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Abstract 

A traditional way to optimize a complex optimization problem is to divide the problem into several subproblems and solve each 
subproblem separately or another problem that consists of some subproblems. Despite many attempts to define and solve various 
optimization problems in the container terminal logistics field, how to measure the importance of each subproblem is often ignored 
in many studies and remains a difficult issue. Most studies directly propose methods to solve a specific subproblem after stating 
the importance of the specific subproblem, with or without simply considering the effect of other subproblems as input. The 
advancement of machine learning techniques allows a new paradigm for understanding the importance of such optimization 
subproblems. In this study, a scheduling problem for export containers in a terminal is considered. The case considers scheduling 
subproblems on subsequent processing stages on yard cranes, internal trucks, and quay cranes. With the input of each stage’s 
processing time information (mean and standard deviation values) and the selected scheduling rule for each stage, the makespan of 
all containers’ processing is predicted. The numerical experiments show that the scheduling rules for quay cranes and internal 
trucks have the most significant impact on system performance. These finding challenges conventional approaches by revealing 
that not all subproblems contribute equally to system optimization. The proposed machine learning framework enables terminal 
operators to adapt their optimization focus to address high-impact areas, reducing computational complexity while providing a 
data-driven methodology for understanding interdependencies between operational components.  
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1. Introduction 

Recent review on container terminal logistics focused solely on defining various optimization problems and solving 
them. Even though various integrated problems, starting from the gate operation management up to the seaside 
operation, have been studied extensively [1,2], none of them could identify which subproblem is more important than 
the others and how much the effect would be when we optimize a certain subproblem. All reviews would list types of 
integrated problems simultaneously, and researchers would refer to the type of integrated problem they prefer to focus 
on, instead of dealing with important problems after properly observing the effect of optimizing each subproblem. The 
failure to identify important problems causes difficulties in optimizing the whole system. In other words, there is no 
way to understand whether the important integrated problems have been successfully defined or not. Such a condition 
is troublesome, considering that improperly defined integrated problems would cause the generation of only a local 
optimal solution for the whole problem, considering that several subproblems would be solved independently and have 
contradictory decisions between the defined problems. In addition to that, solving integrated problems is often 
conducted under the assumption of subsequent processes [3], which limits the ability to optimize the whole system 
properly.  

Machine learning opens opportunities to understand various behaviors of many systems. Studies conduct 
predictions that include big data are conducted widely in various fields, e.g., production scheduling [4], vehicle routing 
problem [5,6], hub location problem [7], ship berthing problem [8], container storage [9], etc. Despite the fast growth 
in the number of studies, studies that applied operations research and machine learning techniques only dealt with 
predefined (partial) optimization problems. Such a situation limits the whole system in obtaining global optimal 
solutions and can be resolved using machine learning techniques for understanding the whole system. The benefits of 
machine learning for understanding complete optimization problem characteristics are illustrated in Figure 1. As 
shown in Figure 1, combining traditional operations research methods with artificial intelligence opens new 
possibilities in solving optimization problems. In the simplest way, a specific subproblem (partial problem) can be 
solved using the combination of operations research and artificial intelligence. The subproblems include single 
machine scheduling, routing, or allocation problems. The new framework discussed in this study is the integrated 
problem understanding and solving. Utilizing machine learning techniques to observe the behavior of the whole system 
allows understanding relationships between subproblems and identifying subproblems that have a greater effect on the 
whole system’s performance. Given that any system’s behavior would be highly influenced by its data characteristics, 
the importance of subproblems could continuously change at different times depending on the situation of the system. 
Different from the first approach, the performance of the whole system is properly assessed and optimized, instead of 
only optimizing a certain subproblem without any observation of its influence to the whole system’s performance.  

Fig. 1. Benefits of implementing machine learning to understand optimization problems. 
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Details on the complete framework for utilizing machine learning are shown in Figure 2. Machine learning models 
are trained to understand good or bad behaviors of the system and are responsible as an alarm system to inform decision 
makers when any potential performance reduction in the near future is detected (1), as conducted in [4]. At this stage, 
all existing subproblems are listed and clearly defined with all possible solution methods for solving each subproblem 
(2a). The whole system operates simultaneously with a hypothesis on the importance of each subproblem (2b). The 
results of each subproblem solving (2c) become input data for machine learning models that evaluate how strong the 
influences of each subproblem are on the whole system’s performance (2d). The results are then used to identify most 
important subproblems that could be used to focus the next optimization phase on such set of subproblems. This 
strategy would not only reduce the computational time, but also ensure effective subproblem solving that significantly 
improves the performance of the whole system.  
 

Fig. 2. Framework for continuously evaluating the importance of subproblems solved by using various solution methods. 

The rest of the study is as follows. Section 2 explains the problem discussed in this study, which is the three-stage 
export container scheduling. Section 3 presents the proposed machine learning model. Section 4 shows the numerical 
experiments. Section 5 concludes the study and identifies potential topics for future studies. 

2. Problem Definition 

The three-stage export container scheduling is a scheduling problem that includes the container transportation using 
the yard cranes, internal trucks, and quay cranes. The system can be identified as a flow shop. The movement is 
illustrated in Figure 3 [10]. The optimization problem is defined as follows:  
• Input (parameters): 

1. A set of export containers to transport 
2. Processing time required by the yard crane to process each container 
3. Positioning time required by the yard crane to move to the starting point of each container after completing the 

processing of any previous container 
4. Processing time required by the internal truck to process each container 
5. Processing time required by the quay crane to process each container 

 



1392	 Aditya Saputra  et al. / Procedia Computer Science 269 (2025) 1389–13971406 Saputra and Singgih / Procedia Computer Science 00 (2025) 000–000 

• Output (decision variables):  
1. Scheduling rule applied on the yard crane (first-come-first-served or shortest processing time) 
2. Scheduling rule applied on the internal truck (first-come-first-served or shortest processing time) 
3. Scheduling rule applied on the quay crane (first-come-first-served or shortest processing time)  

• Constraints:  
1. The yard crane can only process at most one container at the same time. 
2. The internal truck can only process at most one container at the same time. 
3. The quay crane can only process at most one container at the same time. 
4. The export container processing by the internal truck can only be performed after the container processing by 

the yard crane is completed. 
5. The export container processing by the quay crane can only be performed after the container processing by the 

internal truck is completed. 
6. The container must be processed as long as the required processing time by each of the yard crane, the internal 

truck, and the quay crane. 
• Objective: 

Minimizing the makespan (latest completion time for all export containers) 

Fig. 3. Export container movement in a container terminal (from yard cranes at the bottom to the quay cranes at the top of the figure). 
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3. Proposed Regression Machine Learning Model 

Data considered for experiments in this study are listed in Table 1. The first part of the input data represents the 
problem itself, which consists of the mean and standard deviation values for processing times of the YC, the truck, 
the QC, and the ratio of the mean values (presented for each pair of equipment). The second part of the input data 
represents the optimization rule applied to each equipment (YC, truck, and QC). The observed rules are First-Come-
First-Served (FCFS) and Shortest Processing Time (SPT). Considering the problem-related features and the 
optimization decision features simultaneously is important to assess the effect of the optimization decisions on specific 
problem characteristics. The output for the prediction is the makespan, which is the latest completion time at the QC 
for any export container. Considering the numerical data type for the predicted value, regression machine learning 
models are used [5], instead of classification models that are required when class-type targets are predicted [4] or 
clustering techniques that are required when no target data exist. When discussing any optimization problem, dealing 
with numerical values allows observing more details on the system’s behavior when compared with the class-type 
target values, even though slightly more computational time might be required when dealing with numerical target 
data.  

Table 1. Data for this study. 

Data name Type  Description 

YC_mean_time Input Mean value of YC processing time for a single container 

YC_stdev_time Input Standard deviation value of YC processing time for a single 
container 

truck_mean_time Input Mean value of truck processing time for a single container 

truck_stdev_time Input Standard deviation value of truck processing time for a single 
container 

QC_mean_time Input Mean value of QC processing time for a single container 

QC_stdev_time Input Standard deviation value of QC processing time for a single 
container 

YC_per_truck_ratio Input Comparison between the YC and the truck mean processing 
times (YC/truck) 

YC_per_QC_ratio Input Comparison between the YC and the QC mean processing 
times (YC/truck) 

truck_per_QC_ratio Input Comparison between the truck and the QC mean processing 
times (YC/truck) 

YC_rule Input YC scheduling rule (0: First-Come-First-Served/FCFS, 1: 
Shortest Processing Time/SPT; one-hot encoding) 

truck_rule Input Truck scheduling rule (0: FCFS, 1: SPT; one-hot encoding) 

QC_rule Input QC scheduling rule (0: FCFS, 1: Shortest Processing SPT; 
one-hot encoding) 

makespan Output The latest completion time at the QC of any export container 

 
The proposed regression machine learning models are models that have been proven to outperform other methods 

for prediction purposes or models that have been widely considered by many studies: (1) linear regression (LR) [11], 
(2) support vector regression (SVR) [12,13], (3) random forest (RF) [11,14], (4) K-nearest neighbors (KNN) [15,16], 
(5) decision tree (DT) [17], and (6) gradient boosting (GB) [12]. 
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4. Numerical Experiments 

An Excel-based simulation is used to produce 500 instances that include the input and output data. In each instance, 
random scheduling rules (among the FCFS and SPT) are selected for each of the YC, truck, and QC. Range of the 
values for each feature is presented in Table 2. 

Table 2. Range of each feature in the generated data. 

Data name Range of values [min, max] 

YC_mean_time [2.8, 16] 

YC_stdev_time [1.48, 7.7) 

truck_mean_time [3.4, 14.5] 

truck_stdev_time [1.89, 7.73] 

QC_mean_time [2.9, 15] 

QC_stdev_time [1.34, 7.3] 

YC_per_truck_ratio [0.28, 3.4] 

YC_per_QC_ratio [0.33, 3.63] 

truck_per_QC_ratio [0.41, 2.4] 

YC_rule 0 or 1  

truck_rule 0 or 1  

QC_rule 0 or 1  

 
Correlations between features are presented in Figure 4. It is shown that the input features are not highly correlated 

with each other, except the ratio values, which are derived from other input features. Even though the correlations 
between the input features are low, some significant correlations could be observed between the input and output 
features, which would be observed further below. 

The experiments are conducted on Google Colab and based on sklearn, pandas, numpy, and seaborn Python 
libraries. The following experiment setting is used: (1) train-test split ratio of 80%:20%, and (2) StandardScaler 
normalization. For all of the models, whenever possible, the same random seed (that equals to 42) is used. Basic 
hyperparameter settings are used for each method. The results are shown in Table 3. Models with R2 values equal to 
more than 70% (LR, RF, and GB) are considered suitable for predicting the behavior of the system well. Among those 
models, LR has the least Root Mean Squared Error (RMSE) values and MSE values, while GB has the least Mean 
Absolute Error (MAE) values. 

The main output of this study is the rank of the feature importances. Such a rank would help decision makers to 
understand which aspect of the optimization problem they should be focusing on. Table 4 presents the feature 
importance results from the linear regression model for predicting makespan in the observed three-stage export 
container scheduling problem. The non-high correlation coefficients (<0.8) between features indicates the absence of 
significant multicollinearity among the variables. This ensures that all input features can be utilized without 
introducing information redundancy, which is essential for maintaining the stability and accuracy of the regression 
model. Therefore, the correlation matrix supports both the feature selection process and the validity of using a 
regression-based predictive approach.  

The analysis reveals that the scheduling rules have the most significant impact on system performance: QC_rule 
and truck_rule. The next important features are the mean processing times of the truck and the QC, which are highly 
related to the first two important features. When the features on the scheduling rules are compared with each other, it 
is concluded that optimizing QC and truck operations is much more important than optimizing the YC operation. In 
other words, having a complex optimization effort for the YC operation would not minimize the makespan 
significantly without dealing with the QC and truck optimization issues. Such an insight could also suggest setting 
weights on the objective factors related to the QC and truck higher than the YC’s when an integrated problem is solved.  
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Fig. 4. Correlations between features 
 

These findings suggest that terminal operators should focus on highly impactful parts of the system rather than 
attempting to simultaneously optimize all operational aspects. Having this information, decision makers would 
optimize their logistics system more effectively and efficiently. After identifying the most significant feature, e.g., the 
mathematical models n QC optimization rule, the decision makers need to test various optimization methods to solve 
the QC scheduling problem and observe the quality of the produced objective values for the whole system when 
implementing each method. The solution methods those must to be tested, include exact methods [8], mathematical 
model solvers [3], metaheuristics/algorithms [5], and simulation [3]. 

Table 3. Experiment result. 

Regression models R2 Root Mean Squared Error 
(RMSE) 

Mean Squared Error 
(MSE) 

Mean Absolute Error 
(MAE) 

LR 85.2% 15.9* 253.4* 13.1 

SVR 27.8% 35.1 1233.4 27.4 

RF 79.4% 18.8 352.0 15.0 

KNN 44.1% 30.9 956.6 24.6 

DT 50.5% 29.1 846.0 21.4 

GB 84.6% 16.2 263.7 12.9* 

 
As shown in Table 3, the regression models exhibit varying levels of predictive accuracy. Among them, Linear 

Regression, Gradient Boosting, and Random Forest demonstrate notably stronger performance, particularly with R-
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squared values exceeding the 70% threshold. This suggests that these models are better suited to capture the underlying 
relationships within the dataset, offering a more reliable basis for decision-making in predictive tasks. 

Table 4. Feature importances. 

Rank Feature Importance (coefficients of features) 

1 QC_rule 25.12 

2 truck_rule 22.00 

3 truck_mean_time 18.61 

4 QC_mean_time 17.20 

5 YC_per_truck_ratio 12.75 

6 YC_mean_time 4.22 

7 YC_per_QC_ratio 3.92 

8 QC_stdev_time 3.86 

9 YC_stdev_time 2.30 

10 truck_per_QC_ratio 1.44 

11 YC_rule 0.28 

12 truck_stdev_time 0.24 

 
Table 4 indicates a clear dominance of QC_rule in influencing the model's predictions. Its prominence among the 

features reflects the significant role of scheduling decisions in determining output behavior. This reinforces the 
practical insight that operational strategies beyond merely quantitative inputs can substantially shape predictive 
outcomes. 

This study differs from previous research by not only addressing a specific scheduling subproblem, but also by 
evaluating the relative contribution of each subcomponent using feature importance derived from machine learning 
models. While many prior studies in container terminal operations focus on optimizing individual subsystems 
independently, this approach considers the combined effect of multiple scheduling decisions across stages. The results 
indicate that scheduling rules for quay cranes and internal trucks are among the most influential in shaping overall 
system performance. This perspective supports more focused and data-driven optimization strategies, without 
disregarding the role of other components. 

5. Conclusion  

This study demonstrates the value of machine learning techniques in understanding and prioritizing optimization 
efforts in container terminal operations. The findings indicate that scheduling rules for quay cranes and internal trucks, 
along with their mean processing times, are the most critical factors affecting the overall system performance. This 
challenges conventional approaches that treat all subproblems with equal importance and suggests a more targeted 
optimization strategy. 

The proposed framework enables terminal operators to adapt their optimization focus based on changing 
operational conditions, reduces computational complexity by prioritizing high-impact areas, and provides a data-
driven methodology for understanding interdependencies between operational components. Future research should (1) 
consider real data, e.g., the ones collected using IoT technologies or the ones obtained from the design of real systems, 
(2) expand this approach to include other operational aspects, and (3) explore dynamic feature importance analysis 
that adapts to real-time operational conditions. Characteristics of the real data would affect the definition of the input 
features. Some new features might be introduced following the nature of the data, e.g., the probability distribution of 
the features, lower and upper quartiles of the feature values, or possibly some new features that are calculated based 
on some basic ones. Such strategies might help ensure a good performance of the regression models for dealing with 
the specific real data. When considering different data, e.g., the real data, the importance order of the features might 
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squared values exceeding the 70% threshold. This suggests that these models are better suited to capture the underlying 
relationships within the dataset, offering a more reliable basis for decision-making in predictive tasks. 

Table 4. Feature importances. 

Rank Feature Importance (coefficients of features) 

1 QC_rule 25.12 

2 truck_rule 22.00 

3 truck_mean_time 18.61 

4 QC_mean_time 17.20 

5 YC_per_truck_ratio 12.75 

6 YC_mean_time 4.22 

7 YC_per_QC_ratio 3.92 

8 QC_stdev_time 3.86 

9 YC_stdev_time 2.30 

10 truck_per_QC_ratio 1.44 

11 YC_rule 0.28 

12 truck_stdev_time 0.24 

 
Table 4 indicates a clear dominance of QC_rule in influencing the model's predictions. Its prominence among the 

features reflects the significant role of scheduling decisions in determining output behavior. This reinforces the 
practical insight that operational strategies beyond merely quantitative inputs can substantially shape predictive 
outcomes. 

This study differs from previous research by not only addressing a specific scheduling subproblem, but also by 
evaluating the relative contribution of each subcomponent using feature importance derived from machine learning 
models. While many prior studies in container terminal operations focus on optimizing individual subsystems 
independently, this approach considers the combined effect of multiple scheduling decisions across stages. The results 
indicate that scheduling rules for quay cranes and internal trucks are among the most influential in shaping overall 
system performance. This perspective supports more focused and data-driven optimization strategies, without 
disregarding the role of other components. 

5. Conclusion  

This study demonstrates the value of machine learning techniques in understanding and prioritizing optimization 
efforts in container terminal operations. The findings indicate that scheduling rules for quay cranes and internal trucks, 
along with their mean processing times, are the most critical factors affecting the overall system performance. This 
challenges conventional approaches that treat all subproblems with equal importance and suggests a more targeted 
optimization strategy. 

The proposed framework enables terminal operators to adapt their optimization focus based on changing 
operational conditions, reduces computational complexity by prioritizing high-impact areas, and provides a data-
driven methodology for understanding interdependencies between operational components. Future research should (1) 
consider real data, e.g., the ones collected using IoT technologies or the ones obtained from the design of real systems, 
(2) expand this approach to include other operational aspects, and (3) explore dynamic feature importance analysis 
that adapts to real-time operational conditions. Characteristics of the real data would affect the definition of the input 
features. Some new features might be introduced following the nature of the data, e.g., the probability distribution of 
the features, lower and upper quartiles of the feature values, or possibly some new features that are calculated based 
on some basic ones. Such strategies might help ensure a good performance of the regression models for dealing with 
the specific real data. When considering different data, e.g., the real data, the importance order of the features might 
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be different, which would require the decision makers to perform different optimization decisions (e.g., solving 
different scheduling problems, reducing certain operation parameters, if possible, etc.). 
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