 asphalt. All compositions meet the minimum specific density requirement of ≥ 1 , with values ranging from 1.03-1.05, confirming that rosin ester does not negatively impact compaction. It had similar results to Guha and Assaf [15] in that cement-modified asphalt had a similar density increase, which improved load-bearing capacity.

The study found that adding maleic-modified rosin ester significantly enhanced penetration resistance, softening point, and viscosity while maintaining acceptable ductility and density. Ductility parameters are met when the composition contains up to 10% rosin ester; beyond this threshold, the ductility of the modified asphalt falls short of technical standards, indicating increased brittleness. In summary, the 96:4 (B) and 95:5 (C) compositions offer the best overall balance, meeting all technical requirements and providing a favorable combination of penetration, viscosity, softening point, ductility, and density. In contrast, compositions with higher maleic rosin ester content, such as 85:15 (E), demonstrate diminishing returns in penetration and ductility, which could negatively impact the asphalt's performance in practical applications. The results are in line with SBS-modified asphalt for its ability to improve penetration resistance and softening point [26]. However, it is costly and environmentally challenging. Maleic-modified rosin ester is a viable alternative to synthetic polymers, while offering a more sustainable and cost-effective solution.

3.2. The effect of mixing temperature on the physical properties of modified asphalt

The temperature at which asphalt is mixed significantly impacts its properties and performance in various applications. The components may not mix properly when the temperature is too low, leading to a rough and inconsistent mixture. Conversely, excessively high temperatures can cause the asphalt to age prematurely, affecting its characteristics. This study investigated the effects of varying mixing temperatures at 190, 170, and 150 °C on a modified asphalt composition of 96% 60/70 base asphalt, 4% rosin ester, and 0.0013\% sulfur. The parameters assessed include penetration, kinematic viscosity, softening point, ductility, and density, which are critical in determining the asphalt's performance and durability. The results, summarized in Table 5, demonstrate that the penetration at 25 °C remains close to the target value of ≥40, with readings of 39, 44, and 42 for the respective temperatures. This suggests a minor variation in penetration but is still within the acceptable range for good workability. Specifically, at 150 °C, the penetration value is lower than at 170 °C, suggesting that the higher viscosity at this lower temperature hinders the interaction between rosin ester and asphalt components, resulting in poorer homogeneity. Conversely, at 190 °C, while the asphalt viscosity decreases, the exceptionally high temperature may lead to asphalt coagulation, oxidation, and the loss of volatile components, resulting in a harder asphalt with a decreased penetration value. The table further illustrates that the optimal mixing temperature for this specific asphalt composition is around 170 °C, where the penetration value meets the required specification of ≥40.

Additionally, kinematic viscosity at 135 °C remains well below the maximum allowable limit of ≤3,000 cSt across all tested temperatures, though it increases slightly as the temperature decreases, ranging from 766.2 cSt at 190 °C to 827.7 cSt at 150 °C. This indicates that the material maintains suitable flow properties for application. Moreover, the softening point slightly exceeds the minimum specification of ≥54 °C, suggesting the material exhibits good thermal stability. This consistency across temperatures

suggests that the softening point is relatively stable, although more reliable results may be achieved at the extremes of the tested temperature range. Ductility at 25 °C is consistently high, exceeding the minimum required value of 100 cm, indicating excellent flexibility at lower temperatures. Density remains constant at 1.041-1.044, above the minimum required value of 1, ensuring adequate structural integrity for the modified asphalt. The trends of the study are consistent with studies on modified asphalts, where modifiers like rosin ester improve specific characteristics like ductility and penetration while maintaining acceptable viscosity and softening point. Research in [31], [32] has shown similar improvements in ductility and softening point with the use of modifiers, suggesting that the modification process enhances the asphalt's performance under various environmental conditions, particularly in maintaining workability at lower temperatures and ensuring durability at higher temperatures.

The optimal mixing temperature for this modified asphalt composition is around 170 °C, where most properties either meet or closely approach the required specifications. While slightly higher or lower temperatures still produce acceptable results, some trade-offs in penetration and softening points exist. The consistent ductility and kinematic viscosity across all temperatures suggest that these properties are relatively unaffected by changes in mixing temperature, indicating stability under varying conditions.

Table 5. Modified asphalt physical properties at different mixing temperatures

Parameter	Modified asphalt	Mixing temperature (°C) at composition [asphalt: rosin ester=96:4];					
	according to	Sulph	Sulphur=0.0013%; n=100 rpm; t=1 h				
	specification 2010	010 190 170 150					
Penetration 25 °C (0.1 mm)	≥40	39	44	42			
Kinematic viscosity	≤3,000	766.2	770.2	827.7			
135 °C (cSt)							
Softening point (°C)	≥54	55	54.2	54			
Ductility at 25 °C (cm)	≥100	140	140	140			
Density	≥1	1.041	1.044	1.041			

Table 6 provides a detailed comparison of the asphalt parameters for pen 60/70 asphalt, polymer-modified asphalt, and rosin ester-modified asphalt, highlighting the superior qualities of the maleic rosin ester modification. Mixing 96% asphalt, 4% gum rosin ester, and 0.0013% sulfur at a temperature of 170 °C for 90 minutes yields a modified asphalt that meets the requirements of the 2010 general specifications for polymer-modified asphalt. The resulting gum rosin ester modified asphalt demonstrates a balanced performance across several critical parameters. The softening point of 54.4 °C is slightly higher than that of synthetic elastomer-modified asphalt, indicating a similar but slightly superior heat resistance. Additionally, the penetration value of 45 (0.1 mm) suggests that the modified asphalt is also hard but slightly softer than the synthetic elastomer modified asphalt, yet still within acceptable limits, making it well-suited for various applications.

The ductility value, which exceeds 140 cm, exceeds the required limit and highlights the modified asphalt's superior flexibility and resilience, showing it is even more flexible and able to withstand more strain before breaking. This high ductility is crucial for resisting permanent deflection and cracking, particularly in regions with significant thermal cycling. The gum rosin ester-modified asphalt has a density of 1.041 g/mL, which is slightly higher, suggesting it may have slightly better structural integrity. The specific gravity of 1.041 g/mL indicates that the modified asphalt has adequate compaction properties, ensuring stability and load-bearing capacity. Furthermore, the viscosity at 135 °C, measured at 809 cSt, remains well within the acceptable range, suggesting that the asphalt has a medium level of viscosity and is easy to apply while maintaining sufficient thickness to resist flow under traffic load.

Table 6. The comparison of base and modified asphalt with synthetic elastomer modified asphalt technical

requirement					
Parameters	Asphalt pen 60/70	Synthetic elastomer modified asphalt	Gum rosin ester modified asphalt		
Softening point, °C	≥48	≥54	54.4		
Penetration, 0.1x mm	60-70	Min. 40	45		
Ductility, cm	≥100	≥100	140		
Density, g/mL	Min. 1	Min. 1	1.041		
Viscosity, cSt @135 °C	≥300	≤3,000	809		

The maleic rosin ester-modified asphalt exceeds several critical specifications, including softening point, ductility, and viscosity. This makes it an ideal choice for applications that require improved flexibility,

788 🗖 ISSN: 2252-8814

durability, and thermal resistance. Additionally, it has a slightly higher density and moderate viscosity, which enhances its adaptability to various environmental conditions. These properties contribute to the potential for improved road lifespan and performance, particularly in flexible pavements.

3.3. The effect of adding maleic rosin ester on the chemical changes of modified asphalt

The impact of adding maleic rosin ester on the chemical properties of modified asphalt is shown in Figure 1. The figure presents the FTIR spectra for base asphalt, maleic rosin ester, and maleic rosin ester-modified asphalt. The analysis covers the wavenumber range from 400 to 3,900 cm⁻¹, typical for identifying functional groups and bonds in materials. In the asphalt spectrum, the stretching vibration of its functional groups shows that the main substances existing in base asphalt are long-chain alkanes, aliphatic hydrocarbons, aromatic compounds, and various derivatives. It has peaks at 2,920 and 2,851 cm⁻¹, corresponding to CH₃ stretching and C-H stretching, respectively, indicating aliphatic bonds and methylene groups in hydrocarbon chains, a major component in asphalt. The peak at 1,457 cm⁻¹ indicates the presence of aromatic C=C bonds, representing the aromatic fraction in asphalt and C-H bending vibrations. The spectrum shows a relatively simple structure, mainly suggesting saturated hydrocarbons with fewer modifications or additives. The maleic rosin ester peaks at 2927 and 2868 cm⁻¹ also indicate CH₃ stretching and aliphatic C-H stretching vibration.

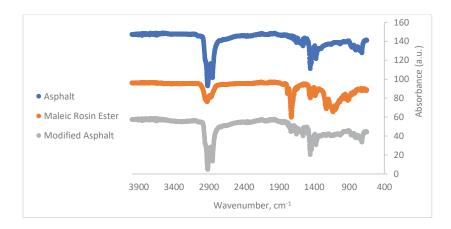


Figure 1. FTIR spectrum analysis of asphalt, maleic rosin ester, and modified asphalt

Furthermore, the peaks at 1,848, 1,749, 1,727, and 1,036 cm⁻¹ are attributed to C=O stretching (both symmetric and asymmetric), typical of ester groups, indicating the presence of the maleic rosin ester. The modified asphalt shows similar features to the maleic rosin ester but with more distinct differences in the fingerprint region (under 1,500 cm⁻¹). The absorption peak at 1,025.91 cm⁻¹ represents the stretching vibration of aliphatic sulfoxide and benzyl sulfoxide. The S-O group is polar. After depolarization occurs, the group will interact with other dipole groups in the matrix asphalt, improving the viscosity of the asphalt. Meanwhile, the peak at 1,127 cm⁻¹ characterizes C-C stretching. Lastly, the C-O-C structure is denoted by peaks at 905 cm⁻¹. The appearance of new peaks or shifts in existing ones indicates that the modification has significantly altered the chemical structure, possibly involving the introduction of various chemical groups that affect the asphalt's performance.

3.4. Dynamic shear rheometer analysis

Figure 2 describes the variations in the rutting factor and phase angle for both base and modified asphalt as temperature changes. Figure 2(a) shows that the rutting factor for both types of asphalt decreases as the temperature increases. This indicates that the material becomes softer and more fluid as it warms up. However, this decrease becomes more gradual over time, highlighting the significant influence of temperature on the asphalt's rutting resistance. Compared to the base asphalt, the modified form exhibits a much higher rutting factor, signifying superior resistance to rutting. The modification improves the stiffness and resistance to deformation at higher temperatures. A higher value of the rutting factor indicates better resistance to rutting. It has an advantage in anti-rutting performance under high traffic and temperature conditions. Furthermore, studies on other modified asphalts, such as those incorporating SBS polymers, have demonstrated improvements in high-temperature performance. For instance, research has shown that adding

SBS to asphalt increases the complex shear modulus (G^*) and decreases the phase angle (δ), indicating enhanced stiffness and reduced viscosity. However, the specific quantitative DSR results vary depending on the SBS content and testing conditions [33].

In Figure 2(b), it is evident that as the temperature increases, the phase angle of each asphalt gradually increases. The phase angle of the base asphalt is more significant than that of the modified asphalt, indicating that the base asphalt exhibits more liquid-like behavior and has viscous properties. This implies that the base asphalt may be more susceptible to deformation or rutting under load. On the other hand, the phase angle of the modified asphalt decreases, suggesting that the modifier and the matrix asphalt create a more stable internal structure after blending, leading to improved resistance to permanent deformation. The temperature-sensing performance of modified asphalt has been improved. It shows better viscoelastic properties, the most vigorous resistance to permanent deformation, and the lowest sensitivity to temperature. In summary, the performance of asphalt in terms of temperature sensitivity has been enhanced. The DSR results from this study, which involves maleic rosin ester-modified asphalt, are consistent with existing literature, demonstrating that rosin modification effectively enhances the stiffness and high-temperature performance of asphalt binders.

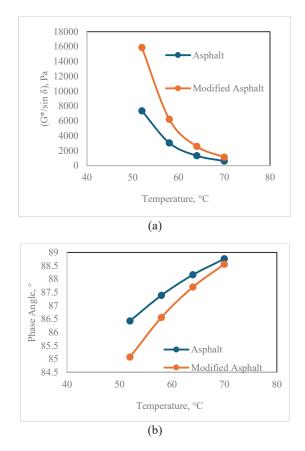


Figure 2. Rheological performance of base and maleic-modified rosin ester asphalt binder evaluated using DSR testing of (a) the high temperature rutting resistance and (b) the viscoelastic and elasticity behavior

4. CONCLUSION

This study demonstrates that maleic-modified rosin ester is a practical, sustainable, and cost-efficient asphalt modifier. It significantly improves key properties of pen 60/70 base asphalt, including penetration resistance, softening point, viscosity, and thermal stability, while maintaining acceptable ductility and density. The modified asphalt meets and exceeds technical specifications for synthetic elastomer-modified asphalts, enhancing high-temperature performance and resistance to rutting and deformation. The results align with existing literature, showing that maleic-modified rosin ester provides a promising alternative to synthetic polymers, offering improved durability and sustainability at a lower cost. Optimal performance is achieved with 4-10% rosin ester content, making it suitable for large-scale applications.

790 🗖 ISSN: 2252-8814

FUNDING INFORMATION

This research was financially supported by the Indonesian Ministry of Education, Culture, Research, and Technology through the Fundamental Research Scheme for Higher Education Excellence under contract numbers 109/E5/PG.02.00.PL/2024 and 004/SP2H/PT/LL7/2024.

AUTHOR CONTRIBUTIONS STATEMENT

This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author	C	M	So	Va	Fo	I	R	D	0	E	Vi	Su	P	Fu
Emma Savitri	✓	✓	✓	✓	✓		✓	✓	✓	✓		✓	✓	✓
Edy Purwanto	\checkmark	\checkmark			\checkmark			\checkmark	\checkmark	\checkmark		\checkmark		
Restu Kartiko Widi		\checkmark	✓			\checkmark	✓			\checkmark	✓		\checkmark	
Aloisiyus Yuli Widianto		\checkmark		\checkmark	\checkmark			\checkmark		\checkmark	✓			
Reyhan Sava Pratama		\checkmark			\checkmark	\checkmark	✓		\checkmark		✓			
Yosafat Gary Tegar		\checkmark			\checkmark	\checkmark	✓		\checkmark		✓			
Harijono														

Fo: ${f Fo}$ rmal analysis ${f E}$: Writing - Review & ${f E}$ diting

CONFLICT OF INTEREST STATEMENT

Authors state no conflict of interest.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding author, [ES], upon reasonable request.

REFERENCES

- [1] S. Chen *et al.*, "A state-of-the-art review of asphalt pavement surface texture and its measurement techniques," *Journal of Road Engineering*, vol. 2, no. 2, pp. 156–180, 2022, doi: 10.1016/j.jreng.2022.05.003.
- [2] J. Li, X. Xiao, D. Cai, L. Lou, Y. Shi, and F. Xiao, "Performance evaluation of composite polymerized asphalt materials for waterproofing layer in high-speed railway system," *Transportation Geotechnics*, vol. 37, 2022, doi: 10.1016/j.trgeo.2022.100850.
- [3] M. A. Dalhat, "Water resistance and characteristics of asphalt surfaces treated with micronized-recycled-polypropylene waste: super-hydrophobicity," *Construction and Building Materials*, vol. 285, 2021, doi: 10.1016/j.conbuildmat.2021.122870.
- [4] M. A. Dalhat and A. Y. Adesina, "Utilization of micronized recycled polyethylene waste to improve the hydrophobicity of asphalt surfaces," Construction and Building Materials, vol. 240, 2020, doi: 10.1016/j.conbuildmat.2019.117966.
- [5] M. A. Dalhat and A. Y. Adesina, "Characterization and evaluation of micronized tire rubber asphalt surface for improved hydrophobicity," *Journal of Materials in Civil Engineering*, vol. 31, no. 10, 2019, doi: 10.1061/(asce)mt.1943-5533.0002875.
- [6] J. W. Kim, K. Kim, and T. H. M. Le, "Optimizing rural pavements with SBS-modified asphalt binders and petroleum resin," Buildings, vol. 14, no. 1, 2024, doi: 10.3390/buildings14010116.
- [7] S. Chen, E. Jin, G. Xu, S. Zhuo, and X. Chen, "Factors influencing the low-temperature properties of styrene-butadiene-styrene modified asphalt based on orthogonal tests," *Polymers*, vol. 15, no. 1, 2023, doi: 10.3390/polym15010052.
- [8] M. Kazemi, A. Goli, A. Mohammadi, and M. Aboutalebi, "The comparison of the healing performance of polyurethane-modified bitumen mixtures," *arXiv-Physics*, pp. 1-12, 2019.
- [9] X. Yan *et al.*, "The modification mechanism, evaluation method, and construction technology of direct-to-plant SBS modifiers in asphalt mixture: a review," *Polymers*, vol. 15, no. 13, 2023, doi: 10.3390/polym15132768.
- [10] M. Faramarzi, M. Arabani, A. K. Haghi, and V. Motaghitalab, "Effects of using carbon Nano-tubes on thermal and ductility properties of bitumen," arXiv-Physics, pp. 1-9, 2019.
- [11] D. Jin et al., "A case study of the comparison between rubberized and polymer modified asphalt on heavy traffic pavement in wet and freeze environment," Case Studies in Construction Materials, vol. 18, no. 1, Jul. 2023, doi: 10.1016/j.cscm.2023.e01847.
- [12] H. Jia et al., "Effect of synthetic fibers on the mechanical performance of asphalt mixture: A review," Journal of Traffic and Transportation Engineering, vol. 10, no. 3, pp. 331–348, 2023, doi: 10.1016/j.jtte.2023.02.002.
- [13] L. C. Zhao, L. Xu, and A. Yazdi, "Laboratory evaluation of the effect of waste materials on mechanical properties of asphalt binder and mixture containing combined natural binder and waste polymer," *Construction and Building Materials*, vol. 403, 2023, doi: 10.1016/j.conbuildmat.2023.132995.

П

- [14] P. N. Pham et al., "Rubberized cement-stabilized aggregates: mechanical performance, thermal properties, and effect on temperature fluctuation in road pavements," *Transportation Geotechnics*, vol. 40, 2023, doi: 10.1016/j.trgeo.2023.100982.
- [15] A. H. Guha and G. J. Assaf, "Effect of Portland cement as a filler in hot-mix asphalt in hot regions," *Journal of Building Engineering*, vol. 28, 2020, doi: 10.1016/j.jobe.2019.101036.
- [16] A. O. Mahmood and R. A. Kattan, "Experimental analysis to evaluate the impact of styrene-butadiene-styrene and crumb rubber on the rutting and moisture resistance of asphalt mixtures," Sustainability, vol. 15, no. 13, 2023, doi: 10.3390/su151310387.
- [17] O. T. Mahmood and S. A. Ahmed, "Influence of natural fibers on the performance of hot mix asphalt for the wearing course of pavement," *Aro-the Scientific Journal of Koya University*, vol. 8, no. 2, pp. 57–63, 2020, doi: 10.14500/aro.10710.
- [18] A. M. Alnadish, N. S. S. Singh, and A. M. Alawag, "Applications of synthetic, natural, and waste fibers in asphalt mixtures: a citation-based review," *Polymers*, vol. 15, no. 4, 2023, doi: 10.3390/polym15041004.
- [19] J. Wu and Y. Hu, "Effect of aging on the low-temperature performance of fiber-reinforced asphalt mixtures," AIP Advances, vol. 13, no. 10, 2023, doi: 10.1063/5.0172210.
- [20] R. Yuniarti, "Resistance to degradation of porous asphalt mixture using pine resin as asphalt modifier," *Jordan Journal of Civil Engineering*, vol. 13, no. 1, pp. 113–123, 2019.
- [21] R. Yuniarti, E. Ahyudanari, and C. A. Prastyanto, "Alternative bituminous binder for sustainable flexible pavement: a review," IOP Conference Series: Earth and Environmental Science, vol. 971, no. 1, 2022, doi: 10.1088/1755-1315/971/1/012013.
- [22] M. D. Rose, R. Vaiana, C. O. Rossi, and P. Caputo, "Development and evaluation of vegetable resin bio-binders as technological alternatives to bitumen," Sustainability, vol. 16, no. 6, 2024, doi: 10.3390/su16062437.
- [23] C. A. Lopez, "Specifications, test methods, and standard sheets," in *Pavement Marking Handbook*, Austin, Texas: Texas Department of Transportation, 2004. Accessed: Mar. 17, 2025. [Online]. Available: https://www.txdot.gov/manuals/trf/pmh/specifications_test_methods_and_standard_sheets.html
- [24] J. Huang, P. Fu, W. Li, L. Xiao, J. Chen, and X. Nie, "Influence of crosslinking density on the mechanical and thermal properties of plant oil-based epoxy resin," *RSC Advances*, vol. 12, no. 36, pp. 23048–23056, 2022, doi: 10.1039/d2ra04206a.
- [25] C. Ye, Q. Yu, T. He, J. Shen, Y. Li, and J. Li, "Physical and rheological properties of maleic anhydride-incorporated PVDF: does MAH act as a physical crosslinking point for PVDF molecular chains?," ACS Omega, vol. 4, no. 25, pp. 21540–21547, 2019, doi: 10.1021/acsomega.9b03256.
- [26] S. Karahançer, "Effect of rosin modification on bitumen and hot mix asphalt," Süleyman Demirel University: Journal of Natural and Applied Sciences, vol. 23, no. 1, pp. 263–271, 2019, doi: 10.19113/sdufenbed.518077.
- [27] Z. Zhou and G. Chen, "Preparation, performance, and modification mechanism of high viscosity modified asphalt," Construction and Building Materials, vol. 310, 2021, doi: 10.1016/j.conbuildmat.2021.125007.
- [28] J. Sun et al., "Preparation and properties of polyurethane/epoxy-resin modified asphalt binders and mixtures using a bio-based curing agent," Journal of Cleaner Production, vol. 380, 2022, doi: 10.1016/j.jclepro.2022.135030.
- [29] M. Arabani, M. Ebrahimi, M. M. Shalchian, and M. M. Rahimabadi, "Influence of biomass-modified asphalt binder on rutting resistance," Advances in Civil Engineering, vol. 2024, 2024, doi: 10.1155/2024/8249248.
- [30] C. Yan, T. Zhang, K. Hu, S. T. A. Gillani, and W. Zhang, "Evaluation of the effect of C9 petroleum resin on rheological behavior, microstructure, and chemical properties of styrene-butadiene-styrene modified asphalt," *Buildings*, vol. 14, no. 6, 2024, doi: 10.3390/buildings14061599.
- [31] A. Aqsha et al., "Sequential esterification-diels-alder reactions for improving pine rosin durability within road marking paint," Molecules, vol. 28, no. 13, 2023, doi: 10.3390/molecules28135236.
- [32] Y. Li, G. Jiang, S. Yan, J. Feng, and D. Li, "Performance and mechanism of high-viscosity and high-elasticity bitumen (HVE-MB) modified with five additives," Sustainability, vol. 15, no. 19, 2023, doi: 10.3390/su151914089.
- [33] W. Baranowska, M. Rzepna, P. Ostrowski, and H. Lewandowska, "Radiation and radical grafting compatibilization of polymers for improved bituminous binders-a review," *Materials*, vol. 17, no. 7, 2024, doi: 10.3390/ma17071642.

BIOGRAPHIES OF AUTHORS

Emma Savitri D S S is an associate professor with a demonstrated history of working in the Department of Chemical Engineering. Skilled in polymer science and technology, biomaterials and composites, and photocatalyst. Strong education professional with a doctoral degree in Chemical Engineering from the Institute Technology Sepuluh Nopember Surabaya in 2015. Her master's degree in Polymer Science and Technology from Aston University in collaboration with the University of Birmingham in 2005. She can be contacted at email: savitri ma@staff.ubaya.ac.id.

Edy Purwanto D S S S is a candidate Ph.D. degree in Chemical Engineering from Adelaide University, Australia. His research interest includes polymer science and technology, and chemical reaction kinetics. He can be contacted at email: edypurwanto@staff.ubaya.ac.id.

792 ISSN: 2252-8814

Restu Kartiko Widi D 🔯 🚾 C is a professor of Chemical Engineering at the Department of Chemical Engineering, University of Surabaya. He received his Ph.D. from Universiti Malaya. His research interests are materials and photocatalysis. He can be contacted at email: restu@staff.ubaya.ac.id.

Aloisiyus Yuli Widianto D si s an associate professor of Chemical Engineering at the University of Surabaya. He received his Ph.D. in 2023 in chemical engineering from Toulouse University, France. His research interests are chemical reaction kinetics and microsection. He can be contacted at email: aloy_sius_yw@staff.ubaya.ac.id.

Reyhan Sava Pratama D S S C received his bachelor's in 2023 in chemical engineering from the University of Surabaya, Indonesia. His research interest is material science. He can be contacted at email: rere.sava3@gmail.com.

Yosafat Gary Tegar Harijono D S Ecrecived his bachelor's in 2023 in chemical engineering from the University of Surabaya, Indonesia. His research interest is material science. He can be contacted at email: Yosafatgarry@yahoo.com.

p-ISSN 2252-8814, e-ISSN 2722-2594

1.0 94 0.166 94 0.341

REGISTER

ARCHIVES

ANNOUNCEMENTS

Home > Vol 14, No 3

International Journal of Advances in Applied Sciences

International Journal of Advances in Applied Sciences (IJAAS), p-ISSN 2252-8814, e-ISSN 2722-2594, is a peer-reviewed and open access journal dedicated to publish significant research findings in the field of Applied Sciences, Engineering and Information Technology. The journal is designed to serve researchers, developers, professionals, graduate students and others interested in state-of-the art research activities in applied science, engineering and information technology areas, which cover topics including: applied physics; applied chemistry; applied biology; environmental and earth sciences; electrical & electronic engineering; instrumentation & control; telecommunications & computer science; industrial engineering; materials & manufacturing; mechanical, mechatronics & civil engineering; food, chemical & agricultural engineering; and acoustic & music engineering.

IJAAS is published by Intelektual Pustaka Media Utama (IPMU). This journal is ACCREDITED (recognised) by the Ministry of Education, Culture, Research, and Technology, Republic of Indonesia (Decree No: 79/E/KTP/2023). Scopus has indexed articles published in this journal since 2019 issues. If you have access to scopus.com, you can click here. Scimagojr also has been indexing it as of 2019. See our Scimagojr profile here.

DAAS Features:

- 1. Plagiarism: CrossCheck plagiarism powered by iThenticate.
 2. DOI: DOI Number is indexed by Crossref.
 3. Open Access: Open access provides immediate and unrestricted access to the latest research.
 4. Full Archive Available: Every issue of Journal of IJAAS is available online.
 5. ISSN Record Information: The ISSN of IJAAS journal is registered at https://portal.issn.org/resource/ISSN/2722-2594

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS

Home > About the Journal > Editorial Team

Editorial Team

Editor-in-Chief

Prof. Dr. Qing Wang, Shandong University of Science and Technology, China

Managing Editors

Prof. Dr. Ir. Tole Sutikno, Universitas Ahmad Dahlan, Indonesia

Asst. Prof. Dr. Mohammad Hossein Ahmadi, Shahrood University of Technology, Iran, Islamic Republic of Dr. Guangming Yao, Harbin Normal University, China

Dr. Habibolla Latifizadeh, West Virginia University, United States

Dr. Md. Shakhaoath Khan, Monash University, Australia

Associate Editors

Prof. Dr. A. Ozan Bicen, Sabanci University, Turkey Prof. Dr. Adam M. Kawalec, Wojskowa Akademia Techniczna, Poland

Prof. Dr. Amir Khalid, Universiti Tun Hussein Onn Malaysia, Malaysia Prof. Dr. Arun Sharma, Indira Gandhi Delhi Technical University for Women, India Prof. Dr. Badrul Hisham Ahmad, Universiti Teknikal Malaysia Melaka, Malaysia

Prof. Dr. Carlos Becker Westphall, Universidade Federal de Santa Catarina, Brazil Prof. Dr. Fatemeh Mollaamin, Kastamonu University, Turkey Prof. Dr. Félix J. García Clemente, University of Murcia, Spain

Prof. Dr. Grienggrai Rajchakit, Maejo University, Thailand Prof. Dr. Hamidah D. Ibrahim, Universiti Putra Malaysia, Malaysia Prof. Dr. Harikumar Rajaguru, Bannari Amman Institute of Technology, India

Prof. Dr. Jitendra K. Madaan, Indian Institute of Technology Delhi, India Prof. Dr. João Crisóstomo Weyl, Universidade Federal do Pará, Brazil

Prof. Dr. Larbi Boubchir, Universite Paris 8 Vincennes-St Denis, France

Prof. Dr. M. A. Jabbar, Vardhaman College of Engineering, India Prof. Dr. M. EL-Shimy, Ain Shams University, Egypt

Prof. Dr. Marco Listanti, Sapienza Università di Roma, Italy

Prof. Dr. Mayank Dave, National Intitute of Technology Kurukshetra, India Prof. Dr. Pascal Lorenz, University of Haute Alsace, France

Prof. Dr. Seifedine Kadry, Lebanese American University, Lebanon Prof. Dr. Stefan R. Panić, University of Pristina - Kosovska Mitrovica, Serbia Prof. Dr. Şükrü Mehmet Ertürk, İstanbul Tıp Fakültesi, Turkey

Prof. Dr. Tomonobu Senjyu, University of the Ryukyus, Japan

Prof. Dr. Wai Lok Woo, Newcastle University, United Kingdom

Prof. Dr. Y. Errami, Université Chouaib Doukkali, Morocco

Prof. Dr. Yming Li, National Yang Ming Chiao Tung University, Taiwan, Province of China Assoc, Prof. Dr. Ahmad Rifgi Md Zain, Universiti Kebangsaan Malaysia, Malaysia Assoc, Prof. Dr. Arcangelo Castiglione, Università degli Studi di Salerno, Italy Assoc, Prof. Dr. Chau Yuen, Nanyang Technological University, Singapore Assoc, Prof. Dr. Dakshina Ranjan Kisku, National Institute of Technology Durgapur, India

Assoc. Prof. Dr. Ezra Morris, Universiti Tunku Abdul Rahman, Malaysia

Assoc. Prof. Dr. Ismail Idris, Universiti Teknologi Petronas, Malaysia Assoc. Prof. Dr. Mingfong Tsai, National United University Taiwan, Taiwan, Province of China

Assoc. Prof. Dr. Mohd Ashraf Ahmad, Universiti Malaysia Pahang, Malaysia

Assoc. Prof. Dr. Mojallali Hamed, University of Guilan, Iran, Islamic Republic of Assoc. Prof. Dr. Otávio Noura Teixeira, Universidade Federal do Para, Brazil

Assoc. Prof. Dr. Riza Muhida, Universitas Bandar Lampung, Indonesia

Assoc. Prof. Dr. Yilun Shang, University of Northumbria, United Kingdom
Asst. Prof. Dr. Abdalhossein Rezai, University of Science and Culture Tehran, Iran, Islamic Republic of

Asst. Prof. Dr. Ayan Mondal, Indian Institute of Technology Indore, India Asst. Prof. Dr. Bibhudatta Sahoo, National Institute of Technology Rourkela, India

Asst. Prof. Dr. Mahdi Imani, Northeastern University, United States

Asst. Prof. Dr. Makram A. Fakhry, University of Technology-Iraq, Iraq Asst. Prof. Dr. Maria Macchiaroli, University of Salerno, Italy

Asst. Prof. Dr. Naser Ojaroudi Parchin, Edinburgh Napier University, United Kingdom

Dr. Abdul Sattar Dogonchi, Islamic Azad University, İran, Islamic Republic of Dr. Ali Mohammad Saghiri, Amirkabir University of Technology, Iran, Islamic Republic of

Dr. Anna Guerra, Institute of Electronics Computer and Telecommunication Engineering, Italy

Dr. Azremi Abdullah Al-Hadi, University Malaysia Perlis, Malaysia Dr. Brij Bhooshan Gupta, Asia University, Taiwan, Province of China

Dr. Florian Kongoli, Flogen Technologies Inc., United States
Dr. Haikal El Abed, German International Cooperation, Saudi Arabia
Dr. Imran Shafique Ansari, University of Glasgow, United Kingdom

Dr. Inderpreet Kaur, Guru Nanak Dev Engineering College Ludhiana, India Dr. Kang Song, Xi'an Institute of Posts and Telecommunications, China Dr. Ke-Lin Du, Concordia University, Canada

<u>Dr. Ligang Zhang</u>, Central Queensland University, Australia <u>Dr. Marco Carratù</u>, University of Salerno, Italy

Dr. Masuduzzaman Bakaul, MASTEQ Software Pty LTD, Australia

Dr. Md. Shohel Sayeed, Multimedia University, Malaysia Dr. Mohammad Alibakhshikenari, Universidad Carlos III de Madrid, Spain

Dr. Mohd Khair Hassan, Universiti Putra Malaysia, Malaysi

Dr. Nicola Ivan Giannoccaro, University of Salento, Italy Dr. Norizam Sulaiman, Universiti Malaysia Pahang, Malaysia

Dr. Orhan Ekren, Ege Üniversitesi, Turkey

Dr. Paolo Crippa, Università Politecnica delle Marche, Italy Dr. Pietro Oliva, Niccolò Cusano University, Italy

Dr. Rajeev Agrawal, LLoyd Institute of Engineering & Technology, India

Dr. Ramesh Babu N., Kumaraguru College of Technology, India Dr. Santhanakrishnan Anand, New York Institute of Technology, United States

USER Username Password Remember me Login

CITATION ANALYSIS

- Scopus
- Google Scholar
- Scinapse
- Scimagojr

QUICK LINKS

- Abstracting and Indexing

 • Archiving
- Author GuidelinesCall for Papers

- Editorial Team
 Focus & Scope
- Online Submission
- Open Access Policy
- Peer-review
- Process Publication Ethics
- Withdrawal of
- Manuscripts
 Apply as IJAAS
- Reviewer Generative AI
- Policies

JOURNAL CONTENT

Search Search Scope Search

Browse

- By Issue
- By Author
 By Title
- INFORMATION
- For Readers
- For Authors For Librarians

```
<u>Dr. Tai-Chen Chen</u>, Maxeda Technology Inc., Taiwan, Province of China <u>Dr. Thinagaran Perumal</u>, University Putra Malaysia, Malaysia
```

Dr. Tianhua Xu, Tianjin University, China

Dr. Xiangtao Li, Jilin University, China Dr. Y. V. Pavan Kumar, Vellore Institute of Technology - Andhra Pradesh University, India

Mr. Nuno Rodrigues, Instituto Politécnico de Bragança, Portugal

Mr. Shehzad Ashraf Chaudhry, İstanbul Gelişim Üniversitesi, Turkey

Editorial Board Members

Prof. Dr. A. V. Raghu, BLDE Deemed-to-be University, India

Prof. Dr. Abid Yahya, Botswana International University of Science and Technology, Botswana

Prof. Dr. Ahmad A. AlRabab'ah, King Abdulaziz University, Saudi Arabia Prof. Dr. Aji Prasetya Wibawa, Universitas Negeri Malang, Indonesia

Prof. Dr. Alireza Heidari, California South University, United States

Prof. Dr. Andri Cahyo Kumoro, Universitas Diponegoro, Indonesia Prof. Dr. Ayoub Bahnasse, University Hassan II Casablanca, Morocco

Prof. Dr. Ayşegül Uçar, Firat University, Turkey

<u>Prof. Dr. Beeramangalla Lakshminarasaiah Narasimharaju</u>, National Institute of Technology, India <u>Prof. Dr. Brishbhan Singh Panwar</u>, DIT University, India

Prof. Dr. César Cárdenas Pérez, Universidad Internacional de la Rioja, Mexico Prof. Dr. El Oualkadi Ahmed, Abdelmalek Essaadi University, Morocco

Prof. Dr. Gaetano Vacca, Politecnico di Bari, Italy

Prof. Dr. Ghada Amer, Misr University for Science and Technology, Egypt Prof. Dr. Goutam Sanyal, National Institute of Technology, India

Prof. Dr. Hariharan Shanmugasundaram, Vardhaman College of Engineering, India

Dr. Hisham Almasaeid, Yarmouk University, Jordan Prof. Dr. Ho Soon Min, INTI International University, Malaysia

Prof. Dr. Huai-kuei Wu, Oriental Institute of Technology, Taiwan, Province of China

Prof. Dr. João Leitão, Universidade Nova de Lisboa, Portugal
Prof. Dr. Joseph Thomas Andrews, Shri G S Institute of Technology & Science Indore, India

Prof. Dr. Kechar Bouabdellah, University of Oran1, Algeria Prof. Dr. Kewen Zhao, University of Qiongzhou, China Prof. Dr. Laith Ahmed Najam, University of Mosul, Iraq

Prof. Dr. Manish Tiwari, Manipal University Jaipur, India
Prof. Dr. Manish Tiwari, Manipal University Jaipur, India
Prof. Dr. Mohammad Mehdi Rashidi, University of Electronic Science and Technology, China
Prof. Dr. Mohammed I. Alghamdi, Al-Baha University, Saudi Arabia
Prof. Dr. Mohammed Naguib Harmas, Ferhat Abbas University of Setif, Algeria
Prof. Dr. Mudrik Alaydrus, Universitas Mercu Buana, Indonesia
Prof. Dr. Muhammad Haroon Yousaf, University of Engineering and Technology Taxila, Pakistan
Prof. Dr. Mukhilis M. Israeli University of Technology, Iran

Prof. Dr. Mukhils M. Ismail, University of Technology, Iraq Prof. Dr. Mukhtar Ahmad, Aligarh Muslim University, India Prof. Dr. Ogbonnaya Inya Okoro, Michael Okpara University of Agriculture, Nigeria

Prof. Dr. Özen Özer, Kırklareli University, Turkey
Prof. Dr. Panagiotis Varzakas, Technological Educational Institute of Lamia, Greece

Prof. Dr. Prabang Setyono, University of Sebelas Maret, Indonesia

Prof. Dr. Ramesh Chandra Singh, Delhi Technological University, India

Prof. Dr. Rodrigo Montufar-Chaveznava, Universidad Nacional Autonoma de Mexico, Mexico

Prof. Dr. Sarhan M. Musa, Prairie View A&M University, United States

Prof. Dr. Sorin Ioan Deaconu, Politechnica University Timisoara, Romania Professor Dr. Wael A. Salah, Palestine Technical University - Kadoorie, Palestinian Territory, Occupied

Prof. Ts. Dr. Su-Cheng Haw, Multimedia University, Malaysia

Assoc. Prof. Dr. Aabha Jain, Prestige Institute of Engineering Management and Research, India Assoc. Prof. Dr. Abdelhamid El Hamid Bensafi, Abou Bekr Belkaid University of Tlemcen, Algeria

Assoc. Prof. Dr. Andrews Jeyaraj, Sathyabama Institute of Science and Technology, India Assoc. Prof. Dr. Gururaj H L, Manipal Institute of Technology, India

Assoc. Prof. Dr. Guruswamy Revana, BVRIT Hyderabad College of Engineering for Women, India

Assoc. Prof. Dr. Kamil Dimililer, Near East University, Cyprus Assoc. Prof. Dr. M. Y. Ismail, Universiti Tun Hussein Onn Malaysia, Malaysia

Assoc. Prof. Dr. Mahdi Haroun, University of Bahri, Sudan
Assoc. Prof. Dr. Mohd Sadiq, Jamia Millia Islamia, India
Assoc. Prof. Dr. Mu-Song Chen, Da-Yeh University, Taiwan, Province of China

Assoc. Prof. Dr. Paramate Horkaew, Suranaree University of Technology, Thailand Assoc. Prof. Dr. Raul de Lacerda, Laboratoire de Signaux et Systèmes, France Assoc. Prof. Dr. Sampad Kumar Panda, K L University, India

Assoc. Prof. Dr. Vladislav Škorpil, Brno University of Technology, Czech Republic Assoc. Prof. Dr. Yonathan Asikin, University of the Ryukyus, Japan

Assoc. Prof. Dr. Zeashan Hameed Khan, Air University, Pakistan

Assoc. Prof. Ts. Dr. Chockalingam Aravind Vaithilingam, Taylor's University, Malaysia Assoc. Prof. Ts. Dr. Murizah Kassim, Universiti Teknologi MARA, Malaysia Assoc. Prof. Ts. Ir. Dr. Mohammad Lutfi Othman, Universiti Putra Malaysia, Malaysia Asst. Prof. Dr. Ajit Behera, National Institute of Technology Rourkela, India Asst. Prof. Dr. Bitla Hari Prasad, Chaitanya Group of Colleges (Autonomous), India

Asst. Prof. Dr. Deepak Punetha, Punjab Engineering College, India

Asst. Prof. Dr. João Paulo Barraca, University of Aveiro, Portugal Asst. Prof. Dr. Sajid Igbal, University of Engineering & Technology, Pakistan

Asst. Prof. Dr. Sandeep M. Kakde, Yeshwantrao Chavan College of Engineering, India

Asst. Prof. Dr. Shrestha Anish Prasad, Sejong University, Korea, Republic of Asst. Prof. Dr. Vijay Sharma, Govt. Mahila Engineering College, India

Dr. Akhil Gupta, Lovely Professional University, India
Dr. Angelo Trotta, University of Bologna, Italy
Dr. Arindam Pal, Commonwealth Scientific and Industrial Research Organisation, Australia

Dr. Ashish Mani, Amity University Uttar Pradesh, India Dr. Azian Azamimi Abdullah, Universiti Malaysia Perlis, Malaysia

Dr. Bing Yang, Wuhan Polytechnic University, China

Dr. Cathryn J. Peoples, Ulster University, United Kingdom Dr. Chin Fhong Soon, Universiti Tun Hussein Onn Malaysia, Malaysia Dr. Chiranjib Sur, GE Healthcare, United States

Dr. Dimitri I. Papadimitriou, University of Antwerp, Belgium Dr. Dinesh Bhatia, North Eastern Hill University, India

Dr. Ebrahim A. Mattar, University of Bahrain, Bahrain

<u>Dr. Edjair S. Mota,</u> Federal University of Amazonas, Brazil <u>Dr. Eka Cahya Prima</u>, Universitas Pendidikan Indonesia, Indonesia

Dr. Fardin Dashty Saridarq, Technische Universiteit Eindhoven, Netherlands

<u>Dr. Ferda Özdemir Sönmez</u>, Imperial College London, United Kingdom <u>Dr. George A. Oguntala</u>, Birmingham City University, United Kingdom

Dr. Gongping Huang, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Dr. Hafiz Abdul Mannan, Universiti Teknologi Petronas, Malaysia

Dr. Hazura Haroon, Universiti Teknikal Malaysia Melaka, Malaysia

Dr. Irfan Bahiuddin, Universitas Gadjah Mada, Indonesia Dr. Israel Martín-Escalona, Universitat Politècnica de Catalunya, Spain

Dr. Jiehui Zheng, South China University of Technology, China

Dr. Josephine Ying Chyi Liew, Universiti Putra Malaysia, Malaysia Dr. K.V.L.N. Acharyulu, Bapatla Engineering College, India

Dr. Kimho Yeap, Universiti Tunku Abdul Rahman, Malaysia

Dr. Maria Chiara Caschera, Istituto Di Ricerche Sulla Popolazione E Le Politiche Sociali, Italy

<u>Dr. Matthew Vechione</u>, The University of Texas at El Paso, United States <u>Dr. Megat Farez Zuhairi</u>, Universiti Kuala Lumpur, Malaysia

Dr. Michel Owayjan, American University of Science & Technology, Lebanon

<u>Dr. Mihai Gavrilaş,</u> Gheorghe Asachi Technical University of Iaşi, Romania <u>Dr. Mohamad Kamarol Mohd Jamil</u>, Universiti Sains Malaysia, Malaysia

Dr. Mohamed Hussein, Universiti Teknologi Malaysia, Malaysia

Dr. Mohammed Shuaib, Jazan University, Saudi Arabia Dr. Mohd Riduan Ahmad, Universiti Teknikal Malaysia Melaka, Malaysia

Dr. Mohd Zaki Mohd Yusoff, Universiti Teknologi MARA Pulau Pinang, Malaysia Dr. Muhammad Asyraf Asbullah, Universiti Putra Malaysia, Malaysia

Dr. Mukherjee Amrit, University of South Bohemia České Budějovice, Czech Republic

Dr. N. Prabaharan, SASTRA Deemed University, India Dr. Nafea Marwan, University of Nottingham Malaysia, Malaysia

Dr. Omar AlShorman, Najran University, Saudi Arabia

<u>Dr. Ramiro Sámano-Robies</u>, Research Centre in Real Time and Embedded Systems, Portugal <u>Dr. Rini Nur Hasanah</u>, Brawijaya University, Indonesia

Dr. Rutuja Shivraj Pawar, Yeshwantrao Chavan College of Engineering, India Dr. Sandipan Pralhad Narote, Government Residence Women Polytechnic, India Dr. Sharin Ab Ghani, Universiti Teknikal Malaysia Melaka, Malaysia

Dr. Shuaichen Ye, Beijing Institute of Technology, China Dr. Shubham Sharma, Chandigarh University, India

Dr. Siamak Hoseinzadeh, Sapienza University of Rome, Italy

Dr. Siti Amely Jumaat, Universiti Tun Hussein Onn Malaysia, Malaysia Dr. Sritrusta Sukaridhoto, Politeknik Elektronika Negeri Surabaya, Indonesia

Dr. Suman Chatterjee, Kongju National University, Korea, Republic of

Dr. Taufiq Bin Nur, Universitas Sumatera Utara, Indonesia Dr. Tejmal S. Rathore, Independent Researcher, India

Dr. Totok Ruki Biyanto, Institute Technology Sepuluh Nopember, Indonesia

Dr. V. P. S. Naidu, National Aerospace Laboratories India, India Dr. Waleed Khalil Ahmed, United Arab Emirates University, United Arab Emirates

Dr. Yee-Loo Foo, Multimedia University, Malaysia

Mr. Abdelfatteh Haidine, Chouaib Doukkali University, Morocco

Mr. Jason Zurawski, Lawrence Berkeley National Laboratory, United States Mr. Nikos K. Kalatzis, Neuropublic S.A., Greece Mr. Sami Gomri, National School of Engineers of Sfax, Tunisia

Mr. Syed Manzoor Qasim, King Abdulaziz City for Science and Technology, Saudi Arabia

Mr. Vahab Ghalandari, Florida Institute of Technology, United States

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View the IJAAS Visitor Statistics

International Journal of Advances in Applied Sciences (IJAAS)

p-ISSN 2252-8814, e-ISSN 2722-2594

This journal is published by Intelektual Pustaka Media Utama (IPMU) in collaboration with the Institute of Advanced Engineering and Science (IAES).

HOME ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES ANNOUNCEMENTS

Home > Archives > Vol 14, No 3

Vol 14, No 3

September 2025

DOI: http://doi.org/10.11591/jjaas.v14.i3

Table of Contents

Comprehensive structured analysis of machine learning in safety models Mohd Shukri Abdul Wahab, Syed Tarmizi Syed Shazali, Noor Hisyam Noor Mohamed, Abdul Rani Achmed Abdullah	627-638
A bibliometric review of lean principles in highway pavement for productivity improvement Pooja P. Gohil, MohammedShakil S. Malek, Deep Shaileshkumar Upadhyaya	PDE 639-649
When studying applied physics: what problems are there, and do pre-service physics teachers need? Renol Afrizon, Lilia Ellany Mohtar, Mohd Syahriman Mohd Azmi, Hidayati Hidayati	PDF 650-661
Determination of soil salinization by hyperspectral remote sensing in the Shirvan Plain Sahib Shukurov Khudaverdi, Aygun Ismayilova Azer, Ramil Sadigov Ali, Maya Karimova Javanshir, Turkan Hasanova Allahverdi, Gunel Asgarova Farhad	PDF 662-670
Haystack-based Facebook's data storage architecture: store, directory, and cache Tole Sutikno, Ahmad Heryanto, Laksana Talenta Ahmad	<u>PDF</u> 671-681
Self-development moderates the impact of digital literacy and talent on human error Achmad Mirza, Isnurhadi Isnurhadi, Muhammad Ichsan Hadjri	PDE 682-692
Performance evaluation of multicarrier quadrature phase shift keying-based system under noisy, channel conditions Deepa Narayana Reddy, Aishwarya Nagaraju, Deepti Hosakere Prabhakara, Deekshitha Beeraganahalli Srinivas, Gandlaparthi Navyatha	PDF 693-701
Artificial neural network based sensorless position estimation and direct torque control for stepper motor Nagasridhar Arise, Thiruveedula Madhu Babu, Srinidhi Gollapudi, Tarun Kumar Dommeti, Abhishek Kummari, Mahith Shambukari	PDE 702-710
Structural behavior of reinforced soil walls under seismic loads Reynaldo Melquiades Reyes Roque, Lincoln Jimmy Fernández Menacho, Brayanm Reynaldo Reyes Huerta, Fabrizio del Carpio Delgado	PDE 711-723
Autonomous navigation system for a rover with robotic arm using convolutional neural networks Aziz El mrabet, Hicham Hihi, Mohammed Khalil Laghraib, Mbarek Chahboun, Aymane Amalaoui	PDF 724-739
A method classifying the domestic tourist destination base similarity measuring Nguyen Thi Hoi, Tran Thi Nhung, Bui Quang Truong, Nguyen Quang Trung	PDE 740-750
An innovative design and development of multilevel inverter for a wind energy conversion system Rosaiah Mudigondla, Thiruveedula Madhu Babu, Supriya Dachepalli, Anudeep Panjula, Md Yousuf Ali, Bakam Anirudh	PDF 751-760
Impulse buying behavior in mobile commerce: a partial least squares structural equation modeling analysis Hery Hery, Winnie Veronica, Andree E. Widjaja, Calandra Alencia Haryani, Riswan E. Tarigan	<u>PDF</u> 761-772
Redesign the layout of the raw material warehouse from randomized storage to class- based storage Nur Iftitah, Qurtubi Qurtubi, Danang Setiawan, Vembri Noor Helia	PDF 773-783
Sulphur corrosion in transformer insulating oils: its effects, detection methods, and mitigation strategies Nur Izyan Husnina Zulkefli, Sharin Ab Ghani, Mohd Shahril Ahmad Khiar, Imran Sutan Chairul, Nor Hidayah Rahim, Nur Farhana Mohd Azlan	PDF 784-792
<u>Eco-friendly durable asphalt using maleic-modified rosin ester</u> Emma Savitri, Edy Purwanto, Restu Kartiko Wisi, Aloisiyus Yuli Widianto, Reyhan Sava	PDF 793-803

CITATION ANALYSIS

- ScopusGoogle ScholarScinapseDimensions
- Scimagojr

QUICK LINKS

- Abstracting and
- Aostracting and Indexing
 Archiving
 Author Guidelines
 Call for Papers
 Editorial Team
 Focus & Scope

- Online Submission
 Open Access Policy
 Peer-review
 Process
 Publication Ethics
 Withdrawal of

- Manuscripts
 Apply as IJAAS
- Reviewer

 Generative AI

 Policies

JOURNAL CONTENT

Search Search Scope AII Search Browse

- By Issue
- By Author
 By Title

INFORMATION

- For Readers
- For Authors
 For Librarians

earning Luh Joni Erawati Dewi, Gede Indrawan, I Made Agus Oka Gunawan, I Wayan Sutaya,	804-816
Sariyasa Sariyasa	
commerce waste management: a systematic review Mohd. Suhaimi Shamsuddin, Noor Fadhiha Mokhtar, Safiek Mokhlis, Zuha Rosufila Abu Hasan, NajdahAbd Aziz, Mohamad Nizam Yusof	<u>PDF</u> 817-827
nalysis of mobile banking adoption in Ghana: do education levels differ? Isaac Asampana, Lawrence Kwami Aziale, Henry Matey Akwetey, Hannah Ayaba Tanye	PDF 828-837
Deep learning for image classification of submersible pump impeller Phan Nguyen Ky Phuc, Doan Huu Chanh, Trong Hieu Luu	PDF 838-848
arge language models and retrieval-augmented generation-based chatbot for adolescent mental health Andi Riansyah, Imam Much Ibnu Subroto, Intan Nur'aini, Ratna Supradewi, Suyanto Suyanto	PDF 849-858
uzzy logic controller-based protection of direct current bus using solid-state direct current oreaker Eswaraiah Giddalur, Askani Jaya Laxmi	PDF 859-868
Dissolved organic matter released from paper trash in water during ultraviolet irradiation: mpacts on trihalomethane formation Teguh Budi Prijanto, Nia Yuniarti Hasan, Kahar Kahar, Muammar Qadafi, Wisnu Prayogo	PDF 869-877
ffectiveness of dashboard as a work progress scheduling, monitoring, and decision- naking in construction projects Putri Lynna Adelina Luthan, Nathanael Sitanggang	PDF 878-885
est rig <u>development for load test of pipe saddle support</u> Muhammad Arif Rayhan, Mohd Shukri Yob, Mohd Juzaila Abd Latif, Ojo Kurdi, Fudhail Abdul Munir	PDF 886-893
lumerical study of non-linear twisted blades for tidal turbines improvement Nu Rhahida Arini, Philips Ade Putera Atmojo, Deni Saputra, Dendy Satrio	PDF 894-906
Modern research of using alternative energy resources in Azerbaijan Ramil Sadigov Ali, Mushkunaz Nazarova Kichmirza, Garayeva Irada Eyvaz, Gunay Mammadova Israphil, Turkan Hasanova Allahverdi, Muhammad Madnee	PDF 907-915
A hybrid features based malevolent domain detection in cyberspace using machine barning Saleem Raja Abdul Samad, Pradeepa Ganesan, Amna Salim Rashid Al-Kaabi, Justin Rajasekaran, Murugan Singaravelan, Peerbasha Shebbeer Basha	<u>PDF</u> 916-927
solar photovoltaic based cascaded multilevel inverter with 33-levels using phase position disposition control method Chandolu Sai Deepak, Madhu Babu Thiruveedula, Bandari Rahul Teja, Supe Gowtham, Sthambhampally Vivek, Panuganti Yeshwanth Kumar	<u>PDI</u> 928-935
he impact of fast charging technology on battery longevity in electric vehicles Perattur Nagabushanam, Kalagotla Chenchireddy, Radhika Dora, Thanikanti Sudhakar Babu, Vadthya Jagan, Varikuppala Manohar	936-944
Optimizing retail systems: using big data and power business intelligence for performance assights Huu Dang Quoc, Ha Le Viet	PDI 945-954
vitch extraction using discrete cosine transform based power spectrum method in noisy peech Humaira Sunzida, Nargis Parvin, Jafrin Akhter Jeba, Sulin Chi, Md. Shiplu Ali, Moinur Rahman, Md. Saifur Rahman	PDF 955-965
	PDI 966-974
cherapeutic potential of alpha-linolenic acid from Sacha Inchi oil in cervical cancer: an <i>in vitro</i> study on HeLa cells Adi Permadi, Mutiara Wilson Putri, Muhammad Ali Akbar	700 77

This work is licensed under a <u>Creative Commons Attribution-ShareAlike 4.0 International License.</u>

View the IJAAS Visitor Statistics

Journal Rankings

Journal Value

Country Rankings

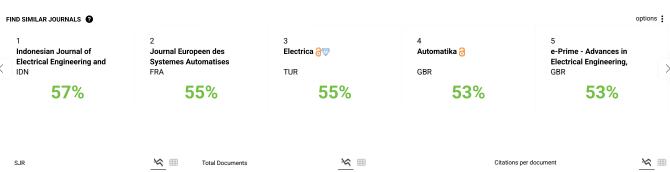
Viz Tools

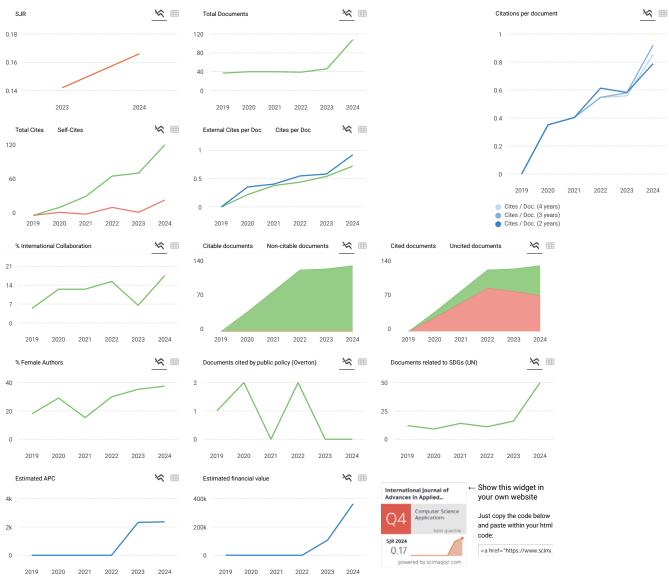
About Us

Be Submission Ready In Minutes

SciSpace Agents generate the journal the rest of your research tasks.

International Journal of Advances in Applied Sciences


COUNTRY	SUBJECT AREA AND CATEGORY	PUBLISHER	SJR 2024
Indonesia	Computer Science Computer Science Applications	Intelektual Pustaka Media Utama	0.166 Q4
Universities and research institutions in Indonesia	Energy Energy (miscellaneous)		H-INDEX
Media Ranking in Indonesia	Engineering Electrical and Electronic Engineering Engineering (miscellaneous)		8
PUBLICATION TYPE	ISSN	COVERAGE	INFORMATION
Journals	22528814, 27222594	2019-2024	Homepage
			How to publish in this journal
			ijaas.iaes@gmail.com
Discover more			
Buy vitamins and supplements Communications			
Research grant databases			
(Citation analysis tool			
Country ranking data			
Research collaboration tools			


SCOPE

International Journal of Advances in Applied Sciences (IJAAS), p-ISSN 2252-8814, e-ISSN 2722-2594, is a peer-reviewed and open access journal dedicated to publish significant research findings in the field of Applied Sciences, Engineering and Information Technology. The journal is designed to serve researchers, developers, professionals, graduate students and others interested in state-of-the art research activities in applied science, engineering and information technology areas, which cover topics including: applied physics; applied chemistry; applied biology; environmental and earth sciences; electrical & electronic engineering; instrumentation & control; telecommunications & computer science; industrial engineering; materials & manufacturing; mechanical, mechatronics & civil engineering; food, chemical & agricultural engineering; and acoustic & music engineering.

Q Join the conversation about this journal

Quartiles

Metrics based on Scopus® data as of March 2025

Submit

The users of Scimago Journal & Country Rank have the possibility to dialogue through comments linked to a specific journal. The purpose is to have a forum in which general doubts about the processes of publication in the journal, experiences and other issues derived from the publication of papers are resolved. For topics on particular articles, maintain the dialogue through the usual channels with your editor.

Developed by:

Powered by:

Follow us on @ScimagoJR

Scimago Lab, Copyright 2007-2025. Data Source: Scopus®

EST MODUS IN REBUS

Legal Notice

Privacy Policy

(i)

(i)

(i)

CiteScore 2024

1.0

SJR 2024

0.166

SNIP 2024

0.341

Source details

International Journal of Advances in Applied Sciences

Years currently covered by Scopus: from 2019 to 2025

Publisher: Intelektual Pustaka Media Utama

ISSN: 2252-8814 E-ISSN: 2722-2594
Subject area: (Engineering: Electrical and Electronic Engineering) (Engineering: Engineering (miscellaneous))

Energy: Energy (miscellaneous) Computer Science: Computer Science Applications

Source type: Journal

View all documents ➤ Set document alert □ Save to source list

CiteScore CiteScore rank & trend Scopus content coverage

CiteScore 2024
242 Citations 2021 - 2024
233 Documents 2021 - 2024

Calculated on 05 May, 2025

CiteScoreTracker 2025 ①

$$0.9 = \frac{259 \text{ Citations to date}}{287 \text{ Documents to date}}$$

Last updated on 05 October, 2025 • Updated monthly

CiteScore rank 2024 ①

Category	Rank Percentil	e
Engineering Electrical and Electronic Engineering	#732/970	24th
Engineering Engineering (miscellaneous)	#202/264	23rd

View CiteScore methodology ➤ CiteScore FAQ ➤ Add CiteScore to your site &

About Scopus

What is Scopus

Content coverage

Scopus blog

Scopus API

Privacy matters

Language

日本語版を表示する

查看简体中文版本

查看繁體中文版本

Просмотр версии на русском языке

Customer Service

Help

Tutorials

Contact us

ELSEVIER

Terms and conditions \supset Privacy policy \supset Cookies settings

All content on this site: Copyright © 2025 Elsevier B.V. ७, its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies. For all open access content, the relevant licensing terms apply.

We use cookies to help provide and enhance our service and tailor content. By continuing, you agree to the use of cookies ७.

≪RELX™