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Virtual Screening, ADMET Evaluation, and Molecular Docking 
Approach in the Discovery of Novel Potential Sweetening 
Agent

ABSTRACT: This study presents a comprehensive in silico approach aimed at discovering novel artifi-
cial sweetener candidates through an integration of shape-based virtual screening, taste classification, 
ADMET evaluation, homology modeling, and molecular docking. Using saccharin as a template, com-
pounds were screened from a large high-throughput database employing vROCS software, followed by 
taste prediction via VirtualTaste and Virtuous Sweet/Bitter. Two promising candidates were identified 
with Compound 1 exhibiting superior binding affinity against a homology-modeled human T1R2-T1R3 
receptor, as evidenced by its docking score of –77.81 kcal/mol. ADMET analysis further revealed fa-
vorable pharmacokinetic properties for the compounds, suggesting their potential as safer non-caloric 
sweeteners. The integrative strategy not only streamlines candidate selection but also underlines the 
utility of molecular modeling in food science. Nevertheless, experimental validation and sensory evalu-
ation are needed to confirm these findings and establish the compounds’ efficacy and safety profiles. 
These promising results encourage further in vitro and in vivo studies.
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1. Introduction 

Sweetness is one of the important factors 
in the enjoyment of food and food products. Its 
presence provides a pleasurable sensation by 
stimulating the taste buds and activating reward 
centers in the brain [1]. The high levels of sugar 
consumption in our society are influenced not 
only by its taste appeal but also by its pervasive 
presence in the modern food landscape, making 
it nearly impossible to avoid [2]. This has contrib-
uted to obesity which then leads to various health 
issues including cardiovascular diseases, type II 
diabetes mellitus, even cancer [3].

Artificial sweeteners have been introduced as 
food additives to replace sugar, aiming to reduce 
caloric intake and manage blood glucose levels. 
However, many of these compounds exhibit un-
desirable aftertastes, such as bitterness or a me-
tallic flavor, which can impact their acceptability 
[4]. Therefore, there is a need to develop new 
sweetening agents that offer minimal to zero ca–
lorie intake while minimizing or eliminating their 
aftertaste.

Molecular modeling has been used in the field 
of drug discovery and development as an effec-
tive tool for designing and screening new can-
didates of bioactive compounds prior to their 
activity evaluation [5]. Beyond pharmaceuticals, 
molecular modeling has also found in application  
fields such as food science, where it is employed 
to investigate interactions between macro- and 
micronutrients with specific biological targets, 

as well as to assess food safety and potential ha–
zards [6].

Numerous studies have explored the develop-
ment of novel sweetening agents through a com-
bination of structure-based approaches and ma-
chine-learning classifiers [7-9]. This study aimed 
to identify new artificial sweeteners by employ-
ing virtual screening methods that integrate 3D 
shape-based similarity, followed by consensus 
evaluation using a sweetness prediction module. 
The resulting compounds were then comprehen-
sively evaluated for their ADMET properties and 
examined for potential binding interactions with 
human taste receptors using molecular docking 
and molecular dynamics.

2. Materials and methods 

2.1. Hardware and software
The hardware used in this study was a stan-

dard personal computer (Intel Core i7-9700F 
3.00 GHz, RAM 16 GB) with Windows 10 opera–
ting system. A range of software was employed 
such as vROCS (OpenEye, Cadence Molecular Sci-
ences, Santa Fe, NM, USA) [10], OMEGA (Open-
Eye, Cadence Molecular Sciences, Santa Fe, NM, 
USA) [11], Molegro Virtual Docker 7.0 (Molexus, 
Odder, Denmark) [12], GROMACS 2022.2 [13], 
gmx_mmpbsa [14], and Uni-GBSA [15]. In addi-
tion, several web-based tools were utilized such 
as VirtualTaste (https://insilico-cyp.charite.
de/VirtualTaste/) [16], Virtuous Sweet/Bitter 

Figure 1. Virtual screening scheme in this study
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(https://virtuous.isi.gr/#/sweetbitter) [17], AD-
METLab 3.0 (https://admetlab3.scbdd.com/) 
[18], AlphaFold (https://alphafold.ebi.ac.uk/) 
[19], COACH (https://seq2fun.dcmb.med.umich.
edu//COACH/) [20], and Verify3D (https://
saves.mbi.ucla.edu/) [21].  

2.2. Methods
2.2.1. Selection of template molecule and data-

base curation
Among the various artificial sweetening agents 

available, saccharin was chosen as the template 
structure for three-dimensional shape-based 
screening due to its simple and rigid scaffold, 
making it an ideal starting point for designing 
small-molecule sweeteners [22]. The three-di-
mensional structure of saccharin was retrieved 
from PubChem (CID: 5143) and screened against 
the Mcule High-Throughput Screening (HTS) da-
tabase (Mcule, Budapest, Hungary). Prior to the 
screening process, the database was prepared 
by generating conformers using the OMEGA soft-
ware with the rocs module.

2.2.2. Shape-based screening
Initially virtual screening was performed using 

vROCS software. The molecular shape query of 
saccharin was then used to screen against the 
prepared databases to obtain hit compounds 
with TanimotoCombo score not less than 1.2.  Af-
terwards, the result was removed from duplicate 
compounds.

2.2.3. In silico taste classification
The molecules obtained from the previous 

step were evaluated for their predicted taste 
using two web servers: VirtualTaste and Virtu-
ous Sweet/Bitter. Compounds predicted to have 
a sweet taste by both algorithms were advanced 
to the next step.

2.2.4. ADMET evaluation
ADMET evaluation was conducted for the 

compounds obtained from the previous step. Ad-
metLab 3.0 was used as the tool to ensure that 

the potential sweetener compound possesses fa-
vorable ADME profile as well as free from toxic 
moiety.

2.2.5. Homology modeling and binding site pre-
diction of human sweet receptor

Homology modeling was performed to con-
struct the 3D structure of the human T1R2-T1R3 
receptor using AlphaFold. The canonical amino 
acid sequence of the Venus Fly Trap (VFT) do-
main of the human T1R2-T1R3 receptor was ob-
tained from Q8TE23 and Q7RTX0 reported in the 
Uniprot database [23]. Next, the obtained amino 
acid sequences were used to search for templates 
using hetero-oligomeric protein model building 
model. The PDB structure (ID 5X2P) of the ligand 
binding domain of the medaka fish taste recep-
tor T1R2a-T1R3 was used as a template to gene–
rate the final model [24]. The binding site predic-
tion was performed using COACH. Ultimately the 
structure was verified using Verify3D.

2.2.6. Molecular docking
Molecular docking was performed against 

the constructed receptor using Molegro Virtual 
Docker 7.0. Binding site area was determined using 
the previously obtained data. Moldock Score and 
Moldock SE were used as scoring function and 
placement function, respectively [12]. The evalu-
ation was undertaken by analyzing both docking 
scores as well as the amino acid-ligand interac-
tions.

2.2.7. Molecular dynamics and free energy calcu-
lation

Protein and ligand complexes were further 
processed with pdb2gmx module in GROMACS 
2022.2. Protein was modeled using the AM-
BER99SB-ILDN force field [25], while ligand pa-
rameters were characterized using GAFF2-based 
ACPYPE [26], with TIP3P as the water model 
[27]. The protein-ligand complex was placed 
in a triclinic simulation box with a minimum 
distance of 1.0 nm from the box wall. NaCl ions 
were added to neutralize the system at a speci-
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fied concentration. Simulations were run with 
periodic boundary conditions, using the particle-
mesh Ewald method and fast Fourier transform. 
The energy minimization stage was performed 
with the steepest descent algorithm up to 50,000 
steps. The system was then equilibrated in two 
phases: first using the NVT ensemble with the 
Nosé-Hoover thermostat for 125,000 steps, fol-
lowed by NPT equilibration using the Verlet cut-
off scheme [28]. The production simulations were 
run in the NPT ensemble with Parrinello-Rahman 
pressure coupling at a temperature of 310 K [29]. 
The entire simulation series was performed with 
a total production time of 20 ns. Free energy cal-
culations were performed using gmx_MMPBSA 
combined with Uni-GBSA, applying the Molecular 
Mechanics Generalized Born Surface Area (MMG-
BSA) method.

3. Results and discussion 

Virtual screening is one of the most powerful 
tools in the field of molecular modelling, where 
it has been proven to accelerate the process of 
discovery of drug. Its applications extend beyond 
drug development, including the discovery of 
novel sweeteners. For example, Shoshan-Galec-
zki et al. utilized virtual screening with a data-
set of food-related chemicals (FooDB) and FDA 
GRAS compounds, employing molecular docking 
and fingerprint analysis. This approach identified 
potential sweeteners based on carbohydrate ana-
logs [8]. Similarly, Goel et al. successfully identi-
fied potential sweeteners from plant secondary 
metabolites using a combination of molecular 
docking and taste classification models [9]. In-
spired by the latter approach, this study aims to 
discover novel artificial sweeteners from com-
mercially available compounds.

Shape-based similarity is a method used to 
evaluate the resemblance of one molecule to ano–
ther. This approach relies on the three-dimen-
sional structure of a molecule, represented by 
its volume or surface. A compound is generally 

considered similar to a template if there is a sig-
nificant overlap between their volumes [30]. 
Due to its efficiency and accuracy, this method is 
commonly employed as an initial step in virtual 
screening workflows as shown in Figure 1 [31]. 
In this study, vROCS software was employed to 
screen the Mcule HTS database, which consists 
of over 1.7 million compounds [10]. The struc-
ture of saccharin was selected as the template 
for shape similarity due to its favorable molecu-
lar properties, including a compact size and the 
absence of rotatable bonds. These characteristics 
were considered advantageous as they minimize 
the likelihood of diverse interaction modes with 
the taste receptor and reduce variability in phar-
macokinetics and toxicity profiles [32,33].

The ROCS algorithm is used to measure the 
similarity between two compounds by evalua–
ting not only their three-dimensional shape simi-
larities but also their chemical similarities, as 
defined by pharmacophore features. This simila–
rity is quantified using Tanimoto Combo scores, 
which range from 0 to 2; higher scores indicate 
greater similarity in both shape and features 
[10,34]. In this study, the default feature of sac-
charin in the software (Figure 2) was utilized as 
its already conformed to the AHBX glucophore 
model of Shallenberger-Acree-Kier [35,36]. Tani-
moto Combo score threshold of 1.2 was applied 
for screening, since it has been widely employed 
in previous virtual screening studies [37,38]. As 
a result, 463 compounds with Tanimoto Combo 
scores ranging from 1.55 to 1.20 were success-
fully identified. Furthermore, the assessment of 
structural diversity among the hit compounds, 
performed using PCA analysis of ECFP4 finger-
prints [39], confirmed that the hits occupy a di-
verse structural landscape (Figure 3). In this vi-
sualization, spatial proximity indicates structural 
similarity, while the color of the points corres–
ponds to the ROCS TanimotoCombo score.

The obtained compounds were subsequently 
classified in silico for their predicted taste pro-
files using the VirtualTaste and Virtuous Sweet/
Bitter web servers in a parallel way [16,17]. Both 
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tools predict the taste of compounds based on 
training datasets of various compounds with 
known taste profiles, utilizing machine learning 
algorithms. VirtualTaste employs a Random Fo–
rest algorithm, while Virtuous Sweet/Bitter uses 
a Light Gradient-Boosting machine. This process 
identified two compounds that satisfied both pre-
diction methods (Figure 4). Structural analysis 
revealed that both compounds contained moie–
ties commonly associated with sweetness, such 
as polyhydroxy groups and amino acid-like func-
tional groups [36]. However, Compound 2 was 
also predicted to have a potential bitter taste by 
the VirtualTaste web server. This prediction is 
likely attributable to the presence of a methylthi-

ane moiety, which has been previously linked to 
bitterness in sucrose analogs [40].

The subsequent step involved evaluating both 
compounds for ADMET (Absorption, Distribution, 
Metabolism, Excretion, and Toxicity) properties 
using ADMETLab 3.0 and then compared with 
saccharin (Table 1) [15]. The analysis revealed 
that Compound 1 exhibited unfavorable absorp-
tion characteristics, as indicated by its predicted 
CaCo-2 permeability, which could potentially be 
advantageous as a non-caloric sweetener. Addi-
tionally, Compound 1 was identified as a predic–
ted substrate of CYP2C9, an enzyme integral to 
the biotransformation of endogenous molecules 
such as steroids, melatonin, retinoids, and arachi-

Figure 3. Chemical space visualization of hit compounds using PCA plot

 

Figure 2. 2D structure of saccharin (left) and its structural features used as search query for the virtual 
screening step (right)
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donic acid [41]. Conversely, although Compound 
2 possess the same unfavorable absorption cha–
racteristics, it was predicted that this compound 
exhibits moderate BBB penetration, which is un-
favorable characteristic for a food additive. Fur-
thermore, this compound also demonstrated in-
teractions with multiple CYP isoforms, including 
CYP2C19, CYP2C9, and CYP2D6, and displayed a 
moderate plasma clearance profile. Importantly, 
both compounds were predicted to possess mode–
rate hepatotoxicity. While this finding warrants 
cautious interpretation, it is noteworthy that sac-
charin itself shows a high predicted probability of 
hepatotoxicity. This prediction is supported by in 
vivo animal studies as well as a reported case in 
patient, highlighting the need for careful evalua-

tion of potential liver-related adverse effects [42-
44]. Although these findings require validation 
through further studies of our compound, they 
provide a preliminary framework for further ex-
ploration, particularly in the development of a 
safe novel sweetening agent [45].

Aside from its molecular structure, the inter-
action between sweetening agents and sweet 
taste receptors is crucial for understanding the 
underlying mechanism. However, a significant 
challenge lies in the absence of a 3D structure for 
the human T1R2-T1R3 receptor, necessitating 
the use of homology modeling to predict the pro-
tein structure from its primary sequence [46]. In 
this study, AlphaFold was utilized to construct the 
receptor structure, employing the ligand-binding 

Table 1. ADMET analysis

 Compound 1 Compound 2 Saccharine 

Absorption 

CaCo-2 permeability -5.344 (Negative) -4.965 (Negative) -5.978 (Negative) 
Pgp inhibitor Negative  Negative Negative  
Pgp substrate Negative Negative Negative 
Distribution  
PPB 34 % (weak binder) 35.5% (weak binder) 94.3% (strong binder) 
BBB Negative Moderate Negative 
Metabolism  
CYP 1A2 No interaction No interaction No interaction 
CYP 2C19 No interaction  Substrate No interaction 
CYP 2C9 Substrate Substrate No interaction 
CYP 2D6 No interaction Substrate No interaction 
CYP 3A4 No interaction No interaction No interaction 
Excretion  
T1/2 1.712 hours (short half-

life) 
1.434 hours (short half-
life) 

1.722 hours (short half-
life) 

Toxicity  
hERG blockers 0.024 (low probability) 0.037 (low probability) 0.013 (low probability) 
Ames toxicity 0.190 (low probability) 0.114 (low probability) 0.011 (low probability) 
Rat oral acute toxicity 0.220 (low probability) 0.030 (low probability) 0.066 (low probability) 
Carcinogenicity 0.288 (low probability) 0.210 (low probability) 0.024 (low probability) 
Human hepatotoxicity 0.357 (medium 

probability) 
0.459 (medium 
probability) 

0.907 (high probability) 



MPI (Media Pharmaceutica Indonesiana) ¿ Vol. 7 No. 2 ¿ December 2025130

domain of medaka fish as a template (Figure 5) 
[19,24]. The results of protein structure qua–
lity analysis show that of the 852 total residues 
in the protein model, the majority (91.8%) are 
in the “most favored” region on the Ramachan-
dran map, which reflects stable and ideal phi 
and psi angle conformations. A total of 6.4% of 
residues are in the “additionally allowed” region, 
which is slightly looser but still acceptable, while 
1.2% of residues are in the “generously allowed” 
region which is less common and slightly more 
susceptible to distortion. Only 0.5% of residues 
were found in the “disallowed” region, indicating 
a highly unstable conformation and should be 
avoided. In addition, this analysis also recorded 
the number of glycine (69) and proline (49) resi-
dues, which are characterized by high flexibility 
or restriction in the protein structure, respective-
ly. Overall, with more than 90% of the residues 

in the most favorable regions, the model shows 
good quality, meeting the standards expected for 
protein models with a resolution of at least 2.0 Å 
and an R factor of no more than 20%.

Furthermore, binding site analysis of the pro-
tein revealed the following amino acids: Asn 68, 
Trp 72, His 145, Ser 146, Ser 147, Gly 168, Ala 
169, Ser 170, Tyr 218, Glu 301, Ala 302, and Gln 
389, with a C-score of 0.41 and a cluster size of 
52. The C-score represents the confidence level 
of the prediction, ranging from 0 to 1, where a 
higher score indicates greater reliability. Cluster 
size refers to the total number of templates in a 
particular cluster. Based on the modeling results 
using Verify3D, 65.49% of the residues achieved 
an averaged 3D-1D score ≥ 0.1. This means that 
fewer than 80% of the amino acids scored ≥ 0.1 in 
the 3D/1D profile. This area is located in the VFT 
domain of T1R2 receptor, which is in accordance 
with the previous study [33,47].

 Figure 4. Compounds obtained from virtual screening process; Compound 1 (1-(2-Amino-2-oxoethyl)
cyclopentane-1-carboxylic acid (left)) and Compound 2 (2-(Thian-4-yl)propane-1,3-diol 
(right))

Table 2. Molecular docking result

Compound Docking score 
(kcal/mol) 

Amino acid residue interaction  

Hydrogen bond Electrostatic 
interaction 

Steric interaction 

Compound 1 -77.81 C=O amide with Ser146, Glu148 
C=O carboxylic acid with Tyr218, 
O-H carboxylic acid Ser147, 
Gly168, Ser170 

- C-H cyclopentane 
ring with Ala302 

Compound 2 -71.08 O-H alcohol with Ser147, Gly168, 
Ser170, O-H alcohol with His145, 
Gly168 

- - 

Saccharin -74.96 S=O sulfonamide with Ser146, C=O 
lactam with Ser170 

- C=O lactam with 
Ser147 

Virtual Screening, ADMET Evaluation, and Molecular Docking Approach in the Discovery
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Molecular docking analysis was conducted 
using the binding site defined by key amino acids 
identified in the preceding step. The binding site 
in Molegro was specified as a spherical region, 
where in this study was centered at coordinates 
(x = 50, y = 40, z = 5) with a radius of 12. The 
MolDock SE (Simplex Evolution) algorithm was 
utilized to generate docking poses through 100 
replicates, and the MolDock Score was employed 
to assess the resulting conformations. Both al-
gorithms were set up to ensure the precision of 
hydrogen bond interactions by optimizing and 
enforcing the proper directionality of the hy-
drogen bonds formed. The findings indicate that 
although all compounds showed comparable re-
sults, Compound 1 exhibits a slightly superior 
binding score (-77.81 kcal/mol) compared to 
both Saccharin (-74.96 kcal/mol) and Compound 
2 (-71.08 kcal/mol). Additionally, the binding in-
teraction patterns reveal that most compounds 
interact with the amino acid residues identified 
through COACH analysis (Table 2). Compound 1 
has shown a higher amount of identical hydro-
gen bond interactions to the predicted amino 
acid residues compared to other compounds. 
Compound 1 exhibits hydrogen bond interac-
tions contributed by both its carboxylic acid and 
amide moiety. In contrast, Compound 2 is pre-
dicted to display lower sweetness, attributed to 

the absence of significant steric and electrostatic 
interactions. Although it contains a bulky thia–
nylpropane moiety, this group does not engage 
in any interactions with the surrounding amino 
acid residues. The detailed plot of ligand-amino 
acid residues interaction can be seen in Supple-
mentary File.

Ultimately, molecular dynamics simulation 
of three complexes for 20 ns showed profile of 
ligand-protein stability. The RMSD plots (Figure 
6) show the differences in complex stability over 
the 20 ns simulation. Saccharin has the lowest 
and most stable RMSD, generally below 0.4 nm, 
indicating that the Saccharin-receptor complex 
maintains a consistent conformation throughout 
the simulation. This is mainly due to the relative-
ly rigid and planar structure of saccharine. Mean-
while Compound 1 has a slightly higher RMSD, 
ranging from 0.4-0.7 nm, but remains relatively 
stable without significant fluctuations, support-
ing the docking results indicating good affinity 
for the receptor. In contrast, Compound 2 exhi–
bits the highest RMSD, reaching 1.25-1.7 nm with 
significant fluctuations since the beginning of the 
simulation, indicating that the complex is less 
stable and undergoes significant conformational 
changes. Overall, these RMSD patterns are con-
sistent with affinity, saccharin is the most stable, 
followed by compound 1, while compound 2 ex-
hibits the lowest stability during molecular dy-
namics.

 
Figure 5. 3D structure of T1R2-T1R3 receptor constructed from homology modelling with its domain
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The RMSF plot (Figure 7) shows the fluctuation 
levels of key residues in the binding pocket for the 
three complexes during MD simulations. Saccharin 
generally has induced the lowest RMSF values ​​at 
almost all residues, such as His145 (0.164 nm), 
Ser146 (0.159 nm), and Ser147 (0.190 nm), indi-
cating that saccharin binding makes this region 
more stable. Compound 1 shows a fluctuation 
pattern that is relatively similar to Saccharin, 
with slightly higher RMSF values ​​but still within 
the stable range, for example Ser147 (0.209 nm) 
and Ser170 (0.194 nm), thus supporting the sta-
bility of the interaction as reflected in the dock-

ing results. In contrast, Compound 2 shows the 
highest fluctuations at most residues, such as 
Ser147 (0.284 nm), Glu148 (0.314 nm), Tyr218 
(0.339 nm), and Ala302 (0.303 nm), indicating 
that this complex is less stable and more dynamic 
in the pocket. Overall, this RMSF pattern shows 
that Saccharin and Compound 1 are able to main-
tain a more rigid binding environment than Com-
pound 2, thus in line with better binding affinity.

Free energy calculation using molecular 
mechanics with generalized born surface area 
(MMGBSA) results show that Saccharin has the 
strongest binding energy with a total value of ap-

Figure 6. RMSD plot of ligand-protein interaction 

Figure 7. RMSF plot of protein residues in the presence of ligand
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Figure 8. Binding free energy analysis of the three ligands: (a) Compound 1 shows stable interactions; 
(b) Compound 2 displays weaker energetic contributions; and (c) Saccharin exhibits the 
strongest and most consistent binding energy

proximately -14.64 kcal/mol, reflecting the sta-
bility of its interaction as a reference sweetener 
(Figure 8). Compound 1 also shows a fairly stable 
energy of approximately -12.62 kcal/mol, which 
is in line with the docking results and supports 
its position as a prime candidate for the virtual 
screening process. Meanwhile, Compound 2 has 
a total energy of approximately -11.96 kcal/mol, 
which is weaker than the other two ligands. Over-
all, these energy patterns strengthen the finding 
that Saccharin and Compound 1 are able to main-

tain a more stable interaction during molecular 
dynamics, while Compound 2 shows a lower af-
finity.

Hydrogen bond occupancy analysis (Table 3) 
shows the stability of interactions between key 
residues of the sweetener receptor and the three 
ligands tested during molecular dynamics simu-
lations. Saccharin has the most stable hydrogen 
bond pattern, characterized by very high occu-
pancy especially in the Ser147-Side (42.66%), 
Ser147-Main (12.44%), and Ser170-Side (8.39%) 
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Donor Acceptor Occupancy (%) 

Ser147-Main Compound 1-Side 3.3 
Gln389-Side Compound 1-Side 1.2 
Val277-Main Compound 1-Side 2 
Ser147-Side Compound 1-Side 1 
Glu148-Main Compound 1-Side 0.35 
Ser170-Main Compound 1-Side 0.25 
Ser147-Side Compound 2-Side 0.35 
Ser147-Main Compound 2-Side 0.25 
Ser147-Side Saccharin-Side 42.66 
Ser147-Main Saccharin-Side 12.44 
Saccharin-Side Ser170-Side 8.39 
Ser170-Main Saccharin-Side 2.7 
Saccharin-Side Asp190-Side 0.4 
Saccharin-Side Tyr218-Side 0.75 

interactions, confirming its role as a reference 
ligand with strong affinity. Compound 1 shows 
several fairly stable hydrogen bonds, such as 
Ser147-Main (3.3%), VAL277-Main (2.0%), and 
Gln389-Side (1.2%), indicating that although its 
binding is not as strong as saccharin, this ligand 
is still able to maintain a structurally relevant in-
teraction pose in the receptor pocket. In contrast, 
Compound 2 only produces marginal interactions 
with occupancy in the range of 0.25-0.35%, indi-
cating a weaker and less stable binding through-
out the simulations. Overall, these results support 
the docking findings that place Compound 1 as a 
sweetener candidate compared to Compound 2, 
while also demonstrating the consistency of sac-
charin’s dynamic behavior as a template ligand.

4. Conclusions 

This study successfully identified novel artifi-
cial sweetener candidates using molecular mo–
deling techniques, combining shape-based virtu-
al screening, taste classification, ADMET evalua-

tion, homology modeling, molecular docking, and 
molecular dynamics. Two promising compounds 
were discovered, with Compound 1 demonstra–
ting superior binding affinity and a favorable 
interaction profile with the human T1R2-T1R3 
sweet taste receptor based on its docking score. 
Despite these advancements, further research is 
needed to both verify the actual taste (electronic 
tongue analysis, hedonic taste evaluation) and 
validate the safety, efficacy, and sensory proper-
ties of these compounds through in vitro and in 
vivo studies.
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