

The Effect of Broccoli Extract (*Brassica Oleracea Var.*) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan

Winnie Nirmala Santosa^{1*}, Dwi Martha Nur Aditya¹, Anita Dahliana¹, Karuniawan Yusuf Noviandi²

¹Fakultas Kedokteran Universitas Surabaya

²Fakultas Kedokteran Universitas Pembangunan Nasional "Veteran" Jakarta

ABSTRACT

ARTICLE DETAILS

Alloxan causes an imbalance between antioxidants and free radicals, leading to health implications including kidney dysfunction, which can be observed, among other factors, by the extent of the kidney glomerulus area. Exogenous antioxidant intake is needed to prevent a decrease in the glomerulus area due to free radicals induced by alloxan, one of which is broccoli (*Brassica oleracea var. italica*) which has high levels of antioxidants. Objective: This study aims to determine the effect of broccoli extract (*Brassica oleracea var. italica*) on the changes in the glomerulus area of male Wistar rats induced by alloxan. Methodology: This research used an experimental method, namely RCT (Randomized Controlled Trial), with a post-test control group design on 32 male Wistar rats for 30 days, divided into 4 groups: negative control group, positive control group, and 2 treatment groups (100 mg/kgBW and 200 mg/kgBW). The calculation of the glomerulus area in the kidneys was performed with a magnification of 400x. The data obtained will be processed using ANOVA test to observe differences between groups. Research Results: This study showed differences in the glomerulus area of the kidneys in all groups (ANOVA, $p=0.00$). The increase in broccoli extract administration is directly proportional to the glomerulus area in the group given alloxan and yielded significant results (LSD, $p<0.05$). Conclusion: Administration of broccoli extract can increase the glomerulus area of Wistar rat kidneys induced by alloxan.

Published On:
07 November 2025

KEYWORDS: DM type 2, Hyperglycemia, Histopathological of kidney, Alloxan, Broccoli Extract.

Available on:
<https://ijpbms.com/>

INTRODUCTION

Diabetes mellitus is a disease characterized by hyperglycemia. Hyperglycemia occurs due to impaired insulin production and secretion, or insulin resistance (Takashi, 2004). Alloxan is a chemical used to induce diabetes in laboratory animals. Administration of alloxan is a rapid method for producing experimental diabetic conditions (hyperglycemia) in laboratory animals (Nugroho, 2004; Filippioni, 2009).

The increase in DM incidence is likely to be followed by an increase in the incidence of chronic complications of DM, namely the occurrence of blood vessel blockages, both microvascular and macrovascular, which occur due to changes in the vascular system. These changes

are partly caused by free radical stress. Free radicals can react with cells and can cause cell damage (Kisaoglu et al., 2013). Free radicals also play a role in the progression of hyperglycemia due to decreased insulin secretion and insulin action (Sarian et al., 2017). One cause of these free radicals is diabetic nephropathy. Diabetic nephropathy is a structural abnormality in the glomerulus and renal tubular elements characterized by hypertrophy, increased thickness of the glomerular basement membrane and the formation of nodular glomerulosclerosis, accumulation of extracellular matrix components, increased Glomerular Filtration Rate (GFR) with intraglomerular hypertension, proteinuria, systemic hypertension, and loss of kidney function (Kajal and Singh, 2019).

The Effect of Broccoli Extract (*Brassica Oleracea* Var.) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan

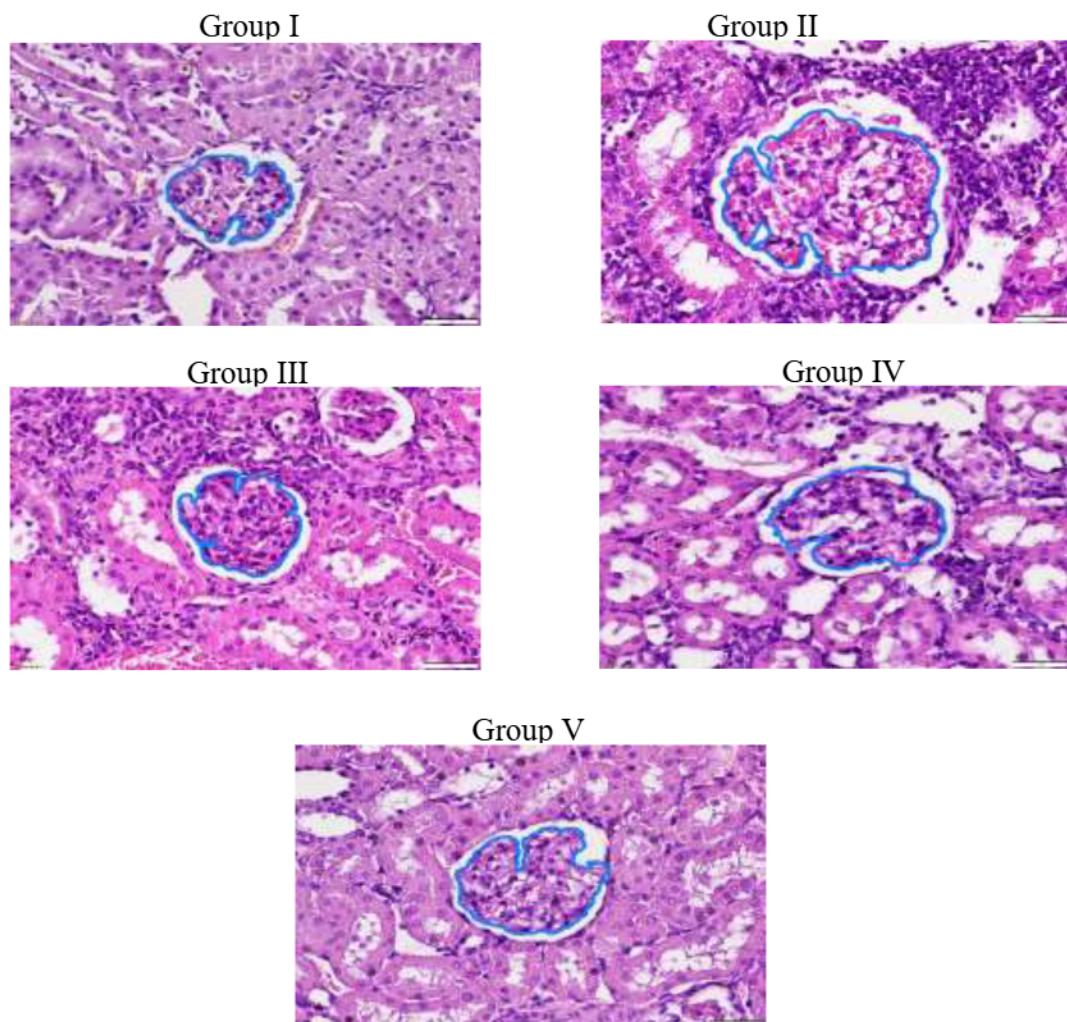
Persistent hyperglycemia can increase glucose uptake and glycolysis in tubular and glomerular cells. This results in the production of Advanced Glycation Endproducts (AGEs) and the activation of protein kinase C and the polyol pathway. These three pathways activate IL-6, MCP-1, TGF-beta (transforming growth factor-beta), and VEGF (vascular endothelial growth factor) (Lin, J. S., & Susztak, K., 2016). This can make it difficult for the glomerulus to maintain homeostasis, resulting in increased glomerular arteriolar area. Broccoli contains flavonoids, phenols, vitamin C, sulforaphane, and glucosinolates, which act as antioxidants (Liebman et al., 2021). Flavonoids are a group of polyphenolic compounds that have antioxidant, antimicrobial, and anticancer properties (Panche, 2016). Sulforaphane also has antioxidant properties so it can reduce ROS levels (Liebman et al., 2021).

Based on this description, the researcher wants to know the effect of administering broccoli extract (*Brassica oleracea* var. italic) on the glomerular appearance of the kidneys of Wistar rats induced by alloxan.

METHODS

This research is experimental research (Notoatmodjo, 2012). The research used post-test only control group design is laboratory experimental research to determine the cause-and-effect relationship. Laboratory experimental research is research conducted in a laboratory from a treatment given intentionally by the researcher (Nursyahidah, 2013). The research subjects were male Wistar rats aged 2-3 months with a body weight of 200-250 grams, totaling 32 rats divided into 4 groups, namely group 1 as a normal group that was only given standard food during the study, group 2 as a negative control group that was given alloxan induction, group 3 as the first treatment group that was given alloxan induction and broccoli extract 100mg/kgBW, group 4 as the second treatment group that was given alloxan induction and broccoli extract 200mg/kgBW.

The experimental animals were induced with alloxan at a dose of 120 mg/kgBW. Group 5, as a positive control, was given glimepiride, which has been proven effective in treating diabetes, as a comparison for the effect of broccoli extract on glomerular arteriolar area. Glimepiride


was given at a dose of 2 mg/kgBW, administered once daily with a gastric tube. The broccoli extract given to the treatment group was obtained through an extraction process using the maceration method dissolved in 1% Na CMC and distilled water. The broccoli extract was given once daily in suspension form using a gastric tube. The standard food and drink provided were 15 grams of pellet feed and drinking water provided ad libitum (Stevani, 2016).

Preparation of slides for data collection was carried out in the Anatomical Pathology Laboratory of the Faculty of Medicine, University of Surabaya in accordance with the SOP in the laboratory. After the slides were ready, they were observed in 5 fields of view with a binocular microscope at 400x magnification and arteriolar area measurements were performed with 5 repetitions. The results of the arteriolar area obtained were processed and analyzed using Statistical Product and Service Solution (SPSS) version 27. The collected data were pre-tested with the Shapiro-Wilk normality test and the Levene homogeneity test with a significance requirement of $p > 0.05$. Furthermore, if the data were proven to be normal and homogeneous, they were tested with One Way ANOVA and Post Hoc LSD tests to compare the glomerular arteriolar area in the five groups.

RESULTS

The mean value and standard deviation of each group based on table 1 are group I (1305.71 ± 30.076), group II (1907.00 ± 43.209), group III (1377.00 ± 15.652), group IV (1340.00 ± 31.024) and group V (1326.00 ± 22.749). Based on Figure 1, it can be seen that the normal control group (group I) is the group with the lowest arteriolar area while the negative control group (group II) is the group with the highest arteriolar area. Groups III, IV and V have decreased glomerular arteriolar area. The prerequisite test shows that the glomerular arteriolar area data is normally distributed ($p > 0.05$) and homogeneous ($p > 0.05$). Based on the results of the prerequisite test, a One Way ANOVA test was carried out with the result $p < 0.001$ ($p < 0.05$). This indicates a significant difference in glomerular arteriolar area across all groups. The data were subjected to a post-hoc LSD test to compare the groups, with the following results:

The Effect of Broccoli Extract (*Brassica Oleracea* Var.) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan

Figure 1. Results of comparison of the area of glomerular arterioles in rats with 400x magnification and HE staining.

Based on the results of the comparison between groups with the LSD Post Hoc Test in Table 2, it can be seen that there are significant differences ($p<0.05$) between group

I and group II, group I and group III, group II and group III, and group III and group V. Comparison of other groups shows no significant differences ($p>0.05$).

Table 1. Description of the area and statistically results of the glomerular arterioles.

Group	Mean \pm SD	Shapiro-Wilk	Levene's test	ANOVA	Least Significance Different (LSD)				
					I	II	III	IV	V
I	1305,7 \pm 30,0	0,265	0,220	<0,001*					
II	1907,0 \pm 43,2	0,918			<0,001*				
III	1377,0 \pm 15,6	0,603			<0,001*	<0,001*			
IV	1340,0 \pm 31,0	0,470			0,064	<0,001*	0,064		
V	1326,0 \pm 22,7	0,846			0,261	<0,001*	0,013*	0,468	

*Significancy level <0.05 (CI=95%)

DISCUSSION

The results of the comparative study of group I (normal control group) which was only given standard food and drink for 22 days with an average arteriole area of 1305.71 ± 30.076 with group II (positive control group) which was given alloxan induction and standard food for 14 days with an average arteriole area of 1907.00 ± 43.209 showed a significant increase in glomerular arteriole area (p

<0.05) in group II, this is in accordance with the research of Ighodaro et al (2018) which said that administration of alloxan can create hyperglycemic conditions by degrading pancreatic β cells. The dose of alloxan used was 120mg/kgBW based on the research of Swastini et al (2018).

The results of the study between group II (negative control group) which was given alloxan induction and standard feeding for 14 days with an average glomerular

The Effect of Broccoli Extract (*Brassica Oleracea* Var.) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan

arteriole area of 1907.00 ± 43.209 and group V (positive control group) which was given alloxan induction and glimepiride 2mg/kgBW for 14 days with an average of 1326.00 ± 22.749 showed a significant decrease in glomerular arteriole area ($p<0.05$) in group V. Glimepiride is an antidiabetic drug of the sulfonylurea group. Glimepiride works on the calcium ATPase channel in pancreatic beta cells to stimulate insulin release (Pakaya, M, 2022). Sulfonylureas bind to the 65-kD protein of beta cells, and are able to improve insulin secretion (Al-Kaff, 2021).

The average glomerular arteriole area in group II (the negative control group) compared to the average glomerular arteriole area in groups III and IV showed a significant decrease ($p<0.05$). Thus, groups III and IV with broccoli extract doses of 100 mg/kgBW and 200 mg/kgBW were effective in reducing glomerular arteriole area. The decrease in glomerular arteriole area due to broccoli extract administration is due to the extract's content of sulforaphane, glucosinolates, polyphenols, and hydroxynamic acids.

Flavonoids work by increasing insulin levels by donating a hydrogen atom to neutralize the toxic effects of free radicals. Glucosinolates protect DNA from damage and thus stabilize free radicals (Juliana, 2018). The flavonoids found in broccoli have a similar mechanism to sulforaphane: increasing heme oxygenase-1 expression by inhibiting NRF2 degradation, which in turn increases pancreatic antioxidant enzymes, leading to the production of superoxide dismutase and glutathione peroxidase. This results in reduced ROS production (Liebman et al., 2021). Sulforaphane inhibits KEAP1-mediated NRF2 degradation, which leads to transcriptional production of antioxidant enzymes such as glutathione S-transferase (GST), catalase (CAT), and glutathione peroxidase (GPx), thereby increasing antioxidant levels in the body and reducing blood pressure (Liebman et al., 2021).

The measurement of glomerular arteriole area between groups V and III showed a significant difference ($p<0.05$), while the measurement of glomerular arteriole area between groups V and IV showed an insignificant difference ($p>0.05$). Based on these results, the more effective dose of broccoli extract is 200 mg/kgBW.

CONCLUSION

Based on the study results, it can be concluded that broccoli (*Brassica oleracea* var. *italic*) extract is effective in preventing renal arteriolar dilation. Of the two doses administered, the 200 mg/kg body weight broccoli extract dose was more effective but not comparable to glimepiride.

REFERENCES

- I. Al-Kaff, Z. S. (2021). Perbandingan Kadar dan Profil Disolusi serta Mutu Fisik Tablet Glimepiride 2 mg Generik dan Generik Bermerek (Bachelor's thesis, FKIK UIN Jakarta).
- II. Filippone P, Gregorio F, Cristallini S, Ferrandina C, Nicoletti I, Santeusanio F. Selective impairment of pancreatic A cell suppression by glucose during acute alloxan - induced insulinopenia: in vitro study on isolated perfused rat pancreas. [Internet]. 2008 [cited 2009 February 18]. Available from: <http://www.ncbi.nlm.nih.gov/pubmed/3522213>
- III. IDF Diabetes Atlas 9th edition, 2019.IDF Diabetes Atlas 9th edition 2019.International Diabetes Federation Diabetes Atlas, Ninth Edition.
- IV. Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidant superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293.
- V. Juliana, R. (2018). Pengaruh ekstrak brokoli (*Brassica oleracea* L. var. *italic*) terhadap penurunan kadar gula darah tikus putih jantan (*Rattus norvegicus*) yang diinduksi aloksan .
- VI. Kajal, A & Singh, R. (2019). *Coriandrum sativum* seeds extract mitigate progression of diabetic nephropathy in experimental rats via AGEs inhibition, PLoS ONE, 14(3), pp. 1–13. Diakses 1 Juli 2019. doi: 10.1371/journal.pone.0213147.
- VII. Kisaoglu, A, Borekci, B, Yapca, OE, Bilen, H, Suleyman, H. (2013). Tissue Damage and Oxidant/Antioxidant Balance, The Eurasian Journal of Medicine, 45(1), pp. 47–49. Diakses 17 Juli 2019. doi: 10.5152/eajm.2013.08
- VIII. Liebman, S. E., & Le, T. H. (2021). Eat your broccoli: Oxidative stress, nrf2, and sulforaphane in chronic kidney disease. Nutrients, 13(1), 1–18. <https://doi.org/10.3390/nu13010266>
- IX. Lin, J. S., & Susztak, K. (2016). Podocytes: the Weakest Link in Diabetic Kidney Disease?. Current diabetes reports, 16(5), 45. <https://doi.org/10.1007/s11892-016-0735-5>
- X. Notoatmodjo, S. 2012. *Metodologi Penelitian Kesehatan*. Jakarta: Rineka Cipta
- XI. Nugroho BA, Puwaningsih E. Pengaruh diet ekstrak rumput laut (*Eucheuma sp.*) terhadap kadar glukosa darah tikus putih (*Rattus norvegicus*) hiperglikemik. Media Medika Indonesia Vol. 39 No. 3, 2004: 154–60.
- XII. Nursyahidah, F., Putri, R. I., & Somakim. (2013). Supporting First Grade Students' Understanding of Addition Up to 20 Using Traditional Game. IndoMS-JME, 4(2), 212-223.
- XIII. Sarian, MN, Ahmed, QU, So'ad, SZM. (2017). Antioxidant and antidiabetic effects of flavonoids: A structure-activity relationship-based study. BioMed Research International. Hindawi. 2017. Diakses 17 Juli 2019. doi: 10.1155/2017/8386065

The Effect of Broccoli Extract (*Brassica Oleracea* Var.) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan

XIV. Takashi H, Tran PO, LeRoy E, Harmon JS, Tanaka Y and Robetson RP. 2004. d- Glyceraldehyde Causes Production of Intracellular Peroxide in Pancreatic Islets, Oxidative Stress, and Defective-cell Functions via Non-Mitocondrial Pathways. *J Biol Chem.* 279:16 -23.

XV. World Health Organization. (2022). *Global report on diabetes*. World Health Organization. <https://apps.who.int/iris/handle/10665/204871>

ISSN (PRINT): 2767-827X

ISSN (ONLINE): 2767-830X

AN OPEN ACCESS INTERNATIONAL JOURNAL

IJPBMS

International Journal of
Pharmaceutical
and
Bio-Medical Science

**VOLUME 06
YEAR 2026**

Email Id : editor@ijpbms.com
<https://ijpbms.com/>

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND BIO-MEDICAL SCIENCE ISSN(PRINT) 2767-827X, ISSN(ONLINE) 2767-830X

Editorial Board

Editorial Board Members

Dr. Djemli Samir

Research Master and leader in Applied Neuroendocrinology Laboratory, Badji Mokhtar Annaba University Algeria, Faculty of Sciences Department of Biology.

https://www.researchgate.net/profile/Djemli_Samir

<https://scholar.google.fr/citations?user=ktxGffQAAAAJ&hl=fr>

<https://www.mendeley.com/profiles/djemli-samir/><https://publons.com/researcher/3137406/djemli-samir/>

<https://perso.univ-annaba.dz/fr/djemli-samir.1000187.html>

Web of Science Researcher ID: AAG-1235-2020

Scopus Author ID: 57217061212

Orcid ID: <https://orcid.org/0000-0003-4240-0179> (<https://orcid.org/0000-0003-4240-0179>)

DEEPIKA JOSHI (M.Pharm, PhD)

Assistant Professor School of Pharmaceutical Sciences Shri Guru Ram Rai University (SGRRU) Dehradun, UK

ORCID ID: <https://orcid.org/0000-0002-8893-0370> (<https://orcid.org/0000-0002-8893-0370>)

Dr Gulparshin A. Kutlimuratova(Doctor of Philosophy in Biological Sciences)

Senior Lecturer, Department of Botany, Ecology and Methods of Teaching, Nukus State Nukus city

Dr. Bhavana Singh

Assistant Professor SGRR University, School of Pharmaceutical Sciences, Dehradun (Uttarakhand)

DEBPRATIM CHAKRABORTY

Pharmacy Officer, Chittaranjan National Cancer Hospital, Kolkata-26

Orcid ID: orcid.org/0000-0003-0415-6910

Dr Alisher U. Makhmatmurodov

Head of the Department of Agrochemistry, Soil Science and Plant Protection, Samarkand branch of Tashkent State Agrarian University

Tashkent city

Dr. Sama Venkatesh Ph.D.

Professor, G. Pulla Reddy College of Pharmacy, Mehdipatnam, Hyderabad-500 028

Dr. Kholida K. Matjanova

Head of the Laboratory of Plant Ecology of the Karakalpak Research Institute of Natural Sciences, Karakalpak Branch of the Academy of Sciences of Uzbekistan.

Dr. Zumarat S. Allaberganova

Associate Professor of Microbiology, Urgench branch of the Tashkent Medical Academy

Dr. Barno S. Samandarova

Associate Professor of Microbiology, Urgench branch of the Tashkent Medical Academy

Dr Abdumannon I. Uralov

Associate professor at the "Biotechnology" department of the Jizzakh branch of the National University of Uzbekistan named after Mirzo Ulug'bek

Djemli Samir

Ph.d.

Professor since 2009 Badji Mokhtar University Sidi Amar Annaba Algeria

Mohammed Nader Shalaby

Associate Professor of Biological Sciences and Sports Health Department, Norman Bethune College of Medicine, Jilin University, China

Dr Nodira B. Khankhodjaeva

Associate Professor of "Botany, Ecology and Cell Biology" Tashkent State Pedagogical University

Tashkent city

Prof. Dr. Majid Mohammed mahmood

Ph.d.

Mustansiriyah University – College of Science

Dr. Jenan Akbar Shakoor

Ph.d.

Assistant professor, 2014-present Kirkuk University

Syed Salman

ASSISTANT PROFESSOR Mahathi College of Pharmacy, Madanapalle

Narender Boggula

Ph.d.

Assoc. professor in Dept. of Pharmaceutical Chemistry, Anurag University, Venkatapur, Ghatkesar, Hyderabad, Telangana, India.

Telangana – 502278

Mamdouh Fawzy Ahmed Mohamed

Department of Pharmaceutical Chemistry, Faculty of pharmacy, Sohag University, Sohag, Egypt.

Ahmed Ma'mun Abdel Aziz Youssef.

Faculty of pharmacy-Heliopolis university-R&D lab manager and teaching assistant

YASIR HAMEED

Ph.d.

Department of Biochemistry & Biotechnology, The Islamia University of Bahawalpur

Sandhiya vaithyanathan

Assistant professor(Pharmaceutics) in C.L.baid metha college of pharmacy, Thaoraipakkam, Chennai-600044

SARVESH RUSTAGI

Ph.d.

Assistant Professor, Department of Food Technology, Uttaranchal University, Dehradun

Uttarakhand -248171

Dr Sherzodbek A. Tashbaev

Lecturer at the Department of Zoology and Biochemistry, Faculty of Natural Sciences, Andijan State University

Dr. Muhammad Akram

Ph.d.

Department of Eastern Medicine, Faculty of Medical Science, Government College University Faisalabad.

Dr. D. Barathane MD

Associate Professor - Pharmacology

Mahatma Gandhi Medical College & Research Institute

Pillayarkuppam - Puducherry 607403

Maryam Azimi

Lecturer at Immunology Research Center

Iran University of Medical Sciences Shahid Hemmat Highway

Dr Shahobiddin M. Turdimetov

Head of the Department of Soil Science, Gulistan State University

Majid Mohammed Mahmood

Ph.d.

Professor of Immunology in Mustansiriyah University – College of Science, Baghdad.

Dr. Somashekhar M Metri

Associate Professor M Pharm Ph. D

Department of Pharmaceutical chemistry, BLDEA's SSM College of Pharmacy and Research Centre, BLDEA'S University Campus Vijayapur-586103

Gerard Charles

PhD Gerontology

Singapore University of Social Sciences,

Singapore General Hospital, Department of Emergency Medicine.

Samia Mahdi Ahmed

Assistant professor Ph D. in Clinical Chemistry

University Education: Kingdom of Bahrain Schools

Prof. Ramesh C. Gupta

PhD Chemistry

Prof. R. C. Gupta, Former vice chancellor, Radha Govind University, & Pro Vice Chancellor Nagaland Central University India. 3/218 Vishal Khand Gomti Nagar Lucknow 226010, India.

Dr.M.Murali.

M.Sc.,M.Phil.,Ph.D.

Assistant Professor Department of Zoology St.Joseph University Dimapur,Nagaland 797155, India

Dr. Vinay R Kadibagil

M.D, PhD (Ayu), CYS

Professor and Dean Academic, Department of Rasashastra & Bhaishajya Kalpana, SDM College Of Ayurveda & Hospital, Hassan ABHI" Building, House No-09, Belur road, 2nd cross, Tanniruhalla, Hassan-573201

Dr. Zulaykho A. Ismatova

Ph.D. (Biological Sciences)

Associate Professor of Botany, Tashkent State Pedagogical University named after Nizami

YU Hua (余華)

PhD, Assistant Professor, University of Macau

Institute of Chinese Medical Sciences, SKL of Quality Research in Chinese Medicine University of Macau, Room 8008, N22 Research Building Avenida da Universidade, Taipa, Macau

Prof. Dr. Afrim Tabaku,

phD

Pharmacotherapeutics Research Center, Faculty of Medical Sciences, University Aldent, Tirana-Albania

SANJAY SHARMA

M.S(GEN SURGERY), M.Ch (NEUROSURGERY Associate Professor

Neurosurgery Dept. LLRM Medical College Meerut. U.P. J-76 SHASTRI NAGAR, MEERUT (U.P.)

Jurakulova Nigora Kholmatovna

PhD Doctor of Philosophy in Pedagogical Sciences

Lecturer at the Department of Chemistry, Karshi State University

Ahadov Mamurjon Sharipovich

PhD Doctor of Philosophy in Pedagogical Sciences

Teacher of the Department of Chemistry Teaching Methods, Navoi State Pedagogical Institute

Dr. Hesham Maged Mohamed AbdelFattah

Phd

Department of Neurology and Psychiatry. El- Abbassia Mental Hospital –Cairo - Egypt. Al Haram – Cairo- Egypt

Bismi Sirajudeen

phD

Rosevilla,Nettayam, Kattuputhuserri,Pallickal (P.O),TVM

Zhang, Yongxin

MD, Ph.D. General Manager (CEO)

Zyxell Inc, 1452 Halsey Way, Suite 100-1, Carrollton, TX 75007, USA. 3437 High Vista Dr., Carrollton, Texas 75007, USA

Dr. Chandra Mohan

PhD, Inorganic Chemistry, Chemical Sensors

Assistant Professor (Chemistry) K R Mangalam University, Sohna Road, Gurugram, Haryana 122103, India

Dr. Rakeshkumar R. Panchal

Ph. D.

Associate Professor, Department of Microbiology and Biotechnology, India

Dr. Rajesh Dumpala

PhD in Pharmaceutical Science

Research Scientist R&D- Formulation Development –MS&T, Solid orals-(Tablets, Capsules, Pellets, Powder etc.)

Dr. Osahon Daniel, Abu

Ph.D.Biochemistry

Lecturer I, University of Benin

Dr. Hesham Maged Mohamed AbdelFattah

Department of Neurology and Psychiatry.

El- Abbassia Mental Hospital –Cairo - Egypt.

Dr Hudargan Mavlanov

Head of the Department of Physiology and Ecology of Jizzakh State Pedagogical Institute

Jizzakh city, H.Olimjon mahalla

Dr. Pinki Rai

Ph.D

Assistant Professor,MM Institute of Medical Sciences and Research (MMIMSR, MMDU), Mullana (India)

Dr. Praveen Dahiya

Ph.D (Biotechnology)

Associate Professor,Amity Institute of Biotechnology,Amity University- Noida

Rukiye SEVİNÇ ÖZAKAR

Ph. D.

Assistant Professor,Atatürk University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Erzurum-TURKEY

Dr. Sonam Bhatia

Ph.D.

Assistant Professor,Dept. of Pharmaceutical Sciences,SHUATS, Prayagraj.

Yangiboev Saparkul

Doctor of Science (chemistry)

Teacher of the Department of Chemistry Teaching Methods, Navoi State Pedagogical Institute

ZELALEM PETROS ANIYA

Doctor of Philosophy (PhD) in Pharmacology

Assistant professor, Department of Pharmacology, School of Medicine,AAU, Addis Ababa, Ethiopia

Rumen Nikolov

PhD, Effects of GAB Aergic drugs on model of morphine-induced hyperthermia in rats

Head of Department of Pharmacology and Toxicology, Sofia

Fatemeh Mohajer

Ph.D. in Organic Chemistry

Manager coordinator, Department of Radiology, Tehran, Iran

Dr Ulugbek Yu. Ergashev

Doctor of Medical Sciences

Head of the Department of General Surgery No. 2 of the Tashkent Medical Academy.

Khatamova Mukhabbat Sattarovna

Teacher of the Department of Chemistry Teaching Methods, Navoi State Pedagogical Institute

Khusenov Arslonazar Shernazarovich

Doctor of Science (chemistry)

The head of the department "Technology of cellulose and woodworking" of Tashkent chemical-technological institute

Amaal Sameer Sadiq

Ph.D.(organic chemistry)

Lecturer, College of Science for Women, Baghdad, Iraq

Dr. Nagham MahmoodAljamali

Ph. D (organic chemistry)

Professor in organic chemistry , Department of Chemistry, Synthetic Organic Field, IRAQ

Gizem Ruya TOPAL

PhD.(Pharmaceutical)

Universityof HealthSciencesGulhaneFaculty of Pharmacy/ Lecturer,Turkey

Hazim Alhiti

M.D (General Surgery)

Head of Emergency Faculty, Higher Health Institute-Al Anbar Directorate, Iraq

ROMAN LYSIUK

PhD (Pharmacy)

Danylo Halytsky Lviv National Medical University,Department of Pharmacognosy and Botany.

Bekhruzjon Omanov

Senior teacher, chemistry teaching methodology department, Navoi State Pedagogical Institute.

Yuldashev Murod Khudargonovich

Interim professor, the Department of "Biology", Navoi State Pedagogical Institute, Navoi, Uzbekistan.

Yakhshibaeva Damira Tolib qizi (PhD)

Teacher, the Department of Biology teaching methods, Navoi State Pedagogical Institute, Navoi, Uzbekistan

ADEKANMI, ABIDEEN ADEYINKA

INDUSTRIAL MICROBIOLOGY

Hanaa Bahaaeldin Mohamed Ibrahim Elkhouly

Department of Pharmacognosy

Dr. Mohammed Hussein Assi

Al-Mustansiriya University- College of Medicine – Department of Human Anatomy

Dr. SATHISH KUMAR MITTAPALLI

Department of Pharmaceutical Chemistry

Author Desk

Call for Paper (<https://ijpbms.com/index.php/ijpbms/Call>)

Editorial & Ethics Policies (<https://ijpbms.com/index.php/ijpbms/ethicspolicies>)

Author Guideline (<https://ijpbms.com/index.php/ijpbms/Guideline>)

Publication Fee (<https://ijpbms.com/index.php/ijpbms/PublicationFee>)

Review Process (<https://ijpbms.com/index.php/ijpbms/ReviewProcess>)

Plagiarism Policy (<https://ijpbms.com/index.php/ijpbms/PlagiarismPolicy>)

Reviewer Guidelines (<https://ijpbms.com/index.php/ijpbms/ReviewerGuidelines>)

Mode of Payment (<https://ijpbms.com/index.php/ijpbms/payfee>)

Indexing (<https://ijpbms.com/index.php/ijpbms/Indexing>)

10.47191/IJPBMS

SJIF IMPACT FACTOR: 8.163 (<https://sjifactor.com/passport.php?id=21685>)

Downloads

Manuscript Template (<https://ijpbms.com/ManuscriptTemplate.doc>)

Copyright form (<https://ijpbms.com/Cform.pdf>)

Current Issue

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/atom>)

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/rss2>)

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/rss>)

Information

For Readers (<https://ijpbms.com/index.php/ijpbms/information/readers>)

For Authors (<https://ijpbms.com/index.php/ijpbms/information/authors>)

For Librarians (<https://ijpbms.com/index.php/ijpbms/information/librarians>)

Make a Submission (<https://ijpbms.com/index.php/ijpbms/about/submissions>)

Open Journal Systems (<http://pkp.sfu.ca/ojs/>)

International Journal Of Pharmaceutical And Bio-Medical Science

© IJPBMS 2026 All right reserved.

Editor Email-Id: ijpbmseditor@gmail.com

Platform &
workflow by
OJS / PKP

(<https://ijpbms.com/index.php/ijpbms/about/aboutThisPublishingSystem>)

INTERNATIONAL JOURNAL OF PHARMACEUTICAL AND BIO-MEDICAL SCIENCE ISSN(PRINT) 2767-827X, ISSN(ONLINE) 2767-830X

Home (<https://ijpbms.com/index.php/ijpbms/index>)
/ Archives (<https://ijpbms.com/index.php/ijpbms/issue/archive>)
/ Vol. 5 No. 11 (2025): Volume 05 Issue 11 November 2025

Published: 2025-11-06

Articles

Hematologic Parameters, Oxidative Markers, and Histopathological Effects of Artocarpus Heterophyllus on Lead-Induced Mice (<https://ijpbms.com/index.php/ijpbms/article/view/821>)

Bohr Lete Edward, Owhorji Bright, G. P. Onyeso, Ekweme Bestman
574-577

[PDF](https://ijpbms.com/index.php/ijpbms/article/view/821/583) (<https://ijpbms.com/index.php/ijpbms/article/view/821/583>)

Evaluation of Neurobehavioral and Neuroinflammatory Alterations in Lead-Exposed Mice: Protective Effects of Artocarpus Heterophyllus Extracts and Rutin (<https://ijpbms.com/index.php/ijpbms/article/view/822>)

Bohr Lete Edward, Owhorji Bright, G. P. Onyeso, Ekweme Bestman
578-582

[PDF](https://ijpbms.com/index.php/ijpbms/article/view/822/584) (<https://ijpbms.com/index.php/ijpbms/article/view/822/584>)

Evaluation of Polyalthia Longifolia Leaf Extract Diuretics using Urine Volume Analysis and Electrolyte Excretion Potential (<https://ijpbms.com/index.php/ijpbms/article/view/801>)

Natasha Hana Julia Monim, Irene Sondang Lingga, Mustika Endah Pratiwi, Krisna Dewi
583-586

[PDF](https://ijpbms.com/index.php/ijpbms/article/view/801/585) (<https://ijpbms.com/index.php/ijpbms/article/view/801/585>)

Relationship Between Age, Gender, and Comorbrids with the Profile of Gallstone Types in Cholecystectomy Patients (<https://ijpbms.com/index.php/ijpbms/article/view/800>)

Bambang Arianto, Lustyafa Innasani Alifia, Nabila Risma Anjana, Agiel Jelang Ramadiansyah, Ghea Sukma, Nur Hamama Cahaya Kamila, Nurul Umairoh Ali
587-591

[PDF \(https://ijpbms.com/index.php/ijpbms/article/view/800/586\)](https://ijpbms.com/index.php/ijpbms/article/view/800/586)

The Effect of Broccoli Extract (*Brassica Oleracea* Var.) on the Kidney Glomerulus of Male Wistar Rats (*Rattus Norvegicus*) Induced by Alloxan
(<https://ijpbms.com/index.php/ijpbms/article/view/803>)

Winnie Nirmala Santosa, Dwi Martha Nur Aditya, Anita Dahliana, Karuniawan Yusuf Noviandi
592-596

[PDF \(https://ijpbms.com/index.php/ijpbms/article/view/803/587\)](https://ijpbms.com/index.php/ijpbms/article/view/803/587)

Red Onion Juice (*Allium Cepa* Linn) and *Carica Papaya* Seed Extracts Ameliorated the Toxic Effects of Chronic Consumption of Cassava Flakes, On Vision. (<https://ijpbms.com/index.php/ijpbms/article/view/819>)

Nelson Emirene Iyio, Bright Ichechi Owhorji, Harold Chris-Biriowu, Minini Odimabo
597-600

[PDF \(https://ijpbms.com/index.php/ijpbms/article/view/819/588\)](https://ijpbms.com/index.php/ijpbms/article/view/819/588)

Role of Carrot Leaf (*Daucus Carota*) Ethanol Leaf Extract Against Cadmium Induced Toxicity in Pituitary Gland of Adult Wistar Rats (<https://ijpbms.com/index.php/ijpbms/article/view/792>)

Chukwuemeka Otakpo, Ewunonu Edwin ojims, Clinton O Njoku, Eteudo, Albert, N, Okechukwu Anyigor- ogah
601-608

[PDF \(https://ijpbms.com/index.php/ijpbms/article/view/792/589\)](https://ijpbms.com/index.php/ijpbms/article/view/792/589)

In-Vitro Characterization of Novel Liposomal Alpha Lipoic Acid Formulation by WBCIL for Enhanced Bioavailability (<https://ijpbms.com/index.php/ijpbms/article/view/830>)

Dr. Poulami Gupta Banerjee, Dr. Atanuka Paul, Dr. Argha Chakraborty
609-620

[PDF \(https://ijpbms.com/index.php/ijpbms/article/view/830/590\)](https://ijpbms.com/index.php/ijpbms/article/view/830/590)

Author Desk

[Call for Paper \(https://ijpbms.com/index.php/ijpbms/Call\)](https://ijpbms.com/index.php/ijpbms/Call)

[Editorial & Ethics Policies \(https://ijpbms.com/index.php/ijpbms/ethicspolicies\)](https://ijpbms.com/index.php/ijpbms/ethicspolicies)

Author Guideline (<https://ijpbms.com/index.php/ijpbms/Guideline>)

Publication Fee (<https://ijpbms.com/index.php/ijpbms/PublicationFee>)

Review Process (<https://ijpbms.com/index.php/ijpbms/ReviewProcess>)

Plagiarism Policy (<https://ijpbms.com/index.php/ijpbms/PlagiarismPolicy>)

Reviewer Guidelines (<https://ijpbms.com/index.php/ijpbms/ReviewerGuidelines>)

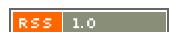
Mode of Payment (<https://ijpbms.com/index.php/ijpbms/payfee>)

Indexing (<https://ijpbms.com/index.php/ijpbms/Indexing>)

10.47191/IJPBMS

SJIF IMPACT FACTOR: 8.163 (<https://sjifactor.com/passport.php?id=21685>)

Downloads


Manuscript Template (<https://ijpbms.com/ManuscriptTemplate.doc>)

Copyright form (<https://ijpbms.com/Cform.pdf>)

Current Issue

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/atom>)

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/rss2>)

 (<https://ijpbms.com/index.php/ijpbms/gateway/plugin/WebFeedGatewayPlugin/rss>)

Information

For Readers (<https://ijpbms.com/index.php/ijpbms/information/readers>)

For Authors (<https://ijpbms.com/index.php/ijpbms/information/authors>)

For Librarians (<https://ijpbms.com/index.php/ijpbms/information/librarians>)

Make a Submission (<https://ijpbms.com/index.php/ijpbms/about/submissions>)

Open Journal Systems (<http://pkp.sfu.ca/ojs/>)

International Journal Of Pharmaceutical And

Bio-Medical Science

© IJPBMS 2026 All right reserved.

Editor Email-Id: ijpbmseditor@gmail.com

Platform &
workflow by
OJS / PKP

(<https://ijpbms.com/index.php/ijpbms/about/aboutThisPublishingSystem>)

Low APCs. Indexed in Scopus.

Affordable APC rates for researchers to get published faster.

[Open Medicine](#)

International Journal of Pharma Medicine and Biological Sciences

India | Universities and research institutions | Media Ranking

Country

Subject Area and Category

**Biochemistry, Genetics and
Molecular Biology**
Biochemistry, Genetics
and Molecular Biology
(miscellaneous)

Publisher

Medicine
Medicine (miscellaneous)
**Pharmacology, Toxicology
and Pharmaceutics**
Pharmacology,
Toxicology and
Pharmaceutics
(miscellaneous)

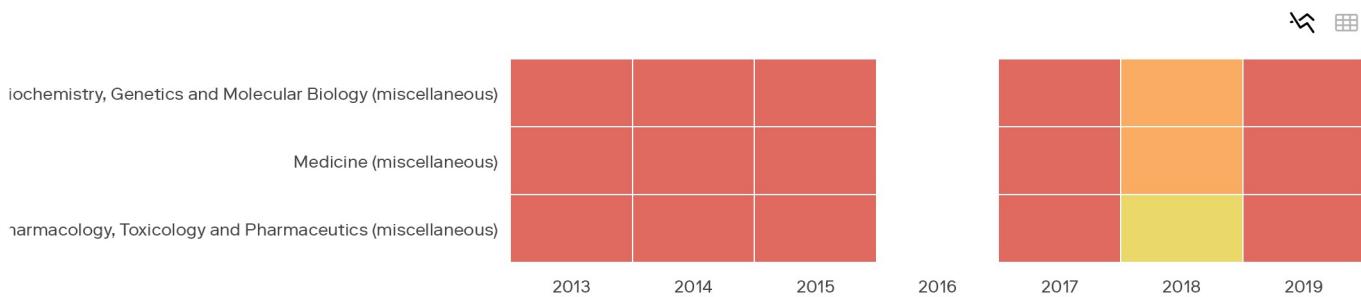
H-Index

2

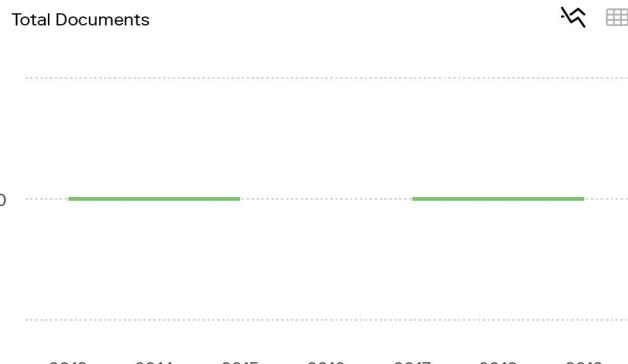
Publication type
Journals

ISSN
22785221

Coverage
-


Information
[Home](#)
[How to publish in this journal](#)

ijpmbs@ejournal.net



Scope

International Journal of Pharma Medicine and Biological Sciences (IJPBMS, ISSN 2278-5221) is a scholarly peer-reviewed open access journal related to pharma medicine and biological science. Our aim is to publish original, previously unpublished, research, survey and tutorial papers, plus case studies and short research notes, on both applied and theoretical aspects of Pharmaceutical Sciences, Medicine and Biological Sciences.

Quartiles

Discover more [Books](#) [science](#) [Data Management](#) [Computer Hardware](#) [Science](#) [Computer Science](#) [scientific](#) [Business & Productivity Software](#) [Sciences](#)

Discover more [\(+ Books\)](#) [\(+ science\)](#) [\(+ Data Management\)](#) [\(+ scientific\)](#) [\(+ Computer Science\)](#) [\(+ Sciences\)](#) [\(+ Computer Hardware\)](#)
[\(+ Science\)](#) [\(+ Business & Productivity Software\)](#)

R

4 years ago

% International Collaboration

t assign quartile". Are there any updates since
 data as of April 2021? Thank You.

0

2013 2014 2015 2016 2017 2018 2019

Cited documents

Uncited documents

3

2

1

0

Our data come from Scopus, they annually send us
 date is sent to us around April / May every year.
 on 17 May 2021. Therefore, the indicators for 2021
 022 and before that date we can't know what will

% Female Authors

0

2013 2014 2015 2016 2017 2018 2019

Estimated APC

2.36k

2.32k

2.28k

2.24k

2013 2014 2015 2016 2017 2018 2019

Juch for your participation.

Elsevier, which offers an annual copy of their

database. We understand that, since the date indicated by Scopus/Elsevier


Estimated financial value

(2016), the journal is no longer indexed in its database. While the citation window

icators of the journal (up to three years). However,

o consult the Scopus database directly as SJR are

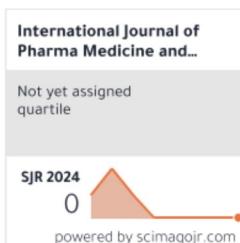
a static image of Scopus, which is changing every day.
Best Regards, SCImago Team

Elena Corera
7 years ago

Dear Sultan,

Documents related to SDGs

articles published in 2018 are not over yet (we are in September). 2018 indicators will not be available until June 2019. We cannot see what will happen in the future


With this journal, SCImago receives the data from Scopus / Elsevier annually and

to include, exclude or modify the data provided by

2018

2019

← Show this widget in your
own website

Just copy the code below
and paste within your html
code:

```
<a href="https://www.scimag
```

G SCImago Graphica

Explore, visually
communicate and
make sense of data
with our **new data
visualization tool**.

e possibility to dialogue through comments linked to a
ch general doubts about the processes of publication
om the publication of papers are resolved. For topics
ne usual channels with your editor.

Services

- Journal Rankings
- Country Rankings
- Journal Value

About us

- Who we are
- Contact us

SCImago's products

- SCImago Journal Country & Rank
- SCImago Institutions Ranking
- SCImago Media Ranking
- SCImago Iber
- SCImago Research Centers Ranking
- SCImago Graphica
- Ediciones Profesionales de la Información

Powered by:
Scopus®

© 2025 SCImago Journal & Country Rank

[Legal Notice](#) [Privacy Policy](#)