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
Abstract—Padang cuisine, originating from West Sumatra,

Indonesia, is recognized as one of the most widespread traditional
food types due to its prevalence in restaurants across the country.
Despite the increasing interest in classifying Indonesian food using
artificial intelligence, there have been limited studies that have
explicitly focused on classifying Padang dishes using deep learning
approaches. This study aimed to develop an intelligent mobile
application capable of identifying various Padang dishes from
images using transfer learning-based convolutional neural
networks (CNNs). Four pre-trained CNN
architectures—EfficientNetV2M, MobileNetV2, VGG19, and
ResNet152V2—were fine-tuned and evaluated on a dataset of
Padang food images. This dataset comprised a total of 1,108
images, categorized into nine distinct Padang dishes, collected
from both publicly available repositories and original
photographs taken for this study. Among these models,
ResNet152V2 achieved the best performance after optimization,
with a validation loss of 0.4142 and a test accuracy of 91.33%. The
optimized model was converted to TensorFlow Lite and deployed
as a mobile application, enabling real-time recognition of Padang
dishes. This study presented a deep-learning-based mobile
solution for recognising nine traditional Padang dishes with high
accuracy, demonstrating the potential of AI-driven applications to
support culinary heritage preservation and promote cultural
tourism in Indonesia.

Index Terms—Convolutional neural network, food recognition,
mobile application, Padang cuisine, transfer learning.

I. INTRODUCTION
ultural preservation extends beyond the safeguarding of
tangible artefacts and monuments to include living

traditions. In recognition of this, the United Nations
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Educational, Scientific and Cultural Organization (UNESCO)
introduced the 2003 Convention for the Safeguarding of the
Intangible Cultural Heritage (ICH) [1]. ICH comprises the
customs, forms of expression, expertise, and abilities that
groups and individuals consider fundamental to their cultural
identity [2]. While traditionally transmitted through oral
traditions, there has been increasing interest in utilizing digital
technologies to document, disseminate, and revitalize ICH [3].
Leveraging digital technologies offers novel avenues to
enhance access and ensure the longevity of intangible cultural
assets in the digital age [4], [5]. Culinary heritage, as a
significant component of ICH, often encapsulates a region’s
history, agricultural practices, and social customs, making its
preservation crucial for cultural identity.

Indonesia's vast archipelagic geography and remarkable
ethnolinguistic diversity have given rise to over 5,000
documented traditional recipes [6], [7]. Among these, Padang
cuisine from West Sumatra is notable for its bold flavors,
complex spice blends, and distinctive cooking methods [8], [9].
A hallmark of Padang cuisine is rendang [10], a dish that has
received global acclaim, notably topping Cable News
Network's 'World's 50 Best Foods' list in 2011 [11]. However,
survey results from this study reveal that while 94% of
respondents recognize rendang, awareness of other dishes,
such as telur balado, drops to 63%, and others remain largely
unknown. This skewed recognition risks reducing cultural
memory to a single icon and neglecting a more expansive
repertoire of equally significant dishes.

Current preservation relies on manual documentation and
expert knowledge. While effective, these approaches are not
widely accessible and do not offer interactive or real-time
identification of dishes. As a result, opportunities to engage a
broader audience, including younger generations and tourists,
through convenient digital tools remain limited [12], [13].

Padang cuisine presents a significant challenge for food
classification due to the subtle visual differences between many
of its dishes, making it an ideal case for fine-grained image
recognition. Deep learning, particularly Convolutional Neural
Networks (CNNs), has revolutionized image classification by
automatically learning hierarchical and discriminative features,
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making it highly suitable for fine-grained tasks. Existing
studies that apply deep learning to food classification have
achieved promising results, such as 79.23% accuracy in
classifying Turkish cuisine [14] and 85.52% accuracy for
broader Indonesian cuisine using Random Forest (RF) [15].
However, these studies typically focus on coarse-grained
classification and lack integration into practical, real-time
applications.

Crucially, no previous work has applied deep learning to
fine-grained classification of Padang dishes and deployed such
models into a mobile application for real-time culinary
recognition and cultural heritage preservation. This research
gap motivates the present study, which aims to develop a
CNN-based model capable of accurately classifying Padang
dishes and to integrate the model into a mobile app. The
application not only identifies dishes from images but also
provides information on key ingredients and recipes, thus
supporting both culinary education and cultural preservation.

The objectives of this research are:
 To develop a deep learning model designed to classify
various Padang dishes based on input images accurately.

 To integrate the model into a mobile application for
real-time dish recognition.

 To demonstrate that deep learning can capture the subtle
visual cues essential for differentiating similar dishes,
thereby providing practical proof of its suitability for
preserving culinary heritage.
This work contributes a digital tool for comprehensive

documentation, promotes culinary tourism, and offers an
educational resource while advancing the application of deep
learning in cultural informatics.

The remainder of this paper is organized as follows: Section
II discusses related work in food image classification and AI for
cultural heritage. Section III details the research method,
including dataset collection, model selection, training and
optimization procedures, and mobile application development.
Section IV presents the experimental results and provides a
comprehensive discussion of the model's performance. Finally,
Section V concludes the paper and outlines future research
directions.

II. RELATEDWORK

Recent advancements in digital technologies have
significantly contributed to cultural preservation efforts,
primarily through mobile applications [16]. However, many of
these applications merely present static information such as
names, images, and descriptions [14], [17], lacking the
integration of intelligent image recognition to identify regional
culinary identities. This limitation is especially pronounced for
regional cuisines, such as Padang, where nuanced intra-cuisine
variations require more sophisticated approaches than simple
database lookups.

To address these challenges, deep learning methods,
especially CNNs have become the predominant technique for
food image classification [18], [19]. Reference [20] developed
a high-quality dataset of 1,644 images across 34 Indonesian

traditional foods captured under controlled studio lighting,
enabling CNN architectures including DenseNet121, ResNet50,
InceptionV3, and NasNetMobile, to achieve outstanding results,
i.e., DenseNet121 reached 99.4% accuracy, with precision and
recall exceeding 0.92, demonstrating the benefits of dataset
quality for classifier performance. This illustrates the strength
of CNNs for cultural heritage applications when trained on
high-quality, uniform datasets. However, a significant
weakness was the dataset's lack of variability; models trained
under these conditions demonstrated limited generalization to
real-world settings, struggling with variations in serving styles
and food presentation. Moreover, another study that focuses on
broad Indonesian cuisine rather than regional, fine-grained
distinctions leaves visual complexities within regional cuisines,
such as Padang dishes, insufficiently explored. Our work
directly tackles this limitation by targeting detailed
classification within unconstrained Padang cuisine images,
reflecting realistic use cases. Building on the dataset size and
model diversity, a study [21] provided a comprehensive
evaluation of 67 deep learning models across 16 architectures.
The EfficientNetV2-L model achieved the highest accuracy of
85.44%, demonstrating strong overall classification capabilities
on a diverse Indonesian food dataset comprising 24,427 images
across 160 categories. This extensive benchmarking is a
notable strength, providing valuable insights into the suitability
of the architecture for classifying Indonesian food. Rasyidi et al.
identified persistent challenges. Specifically, they identified
persistent challenges, such as class imbalance, which causes
difficulty in learning underrepresented foods, and high visual
similarity between dishes, which leads to misclassification, as
seen with bandrek being confused with bajigur. Additionally,
the work's reliance on single-label classification limits its
ability to handle images containing multiple food items,
indicating a need for multi-label or object detection approaches.
Our study addresses these issues by focusing on the
fine-grained nuances of Padang cuisine and exploring practical
deployment scenarios that require robust handling of real-world
variability and complex food compositions.

Meanwhile, [22] employed a CNN-based model on nine
Indonesian food categories, achieving an evaluation accuracy
of 91.11%. Darojat's study highlights the effectiveness of
CNNs in feature extraction and classification, but also exposes
weaknesses due to the limited diversity of training data, which
leads to overfitting and misclassification stemming from
lighting differences and visual similarities among foods.
Similarly, [23] applied a three-layer CNN model to classify 14
regional Indonesian foods, achieving a lower accuracy of
64.44%. The model’s lower performance was attributed to
dataset imbalance and inadequate data preprocessing, resulting
in false positives and negatives. These works collectively
underscore the challenges in fine-grained regional food
classification, particularly when datasets lack diversity or
cleanliness, challenges our research mitigates by collecting and
utilizing more varied, unconstrained images specific to Padang
cuisine.

Beyond Indonesian cuisine, [24] proposed SlowDeepFood,
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a framework combining semi-automatic dataset creation with
transfer learning on EfficientNet for fine-grained regional food
classification, achieving 91.91% accuracy on Food-101 and
95.33% on Middle Eastern food classification. The study
demonstrated the effectiveness of semi-automatic dataset
creation and transfer learning techniques in improving
classification performance for diverse, underrepresented
regional cuisines. However, despite its versatility,
SlowDeepFood’s model can struggle to capture the subtle
visual distinction critical for fine-grained differentiation with
closely related regional dishes, such as those in Padang cuisine.
Nogay et al integrated transfer learning on six CNNs with
Canny edge detection and data augmentation to classify
Turkish cuisine food groups, reaching 79.23% accuracy using
MobileNetV2. This dual-task framework, which addresses
classification and portion estimation, tackles challenges in
dietary assessment for underrepresented cuisines but remains
constrained by a relatively small dataset and the difficulty of
2D portion estimation. This work inspires our study's focus on
culturally specific Padang cuisine. Beyond deep learning, [15]
explored traditional machine learning methods, such as
Random Forest with segmentation, for 34 Indonesian foods,
achieving an accuracy of 85.52%. This demonstrates the
viability of conventional methods for specific tasks. Other
technologies, such as augmented reality for promoting
Sumatran specialities [17] or web-based culinary
recommendation systems [16], also contribute to broader
cultural engagement.

Despite the demonstrated successes, a key limitation across
the literature is the difficulty of fine-grained food classification
under unconstrained, real-world conditions with diverse
presentations and multi-item images. Many approaches lack
practical deployment in mobile applications, thereby restricting
their cultural preservation impact. While current literature
confirms the strength of CNNs and transfer learning in food
image classification, challenges remain in dataset variability,
intra-regional food distinction, class imbalance, and the
real-world applicability of these methods. This research
directly addresses these gaps by developing a deep learning
model tailored for fine-grained Padang cuisine classification
using a diverse, unconstrained dataset and deploying it in a
mobile application. This work aims to enhance both digital
heritage preservation and real-world dietary assessment for
culturally significant regional foods.

III. RESEARCHMETHOD

This study employed a five-phase methodology: dataset
construction, data preprocessing and augmentation, model
training with hyperparameter optimisation and evaluation,
fine-tuning, and mobile application development, followed by
post-deployment usability testing. Figure 1 illustrates the
research methodology. Although KDD and CRISP-DM
provide general guidance, the workflow of this study is adapted

to the specific demands of image-centric tasks. While it follows
the conceptual stages of CRISP-DM, such as data preparation,
modeling, evaluation, and deployment, it is optimized for
convolutional neural network-based food classification.

Fig. 1. Overview of the proposed Padang food classification workflow,
including dataset construction, augmentation, model training and optimization,
evaluation, and mobile deployment using the best-performing CNN model.

The primary goal of this study was to engineer a robust and
lightweight deep learning model for a mobile application
capable of classifying nine types of Padang dishes from images.
The classification task was formulated as a multi-class image
classification problem, where a given input image � ∈
ℝ224×224×3 was assigned to a label � ∈ {0, 1, …, 8},
representing one of the nine Padang dish classes. The deep
learning model outputs a vector of logits z = [z0, z1, …, z8]. The
classifier ��(�) , parameterized by weight �, predicted the
probability of each class using a softmax function as shown in
(1), at the output layer:

�� � = ���

�=0
8 ����

, for i = 0, …, 8 (1)

where zj are the logits (raw outputs) produced by the concluding
fully connected layer. The model’s learning process aimed to
minimize the sparse categorical cross-entropy loss, as shown in
(2):

ℒ �, �� =− log (���) (2)

where y denotes the actual class index, and ��� indicates the
anticipated probability of the appropriate class. The class
exhibiting the maximum probability score of �� � is subsequently
determined as the final predicted label.

A. Dataset Construction
Publicly available datasets from Kaggle are frequently

employed for model training and evaluation in machine
learning research [25], [26], [27], [28]. In this study, the dataset
was constructed by combining two sources: (1) the Padang
Cuisine dataset from Kaggle [29] and (2) original photographs
of Padang dishes captured by the authors. The Kaggle dataset
initially contained 933 images across nine classes, serving as
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the primary source of data for this analysis. This combined
dataset comprises a diverse mix of real-world photographs,
promotional materials, and recipe illustrations, contributing to a
wide range of visual characteristics, including background
complexity, lighting variations, and textual elements. Rather
than being treated as noise, this variability is leveraged to
enhance model robustness. In real-world applications,
especially mobile-based recognition systems, inputs may
originate from a wide range of sources, such as printed menus,
digital advertisements, or recipe websites. Including such
heterogeneous samples helps the model generalize more
effectively across different deployment scenarios [30].

The completed dataset consists of 1,108 images segmented
into nine Padang dish classes: Ayam goreng, ayam pop, daging
rendang, dendeng batokok, gulai ikan, gulai tambusu, gulai
tunjang, telur balado, and telur dadar. Representative images
from each class are presented in Fig. 2.

Fig. 2. Representative images of nine Padang dish classes in this study.

The images, which varied in resolution, were randomly
partitioned into training (80%), validation (10%), and test (10%)
sets. This split ratio was chosen to maximize the number of
samples available for model training, to achieve robust feature
learning in a relatively small dataset, while reserving
independent and statistically meaningful sets for unbiased
validation and final testing. With 1,108 total images, the
80:10:10 ratio division ensures that each class retains enough
samples, around 12–18 images in the validation and test sets to
provide reliable performance estimates, whereas larger
validation and test proportions, such as 70:20:10, would reduce
training data and potentially degrade model generalization [31].

Table 1.
Class-Wise Distribution of Images Across Training, Validation, and Test

Sets for Padang Dish Classification
Padang dishes Training Validation Test
Ayam goreng 100 12 12
Ayam pop 96 18 14
Dendeng batokok 95 12 12

Gulai ikan 96 16 12
Gulai tambusu 105 13 12
Gulai tunjang 99 12 12
Rendang 96 12 12
Telur balado 96 12 12
Telur dadar 96 12 12

Table 1 illustrates the class-wise distribution of images,
which confirms a relatively balanced number of images across
classes and partitions. This balance is crucial for preventing
class bias and ensuring that all categories are equally
represented in both training and evaluation. The partitioning
was performed programmatically using a randomized
allocation according to the specified ratio, ensuring that no
image appeared in more than one subset and eliminating
manual selection bias.

B. Data Preprocessing and Augmentation
All images were resized to a resolution of 224x224

pixels—a common specification for CNNs—and converted to
PNG format. Although the dataset size was relatively modest,
the class balance and visual quality were maintained to ensure
fair representation for each class.

To enhance variability and reduce overfitting, on-the-fly
augmentation was applied during training using the
ImageGenerator module:
 Data augmentation for training included rescaling pixels to a
range of 1/255, applying random rotations of up to 40
degrees, and introducing translational shifts of 0.2 in width
and height, as well as shearing (0.2), zooming (0.2), and
horizontal flipping transformations.

 For validation and testing, data only underwent pixel
normalization through rescaling by 1/255.

These augmentation strategies increased data variability and
improved the model’s ability to generalize to unseen images,
despite the modest dataset size. The effectiveness of this
approach was demonstrated by the high classification
performance, with the best model, ResNet152V2, achieving
95.37% validation accuracy and 95.45% test accuracy.

C. Model Architecture and Training
Four pre-trained CNN models were evaluated:

EfficientNetV2M, MobileNetV2, VGG19, and ResNet152V2.
EfficientNetV2M utilizes a compound scaling technique that
involves concurrently adjusting the network’s depth, width, and
resolution. This approach contributes to superior performance
while requiring fewer parameters than conventional models
[32]. The model has good performance to be applied to various
image classification tasks [33], [34]. MobileNetV2 uses
depth-wise separable convolutions and inverted residuals to
reduce computational complexity and memory consumption,
yet still achieves high accuracy [35], [36]. VGG19 is known for
its 19 layers, including 16 convolutional layers, three fully
connected layers, and five max pooling layers, and has
demonstrated strong performances in various image
classification tasks [37], [38]. The ResNet152V2 architecture is
a variant of the ResNet model, which incorporates residual
blocks to help mitigate the vanishing gradient problem by
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allowing gradients to flow through shortcut connections. This
architecture has deep layers of 152, which are capable to learn
complex features from images [39], [40]. The models used in
this study have demonstrated strong performance in various
image classification tasks. We compared these four models,
and the best-performing one was then used as the basis for the
mobile application.

Initialized with ImageNet weights, every pre-trained model
was then refined on the Padang dish dataset. The input shape
for this process was consistently set to (224, 224, 3). To balance
feature reuse while still allowing model adaptation to the
Padang dish dataset, a portion of the initial layers was frozen
during training. The number of initial frozen layers for each
model is listed in Table 2.

Table 2.
The Number of Initial Frozen Layers of The Four Transfer Learning

Models
Model Initial frozen layer
EfficientNetV2M 50
MobileNetV2 20
VGG19 4
ResNet152V2 50

The variation was intentional and model-dependent, based
on:
1) Depth and complexity of architecture

Deeper models, such as ResNet152V2 and
EfficientNetV2M, contain more layers, enabling greater
abstraction of generic features in the early layers, making
them more transferable and thus safer to freeze more
extensively.

2) Sensitive to low-level features
Simpler models, such as VGG19, benefit from fine-tuning
earlier layers, as their shallow depth limits feature
abstraction, requiring more adaptation to the new dataset.

3) Empirical performance
The number of frozen layers was determined through
preliminary experiments to balance generalization and
task-specific learning, avoiding underfitting from freezing
too many layers or overfitting from unfreezing too many.
A custom classifier block was appended, as illustrated in

Fig. 3. It consisted of the following layers in order: a
GlobalAveragePooling2D layer, followed by Dropout (rate =
0.3); a Dense layer featuring 256 units, ReLU activation, and
L2 regularization; an additional Dropout layer at a 0.3 rate; and
finally, a terminal Dense output layer containing 9 units and
employing Softmax activation. Model compilation utilized the
Adam optimizer, configured with a learning rate of 1e-5. Sparse
categorical cross entropy was designated as the loss function,
and accuracy was used as the principal evaluation metric.

The training process involved a batch size of 16 for a
maximum of 100 epochs. To optimize training efficiency, an
early stopping criterion was implemented, ceasing the process
once both validation and training accuracy exceeded 95%,
alongside model checkpointing based on validation

performance.

Fig. 3. Custom classifier block.

D. Model Evaluation and Optimization
Key performance indicators, specified in (3)–(6), consisted

of accuracy, precision, recall, and F1-score, respectively.

�������� = ��+��
��+��+��+��

(3)

��������� = ��
��+��

(4)

������ = ��
��+��

(5)

�1 ����� = 2 × ��������� × ������
��������� + ������

(6)

where TP is true positive, TN is true negative, FP is false
positive, and FN is false negative.

The best performing model, ResNet152V2, underwent
hyperparameter tuning involving adjustments to dense layer
units, dropout ratios, the application of L2 regularization, and
additional dropout layers. Subsequently, the enhanced model
was adapted to TensorFlow Lite format to facilitate mobile
deployment, ensuring that performance remained largely
uncompromised.

E. Development of the Mobile Application
The mobile application was developed using Android

Studio and Kotlin, integrating the optimized TensorFlow Lite
model for on-device inference. The TensorFlow Lite Android
support library was used to embed the model, enabling
low-latency and memory-efficient predictions.

Users can classify food images by selecting from their
gallery or capturing a new image using the device's camera.
Before inference, images are automatically resized and
normalized to match the model's expected input dimension
(224×224 pixels). The mobile application outputs the predicted
Padang dish name, the corresponding Padang dish image, a
brief description of the dish, a list of ingredients, the recipe, and
the top three predicted probabilities.

To enhance the user experience, a confidence threshold
mechanism is implemented; if the model's confidence score is
below 90%, the mobile application prompts the user to retake or
select an alternative image.
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IV. RESULTS
This section presents a comparative analysis of four

pre-trained CNN models to identify the optimal architecture for
classifying Padang cuisine. The discussion critically reflects on
model behaviour, supported by performance metrics,
visualizations, and insights from prior theoretical research.

A. Model Benchmarking and Training Performance
Table 3 compares the training and validation performance

of each model. ResNet152V2 outperformed all other models,
recording the maximum validation accuracy of 95.80% and the
minimum validation loss of 0.6418. This superior performance
reflects its exceptional generalization ability, which is
attributed to its architectural depth and residual learning
capability. Although VGG19 showed high training accuracy of
98.03%, its elevated validation loss of 0.7765 indicates
overfitting, which is consistent with its limited architectural
regularization. While computationally efficient, MobileNetV2
lagged in both accuracy and loss, likely due to its reduced
representational capacity.

Table 3.
Comparative Performance Analysis of The Four Models
Model Train Acc Val Acc Train Loss Val Loss

EfficientNetV2M 0.9730 0.9074 0.4998 0.7426
MobileNetV2 0.9545 0.9328 0.5747 0.7064
VGG19 0.9803 0.9074 0.2935 0.7765
ResNet152V2 0.9534 0.9580 0.5694 0.6418

Figure 4–7 illustrate the respective training and validation
accuracy and loss trends observed for each model. These plots
help illustrate the convergence behavior and generalization of
each model. As shown in Fig. 4, EfficientNetV2M's learning
curve exhibited gradual performance gains, with validation
accuracy starting at 12.96% in epoch 1 and surpassing the 85%
threshold by epoch 42. The model reached a peak validation
accuracy of 92.59% with a loss of 0.7150 at epoch 54. After
training on epoch 100, the model maintained a high validation
accuracy of 90.74% and a stable loss of 0.7426.

Figure 5 demonstrates that MobileNetV2 showed rapid
initial improvement, with validation accuracy climbing from
26.05% at epoch 1 to 63.03% by epoch 12. Its performance
continued to grow, reaching a peak validation accuracy of
94.96% at epoch 90. After this point, accuracy plateaued and
then slightly decreased to a final value of 93.28% at epoch 100,
suggesting stable training near its peak performance.

Fig. 4. Training and validation accuracy and loss curves for EfficientNetV2M.

Fig. 5. Training and validation accuracy and loss curves for MobileNetV2.

Fig. 6. Training and validation accuracy and loss curves for VGG19.

Figure 6 demonstrates that VGG19 showed fluctuations
post-epoch 32, indicating saturation and a risk of overfitting.
The validation accuracy of VGG19 peaked at 91.67% at epoch
42, with a low validation loss of 0.5364. However, by epoch
100, the validation accuracy had slightly dropped to 90.74%
while the validation loss increased to 0.7765, providing clear
quantitative of this saturation.

In contrast, Fig. 7 shows ResNet152V2 displayed smooth
convergence, steady loss reduction, and no signs of overfitting.
It achieved a good early performance, crossing the 90%
validation accuracy threshold at epoch 16 and reaching a peak
of 96.64% at epoch 36. Training was stopped early at epoch 38
due to the early stopping criteria, with a final validation
accuracy of 95.80% and a low loss of 0.6418. This early
stopping affirms the capacity of ResNet152V2 for fine-grained
visual tasks and its generalization ability.

The overall findings from this detailed analysis highlighted
that ResNet152V2’s architectural depth and regularization
mechanism contributed to better generalization, outperforming
the other models in both performance and training efficiency.

Fig. 7. Training and validation accuracy and loss curves for ResNet152V2.

B. Test Performance and Class-wise Evaluation
Table 4 summarizes test set performance. ResNet152V2

achieved the highest test accuracy of 95.45%, outperforming
other CNN architectures, including MobileNetV2 (93.64%),
EfficientNetV2M (91.67%), and VGG19 (90.74%). These
results confirm that ResNet152V2 is capable of robustly
predicting new data and is well-suited for the fine-grained
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classification task of Padang cuisine.

Table 4.
Test accuracy of CNN models
Model Test Accuracy

EfficientNetV2M 0.9167
MobileNetV2 0.9364
VGG19 0.9074
ResNet152V2 0.9545

To further understand model behavior and misclassification
trends, a confusion matrix was generated for the ResNet152V2
model, as shown in Fig. 8. This matrix illustrates the
distribution of predictions across true and predicted labels,
highlighting that most classes were classified correctly with
minimal confusion. Notably, minor misclassifications occurred
between visually similar dishes such as ayam goreng and
rendang, and between gulai ikan and gulai tunjang. These
cases suggest areas where additional data augmentation or
visual attention techniques could be employed to improve
discrimination.

To quantitatively assess the performance specific to each
class, Table 5 illustrates the calculated precision, recall, and
F1-score metrics for each dish class. Notably, the model
attained a perfect F1-score for three out of nine classes: Ayam
pop, dendeng batokok, and telur balado, demonstrating
excellent consistency. However, slightly reduced scores for
ayam goreng, rendang, and gulai tunjang, indicate that
fine-grained visual differences may lead to occasional
misclassification.

Overall, the performance analysis reaffirms the
effectiveness of ResNet152V2 for fine-grained food
classification. The combination of high-test accuracy, strong
class-wise metrics, and confusion matrix insights validates the
model’s robustness and real-world applicability. Despite
overall strong performance, the results suggest opportunities
for improving class separability using advanced augmentation
or attention mechanisms.

Table 5.
Class-wise Evaluation Metrics for ResNet152V2 Model

Class Precision Recall F1-Score
Ayam Goreng 0.8462 0.9167 0.8000
Ayam Pop 1.0000 1.0000 1.0000
Daging Rendang 0.9167 0.9167 0.9167
Dendeng Batokok 1.0000 1.0000 1.0000
Gulai Ikan 1.0000 0.9167 0.9565
Gulai Tambusu 0.9231 1.0000 0.9600
Gulai Tunjang 0.9167 0.9167 0.9167
Telur Balado 1.0000 1.0000 1.0000
Telur Dadar 1.0000 0.9167 0.9565

Fig. 8. Confusion matrix for ResNet152V2 model.

C. Hyperparameters Tuning
To enhance generalization and reduce overfitting, the

ResNet152V2 model was fine-tuned using KerasTuner with a
random search strategy. The tuning process was executed over
5 trials, each running for a maximum of 100 epochs. The
hyperparameters optimized included the dropout rate, the
number of units in the dense layer, the L2 regularization
coefficient, and whether to add additional dropout layers. The
optimal values obtained from this process are presented in
Table 6.

Table 6.
Optimal Hyperparameters for ResNet152V2 Model

Hyperparameter Value
Dropout rate (layer 1) 0.2
Dense layer units 832
L2 regularization coefficient 0.00010800795
Additional dropout layer required Yes
Dropout rate (additional layer) 0.1

This configuration was chosen for its balance of
regularization and representational power, reducing overfitting
while maintaining classification performance.

D. Performance of the Optimized Model
The optimized model underwent retraining employing the

Adam optimizer, configured with a learning rate of 1e-5. Sparse
categorical cross-entropy loss function, and the accuracy as the
performance indicators. A maximum of 100 epochs was set for
training, alongside the implementation of early stopping, which
ceased the process if the validation loss showed no reduction
for five consecutive epochs.

Following hyperparameter tuning, the optimized
ResNet152V2 configuration sustained high validation accuracy
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while achieving a reduction in validation loss, indicating
improved convergence stability and better generalization
control. The final optimized model achieved 99.32% training
accuracy, 93.28% validation accuracy, a training loss of 0.1251,
and a validation loss of 0.4142, as shown in Table 7 and result
of class-wise evaluation metric is shown in Table 8. On the test
set, the model reached 91.82% accuracy, confirming robust
performance across unseen data.

Table 7.
Performance Metrics for The Optimized ResNet152V2 Model

Metric Value
Training accuracy 0.9932
Validation accuracy 0.9328
Training loss 0.1251
Validation loss 0.4142
Test accuracy 0.9182

Table 8.
Class-Wise Evaluation Metrics for Optimized ResNet152V2 Model
Class Precision Recall F1-Score
Ayam Goreng 0.7857 0.9167 0.8462
Ayam Pop 0.9333 1.0000 0.9655
Daging Rendang 1.0000 0.8333 0.9091
Dendeng Batokok 1.0000 1.0000 1.0000
Gulai Ikan 1.0000 0.8333 0.9091
Gulai Tambusu 0.8000 1.0000 0.8889
Gulai Tunjang 0.8182 0.7500 0.7826
Telur Balado 1.0000 1.0000 1.0000
Telur Dadar 1.0000 0.9167 0.9565

Fig. 9. Confusion matrix for the optimized ResNet152V2 model.

Class-wise evaluation revealed that precision, recall, and
F1-scores remained well-balanced across categories, with no
single class dominating the error distribution (Fig. 8 and 9). The
confusion matrix corroborated this by showing that
misclassifications were relatively diffuse rather than
concentrated in specific classes. This uniformity is particularly
important in fine-grained classification tasks, where class
imbalances or systematic bias toward certain categories can
compromise real-world utility. In practical deployment

scenarios, consistent per-class performance reduces the risk of
model blind spots, thereby improving both reliability and
trustworthiness.

Overall, the optimization process not only preserved the
strong predictive performance established in the
pre-optimization phase but also yielded a model with greater
stability, improved error distribution, and a performance profile
better suited for reliable application in operational settings.

Fig. 10. Home screen of the mobile application.

E. Mobile Application Deployment
To support deployment in real-world scenarios, the

optimized ResNet152V2 model was converted to TensorFlow
Lite format, ensuring low latency and high accuracy in mobile
environments. The mobile application allows users to input
food images either by capturing them with the camera or
selecting them from the gallery. Upon launch, the mobile
application displays a home screen with options to upload or
take a photo, as shown in Fig. 10. Once an image is selected,
users are taken to a confirmation screen where they can verify
the input image before prediction, as shown in Fig. 11.

After confirmation, the image is passed through the
integrated TensorFlow Lite model for inference. If the
prediction score is 0.9 or higher, the application displays the
predicted dish name along with an image, a list of ingredients,
and a recipe. If the confidence is below 0.9, a message prompts
the user to provide another image. The top-3 prediction
outcomes are illustrated in Fig. 12.

The deployment of the ResNet152V2 model using
TensorFlow Lite enables robust, near real-time inference
suitable for mobile environments. The model demonstrates
responsive behavior, with predictions generated within a few
seconds after image confirmation. The robustness of the
classification was additionally confirmed through trials
conducted with a smartphone camera under conventional
lighting, which underscores the practical feasibility of this
approach for food classification tasks.

The model’s integration into the Android application
enables automatic Padang cuisine recognition from
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user-uploaded images, complete with ingredient lists and recipe
steps. The mobile application offers a tangible tool for cultural
preservation, culinary exploration, and potential integration
into smart tourism or educational platforms.

Fig. 11. Image selection (left) and confirmation screen (right).

F. Discussions
This study confirms the efficacy of transfer learning with

deep CNN architectures for the fine-grained classification of
Padang cuisine, a domain characterized by subtle inter-class
visual differences that pose challenges even for advanced
models.

While prior studies have predominantly addressed broad
food categories or generalized cuisines [20], [21], [22], a
notable gap remains in addressing region-specific dishes that
exhibit high visual similarity and intra-class variability, such as
those found in Padang cuisine. This niche, yet culturally
significant, problem requires models capable of discerning
subtle ingredients and presentation differences critical for
accurate cultural documentation, culinary tourism, and
AI-driven heritage preservation.
Experimental results demonstrated that when carefully tuned,

deep CNNs can effectively capture these nuanced visual
patterns. Among evaluated architectures, ResNet152V2
outperformed other models, achieving a test accuracy of
95.45% and improved generalization post-optimization with a
test accuracy of 91.82% and validation loss of 0.4142.

Misclassification predominantly occurred between visually
similar dishes such as gulai ikan and gulai tunjang, reflecting
intrinsic challenges in distinguishing closely related food items
rather than model instability. In contrast, distinctly different
dishes such as ayam pop, dendeng batokok, and telur balado,
were classified with near-perfect accuracy, underscoring the
model’s strength in distinguishing more separable classes.
This study's methodological approach, which involves

comparing multiple architectures, including VGG19 and
MobileNetV2, highlights the necessity of a carefully selected

and tuned model. For example, VGG19 achieved a low training
loss but a high validation loss suggested overfitting, while the
balanced performance of MobileNetV2 with smooth
convergence and moderate generalization implied potential, but
was outperformed by ResNet152V2.

(a)

(b) (c)
Fig. 12. Prediction result: (a) Prediction success, (b) top-3 prediction and

(c) Prediction failure.

ResNet152V2, coupled with KerasTuner-based
optimization, achieved greater stability and reduced validation
loss, overcoming the limitations of generic training frameworks.
common in many earlier studies [22], may be insufficient for
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fine-grained, real-world food classification.
The results demonstrated that deep learning models like

ResNet152V2 were capable of capturing many of the subtle
visual cues required to differentiate similar regional dishes,
thereby providing practical proof of the model’s suitability for
culinary heritage preservation. However, some
misclassifications among visually similar classes highlight
inherent challenges and indicate that current models still face
limitations in fully resolving all subtle intra-class differences.
These findings suggest that while deep learning offers a
promising foundation, future work should explore multi-modal
data integration and advanced feature extraction techniques to
further enhance discrimination in complex fine-grained
culinary domains.

From a practical perspective, integrating the optimized
ResNet152V2 into a TensorFlow Lite-based Android app
highlights its real-world applicability. The model’s low
inference latency enables efficient on-device recognition
suitable for field use, where internet access may be limited.
This direct integration bridges academic research with applied
technology, offering a scalable tool for promoting local cuisine
awareness. The use of a mixed-source dataset by combining
web-sourced images with original photos further enhances
robustness, ensuring robustness across varied image qualities
and contexts, directly addressing limitations in previous studies
that relied heavily on studio-quality or limited datasets [20],
[21].

These contributions extend beyond prior research by
explicitly tackling dataset variability, fine-grained regional
cuisine classification, and real-world mobile deployment,
thereby addressing key gaps in the literature. This study can be
considered as a substantive advancement in both the scope and
practical applicability of automated regional food recognition.

G. Research Implication
This study advances both theoretical understanding and

practical applications in fine-grained food recognition, with a
specific focus on regional cuisine datasets that often favor of
broader classification.
From a theoretical perspective, the benchmark evaluation

establishes that for complex, localized visual tasks with subtle
inter-class differences, deeper architectures such as
ResNet152V2 can deliver superior generalization when paired
with targeted hyperparameter tuning. This refines existing
knowledge on model selection for cultural heritage datasets,
demonstrating that depth and careful optimization are essential
to prevent overfitting while preserving fine-grained visual cues.
Furthermore, the use of mixed-source datasets strengthens
theoretical models of robustness, showing that training with
heterogeneous image sources improves performance in
unconstrained, real-world settings.
From a practical standpoint, the development of the

optimized ResNet152V2 in a TensorFlow Lite-based mobile
application provides a working blueprint for translating
research into an accessible, real-time recognition tool. This has
direct implications for culinary tourism, cultural preservation,
and digital heritage initiatives, as it enables on-device

recognition without internet dependency. The methodological
framework, spanning model selection, hyperparameter tuning,
and mobile deployment, offers a transferable template for other
fine-grained classification problems, ensuring that the approach
can be adapted across diverse cultural and scientific domains.
In doing so, this study bridges the gap between theoretical
model development and socially meaningful, user-centric
applications of artificial intelligence.

V. CONCLUSION
This study successfully automated the classification of

traditional Indonesian Padang cuisine using a deep learning
approach, thereby addressing a complex fine-grained image
recognition challenge. Among the tested models, ResNet152V2
showed the best overall performance, demonstrating strong
accuracy and balanced evaluation metrics across multiple
classes. Class-wise analysis and the confusion matrix revealed
that while some dishes were recognized with high accuracy,
others remained challenging due to subtle visual similarities
and the inherent limitations of the dataset's scope.

The optimized and trained model was successfully
deployed as a mobile application using TensorFlow Lite,
enabling real-time recognition with a latency of 1–5 seconds
per image. To evaluate its usability, a post-deployment survey
was conducted with 25 participants aged 18–30. The
application received high average scores: 4.6 out of 5 for
interface clarity, 4.5 for recognition accuracy, and 4.9 for
processing speed. All respondents agreed that the application
was effective in identifying Padang dishes. Suggestions
included adding a usage tutorial, expanding the dish database,
and providing short descriptions for each recognized dish
before displaying ingredients and recipes.

Future work will address the observed limitations by
integrating multi-modal data (such as image features and menu
descriptions), employing attention-based mechanisms to
enhance fine-grained feature extraction, applying advanced
augmentation strategies, and expanding the dataset to
encompass a broader range of Indonesian regional cuisines.
Additionally, incorporating user feedback will improve the
interface and overall usability, thereby enhancing real-world
engagement.

In conclusion, this research lays the groundwork for
intelligent culinary recognition systems that bridge artificial
intelligence with local heritage. By delivering a scalable,
real-time mobile application, this work advances technology in
fine-grained visual recognition, demonstrating its applicability
in culturally significant contexts. The contributions support
cultural preservation, educational tools, and the promotion of
Indonesian culinary tourism through accessible and innovative
technology.

REFERENCES
[1] UNESCO, “Basic texts of the 2003 Convention for the Safeguarding of

the Intangible Cultural Heritage,” Paris, 2018. Accessed: Mar. 10, 2025.
[Online]. Available:
https://digitallibrary.un.org/record/3841845?ln=en&v=pdf



Applied Information System and Management (AISM)
Volume 8, (2) 2025, p. 285–296
P-ISSN: 2621-2536; E-ISSN: 2621-2544; DOI: 10.15408/aism.v8i2.46680
©2025. The Author(s). This is an open acces article under cc-by-sa

http://journal.uinjkt.ac.id/index.php/aism 295

[2] M. Monova-Zheleva, Y. Zhelev, and E. Nikolova, “Intangible cultural
heritage presentation and preservation – Challenges and opportunities for
museum specialists,” Digital Presentation and Preservation of Cultural
and Scientific Heritage, vol. 10, pp. 233–240, Sep. 2020, doi:
10.55630/dipp.2020.10.19.

[3] H. Yu, “Application model construction of intangible cultural heritage
dissemination in film and television art creation in postepidemic era,”
Wirel Commun Mob Comput, vol. 2022, pp. 1–10, Sep. 2022, doi:
10.1155/2022/5448246.

[4] Q. Fan, C. Sun, and M. Zhang, “Research on the knowledge organization
of intangible cultural heritage spatiotemporal data from a digital
humanities perspective,” Knowledge Organization, vol. 50, no. 8, pp.
526–541, 2023, doi: 10.5771/0943-7444-2023-8-526.

[5] T. Pistola et al., “Creating immersive experiences based on intangible
cultural heritage,” in 2021 IEEE International Conference on Intelligent
Reality (ICIR), IEEE, May 2021, pp. 17–24. doi:
10.1109/ICIR51845.2021.00012.

[6] D. Situmorang, F. Lubis, and F. Hakiem, “Strategi gastrodiplomasi
indonesia melalui program indonesia spice up the world untuk
meningkatkan nation branding indonesia di australia pada tahun 2022,”
Jurnal Ilmiah Wahana Pendidikan, vol. 10, no. 24.2, pp. 148–156, Dec.
2024, [Online]. Available:
https://jurnal.peneliti.net/index.php/JIWP/article/view/11284

[7] I. Prastowo, A. A. Nurusman, H. K. E. P. Moro, Rizkianti, and C. Dewi,
“Diversity of Indonesian offal-based dishes,” Journal of Ethnic Foods,
vol. 10, no. 1, Art. no. 15, Jun. 2023, doi: 10.1186/s42779-023-00181-8.

[8] P. Arsil, H. Le Dang, R. Wicaksono, and A. Hardanto, “Determinants of
consumers’ motivation towards ethnic food: evidence from Indonesia,”
British Food Journal, vol. 124, no. 10, pp. 3183–3200, Aug. 2022, doi:
10.1108/BFJ-05-2021-0605.

[9] I. Yuliana, W. I. F. Ningsih, and D. M. Sari, “Eksplorasi dan pengenalan
makanan khas jawa dan sumatra pada generasi milenial melalui
pembelajaran praktikum mata kuliah dasar kuliner,” Bubungan Tinggi:
Jurnal Pengabdian Masyarakat, vol. 4, no. 2, pp. 593–599, Jun. 2022, doi:
10.20527/btjpm.v4i2.5272.

[10] M. Nurmufida, G. H. Wangrimen, R. Reinalta, and K. Leonardi,
“Rendang: The treasure of minangkabau,” Journal of Ethnic Foods, vol. 4,
no. 4, pp. 232–235, Dec. 2017, doi: 10.1016/j.jef.2017.10.005.

[11] T. Cheung, “Your pick: World’s 50 best foods,” CNN. Accessed: May 02,
2025. [Online]. Available:
https://edition.cnn.com/travel/article/world-best-foods-readers-choice/in
dex.html

[12] S. Waheed and S. Kumar, “Preserving traditional recipes and methods in
the culinary world,” in Global Sustainable Practices in Gastronomic
Tourism, IGI Global, 2024, pp. 429–452. doi:
10.4018/979-8-3693-7096-4.ch025.

[13] H. M. Ozturk, “Approaches to conservation of gastronomic heritage in the
process of industry 4.0 and climate change,” in Promoting Sustainable
Gastronomy Tourism and Community Development, 2024, pp. 95–120.
doi: 10.4018/979-8-3693-1814-0.ch007.

[14] H. S. Nogay, N. H. Nogay, and H. Adeli, “Image‐based food groups and
portion prediction by using deep learning,” J Food Sci, vol. 90, no. 3, Art.
no. e70116, Mar. 2025, doi: 10.1111/1750-3841.70116.

[15] A. H. Rangkuti, J. M. Kerta, R. Y. Mogot, and V. H. Athala,
“Identification of Indonesian traditional foods using machine learning
and supported by segmentation methods,” JOIV: International Journal on
Informatics Visualization, vol. 8, no. 4, p. 2324, Dec. 2024, doi:
10.62527/joiv.8.4.2545.

[16] Q. Aini, F. H. Muhammad, E. Rustamaji, and Y. Thwe, “SISRES:
Web-based culinary recommendation with collaborative filtering,”
Applied Information System and Management (AISM), vol. 7, no. 1, pp.
1–8, Apr. 2024, doi: 10.15408/aism.v7i1.33798.

[17] F. Khairina Nst, I. Faisal, and K. Chiuloto, “Media pengenalan makanan
khas daerah sumatera menggunakan teknologi augmented reality berbasis
android,” ALGORITMA: Jurnal Ilmu Komputer dan Informatika, vol. 06,
no. 01, pp. 60–67, Apr. 2022.

[18] L. Alzubaidi et al., “Review of deep learning: concepts, CNN
architectures, challenges, applications, future directions,” J Big Data, vol.
8, no. 1, p. 53, Mar. 2021, doi: 10.1186/s40537-021-00444-8.

[19] N. U. Gilal et al., “Evaluating machine learning technologies for food
computing from a data set perspective,”Multimed Tools Appl, vol. 83, no.
11, pp. 32041–32068, Sep. 2023, doi: 10.1007/s11042-023-16513-4.

[20] A. Wibisono, H. A. Wisesa, Z. P. Rahmadhani, P. K. Fahira, P. Mursanto,
and W. Jatmiko, “Traditional food knowledge of Indonesia: a new
high-quality food dataset and automatic recognition system,” J Big Data,
vol. 7, no. 1, p. 69, Dec. 2020, doi: 10.1186/s40537-020-00342-5.

[21] M. A. Rasyidi, Y. S. Mardhiyyah, Z. Nasution, and C. H. Wijaya,
“Performance comparison of state-of-the-art deep learning model
architectures in Indonesian food image classification,” Bulletin of
Electrical Engineering and Informatics, vol. 13, no. 5, pp. 3355–3368,
Oct. 2024, doi: 10.11591/eei.v13i5.7996.

[22] M. D. Darojat, Y. A. Sari, and R. C. Wihandika, “Convolutional neural
network untuk klasifikasi citra makanan khas indonesia,” Jurnal
Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 5, no. 11,
pp. 4764–4769, Oct. 2021, [Online]. Available:
https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/10096

[23] W. P. Kusumo and C. S. K. Aditya, “Klasifikasi citra makanan
berdasarkan asal daerah menggunakan convolutional neural network,”
Techno.Com, vol. 23, no. 1, pp. 87–95, Feb. 2024, doi:
10.62411/tc.v23i1.9735.

[24] N. U. Gilal, K. Al-Thelaya, J. Schneider, J. She, and M. Agus,
“SlowDeepFood: a food computing framework for regional gastronomy,”
in Smart Tools and Apps for Graphics - Eurographics Italian Chapter
Conference, P. Frosini, D. Giorgi, S. Melzi, and E. Rodolà, Eds., The
Eurographics Association, 2021. doi: 10.2312/stag.20211476.

[25] S. Priyadharshini and S. Shanthi, “A survey on detecting android malware
using machine learning technique,” in 2021 7th International Conference
on Advanced Computing and Communication Systems (ICACCS), IEEE,
Mar. 2021, pp. 1621–1627. doi: 10.1109/ICACCS51430.2021.9441712.

[26] K. S. Priya and R. D. Kumar, “Improving real time accuracy in image
recognition for unmanned aerial vehicles (UAVS) with random forest
algorithm comparing with support vector machine (SVM) algorithm,”
2025, Art. no. 020142. doi: 10.1063/5.0270124.

[27] Moh. B. Tamam, H. Hozairi, M. Walid, and J. F. A. Bernardo,
“Classification of sign language in real time using convolutional neural
network,” Applied Information System and Management (AISM), vol. 6,
no. 1, pp. 39–46, Apr. 2023, doi: 10.15408/aism.v6i1.29820.

[28] S. F. Mauludiah, Y. M. Arif, M. Faisal, and D. D. Putra, “Struggling
models: An analysis of logistic regression and random forest in predicting
repeat buyers with imbalanced performance metrics,” Applied
Information System and Management (AISM), vol. 7, no. 2, pp. 31–38,
Sep. 2024, doi: 10.15408/aism.v7i2.39326.

[29] F. F. Afrinanto, “Padang Cuisine (Indonesian Food Image Dataset),”
2022, Kaggle. doi: 10.34740/KAGGLE/DSV/4053613.

[30] I. Varlamis, “Messy data in education: enhancing data science literacy
through real-world datasets in a master’s program,” Educ Sci (Basel), vol.
15, no. 4, Art. no. 500, Apr. 2025, doi: 10.3390/educsci15040500.

[31] R. S. Mardiah and F. Fitrianingsih, “A comparative study of machine
learning models for fashion product demand prediction: exploring
algorithms, data splitting, and feature engineering,” Applied Information
System and Management (AISM), vol. 8, no. 1, pp. 141–150, May 2025,
doi: 10.15408/aism.v8i1.45600.

[32] J. P. S. Schuler, S. Romani, M. Abdel-Nasser, H. Rashwan, and D. Puig,
“Grouped pointwise convolutions significantly reduces parameters in
efficientnet,” in Frontiers in artificial intelligence and applications, 2021,
doi: 10.3233/faia210158.

[33] M. Di, Z. Peng, and S. Chen, “Performance comparison and application
of deep-learning-based image recognition models,” in Second
International Conference on Big Data, Computational Intelligence, and
Applications (BDCIA 2024), Mar. 2025, doi: 10.1117/12.3059903.

[34] S. Cyriac, N. Raju, and S. Ramaswamy, “Comparison of full training and
transfer learning in deep learning for image classification,” in Lecture
notes in networks and systems, 2021, pp. 58–67, doi:
10.1007/978-981-16-4486-3_6.

[35] R. Patel and A. Chaware, “Quantizing MobileNet Models for
Classification Problem,” in 2021 8th International Conference on
Computing for Sustainable Global Development (INDIACom), 2021, pp.
348–351.



Leveraging Deep Learning … N. Benarkah, V. R. Prasetyo, A. B. Prakarsa

http://journal.uinjkt.ac.id/index.php/aism 296

[36] N. A. A. Halim and A. W. Ismail, “Comparison on the metaverse space
development in Spatial.io platform and Monaverse platform,” in Lecture
notes in networks and systems, 2024, pp. 21–36, doi:
10.1007/978-981-97-2004-0_2.

[37] R. Ravindaran et al., “Performance aalysis of a VGG based deep learning
model for classification of weeds and crops,” in 2023 14th International
Conference on Computing Communication and Networking Technologies
(ICCCNT), IEEE, Jul. 2023, pp. 1–5, doi:
10.1109/ICCCNT56998.2023.10307169.

[38] M. Shaha and M. Pawar, “Transfer learning for image classification,” in
2018 Second International Conference on Electronics, Communication
and Aerospace Technology (ICECA), IEEE, Mar. 2018, pp. 656–660, doi:
10.1109/ICECA.2018.8474802.

[39] M. Sangani, J. Gala, C. Patil, and S. Sankhe, “ResNet models in real
world action: a comparative study on tomato disease recognition,” in
Technologies for Energy, Agriculture, and Healthcare, London: CRC
Press, 2024, pp. 536–545, doi: 10.1201/9781003596707-55.

[40] S. S. Mahamud, K. N. Ayve, A. H. Uddin, and A. S. M. Arif, “Tomato
Leaf Disease Recognition with Deep Transfer Learning,” in Lecture notes
in networks and systems, 2022, pp. 203–211, doi:
10.1007/978-981-19-4052-1_22.


	I.INTRODUCTION
	II.RELATED WORK
	III.RESEARCH METHOD
	A.Dataset Construction
	B.Data Preprocessing and Augmentation
	C.Model Architecture and Training
	1)Depth and complexity of architecture 
	Deeper models, such as ResNet152V2 and EfficientNe
	2)Sensitive to low-level features
	Simpler models, such as VGG19, benefit from fine-t
	3)Empirical performance
	The number of frozen layers was determined through

	D.Model Evaluation and Optimization
	E.Development of the Mobile Application 

	IV.RESULTS
	A.Model Benchmarking and Training Performance
	B.Test Performance and Class-wise Evaluation
	C.Hyperparameters Tuning 
	D.Performance of the Optimized Model
	E.Mobile Application Deployment
	F.Discussions
	G.Research Implication

	V.CONCLUSION
	REFERENCES

