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ABSTRACT 

In the era of Industry 4.0, utilizing big data to make real-time decisions becomes possible. In the mobility and trans-
portation area, including public transportation services, innovative practices could be incorporated to make better de-
cisions for the system and its users. This study proposes a novel dynamic bus routing model. In the proposed mathe-
matical formulation, previous bus routes are considered when designing new routes while minimizing the changes in 
the routes. Such a decision on minimizing the changes is made to provide a better experience by the bus passengers. In 
the numerical experiments, various data sets are solved. This study could be an initial study for the next studies to 
discover other potential problems to solve within the context of big data and Industry 4.0. 
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1. INTRODUCTION 

The advancements of big data and Internet of Things 
technologies enable various new possibilities, including 
in the field of logistics (Wang et al., 2016). Some interest-
ing new ideas are the possibility to discover cargo move-
ments and perform accurate predictions on future delive-
ries (Zhong et al., 2015; Chen et al., 2021). More accu-
rate decision making can also be conducted in a real-time 
fashion, considering various dynamics and changes in 
real situations, e.g., price fluctuations and dynamic 
changes caused by people’s behavior (Singgih and Kim, 
2020; Singgih et al., 2024). Using the latest technology, it 
is possible to understand changes in people’s movements, 
e.g., the location sensors on smartphones, etc. In fact, the 
fast development of sensors and big data opens great op-
portunities to utilize resources better and improve systems’ 
efficiency. In other words, to take advantage of the devel-
oped technology, more methods that deal with real-time 

planning must be implemented to deal with the real-time 
data and solve actual problems (Chai et al., 2025). 

Several studies discussed the bus routing problem, as 
listed in Table 1. In most cases, the static version is stu-
died with models that only generate new bus routes, in-
stead of considering the old and new routes simultaneous-
ly and observing the route changes. In these studies, bus 
routes are determined considering the given people 
movement demands and the bus network. The studies are 
divided into two subgroups based on whether all people 
movement demands are satisfied or not. The first sub-
group (that did not consider any bus route changes and 
did not ensure people movement demand satisfaction) is 
discussed as follows. In general, the studies minimized 
the total bus travel times (Ma et al., 2023; Xiong et al., 
2025), as normally considered in many routing studies. 
The studies in this subgroup did not ensure the people 
movement demand satisfaction. To deal with this limita-
tion, the studies minimized the number of unsatisfied 
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movement demands or maximized the number of passen-
gers, as conducted in Ton et al. (2017) and Tan et al. 
(2023). Studies in the second subgroup (that did not con-
sider any bus route changes, but ensured people move-
ment demand satisfaction) mainly minimized the passen-
ger waiting times (Chow et al., 2024; Yuan et al., 2025). 
All of the studies above proposed different solution me-
thods (e.g., mathematical model, algorithm, and machine 
learning-based optimization methods). 

Most studies, including the studies mentioned 
above, did not consider bus route changes. As stated in 
the introduction section, the development of information 
technology enables dynamic and real-time bus routing, 
which would ultimately reduce bus operational costs 
while providing better passenger satisfaction. Most ex-
isting studies ignore the initial routes and design any 
new routes from scratch, which is not practical, consi-
dering that a lot of changes in the routes would make the 
passengers much less comfortable because understand-
ing and adapting to the route changes would be difficult. 
It is necessary to deal with changes in the real system 
appropriately (Gu et al., 2022) to ensure people’s satis-
faction. Making real-time decisions would not only im-
prove the performance of the system but also attract 
more positive responses from the service users (passen-
gers) (Larsen et al., 2023). 

The dynamic bus routing considers route changes 
from old (current) routes to new set of routes that must 
occur as a response to changes in people flows (Avila-
Ordóñez et al., 2022). Avila-Ordóñez et al. (2022) consi-
dered such a dynamic bus routing problem and solved the 
problem using a genetic algorithm method. Their study 
minimized the penalty of route change and total passen-
ger travel times. Given the nature of the genetic algorithm, 

there is no guarantee of producing optimal solutions for 
the problem. To enrich the studies in this field, our study 
proposes a novel way to deal with the dynamic bus 
routing problem. Our study proposes a mathematical 
model to define the dynamic bus routing problem and 
solves the problem optimally. Such a study typically in-
troduces a novel problem formally using a mathematical 
model representation and solves the problem optimally 
using a mathematical solver, e.g., Gurobi in this study 
(Doan et al., 2018; Anthara et al., 2024). The research 
question is: “How can we revise current bus routes when 
the demand for passengers’ movements is changed while 
ensuring the least possible changes in the routes? The 
route similarity is maximized as a way to allow a smooth 
adaptation of the passengers due to the possible frequent 
route changes. Such similar routes are required especially 
to assist a certain number of passengers who are still not 
that familiar with using technology that allows real-time 
bus route sharing. To ensure the minimization of the total 
bus travel times, our study introduces a maximum thre-
shold that limits the increase of total bus travel times, 
when the new routes are applied.  

The rest of the study is as follows. Section 2 defines 
the discussed dynamic bus routing optimization problem. 
Section 3 proposes the mathematical model. Section 4 
presents the numerical experiments. Section 5 concludes 
the study and list some potential future research topics. 

2. PROBLEM DEFINITION 

The dynamic bus routing problem is solved anytime it 
is considered necessary to provide better services to the 
passengers by the decision makers, e.g., when a response to 

Table 1. Comparison to earlier studies 

Study Bus route 
change 

All people  
movement  

demand  
satisfaction 

Objective Proposed method 

Ma et al. (2023) No No Minimizing total bus travel times Mathematical model, clustering and 
adaptive large neighborhood search 

Tan et al. (2023) No No Maximizing total passenger travels Mathematical model 

Xiong et al. (2025) No No 
Minimizing total bus travel times, un-
satisfied requests, violated time win-
dows, and maximizing profit 

Mathematical model, variable  
neighborhood search 

Tong et al. (2017) No No Maximizing number of passengers Lagrangian decomoposition 

Yuan et al. (2025) No Yes Minimizing bus bunching and passen-
ger waiting times 

Mathematical model, branch and 
bound 

Chow et al. (2024) No Yes Minimizing passenger waiting and tra-
vel times and total bus operation cost Reinforcement learning 

Avila-Ordóñez et al. 
(2022) Yes Yes Minimizing penalty for route change 

and total passenger travel times Genetic algorithm 

This study Yes Yes Maximizing route similarity Mathematical model 
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the demand changes is required (Su et al., 2024). When to 
trigger the bus rerouting itself could be solved as another 
optimization problem and requires further experiments and 
data analysis. This triggering period could differ based on 
the passenger flow density (e.g., whether peak hours are 
considered or not; Bie et al., 2020). This situation fits a 
short-term (intra-city or inter-city) bus route adjustment, 
instead of a long-term bus route planning. 

The studied dynamic bus routing problem considers 
a complete bus network that consists of one bus depot 0 
and several stations (1, 2, 3, …, |N|). Times required to 
travel (1) from depot 0 to each bus station i and (2) be-
tween stations are provided. A set of bus routes is given 
(k=1,2,…,|K|). The indices are used to identify old and 
new routes simultaneously. In this study, initially, infor-
mation on old routes is given. After solving the problem, 
new routes are designed that might replace the old routes 
depending on the passengers’ travel requirements. Nodes 
that are travelled in each old route k are recorded by using 
aik parameter. Each bus route k has its fleet size fk. With a 
same capacity c for all buses, the buses must be deployed 
to satisfy all people group movement demands. The 
people group movements (origins, destinations, and num-
ber of passengers) are identified as follows:  

Each group p consists of a number of passengers qp 
and travels from an original station op to a designated 
station dp. The purpose of the travels can be for leisure, 
business (work), education (school), personal activities, 
etc (Yang and Gao, 2025). The origin-destination infor-
mation for each type of passenger can be extracted from 
the smart card transactions (historical data), which have 
been proven to be reliable and cost-effective (Rahmani et 
al., 2025). When the people group movement changes, 
the bus routes must be updated. New bus routes must be 
determined by using decision variables xijk and wik, which 
represent pairs of nodes connected on each route and 
nodes passed by each route, respectively. In this study, 
considering that the total number of passengers remains 
the same, the required total bus route capacity is the same, 
and the new routes are considered as a refinement of the 
existing bus routes. 

Many changes in the bus routes could cause incon-
venience for the passengers, e.g., those who expect to 
visit the same destinations. To ensure better satisfaction 
for the passengers, the similarity between the old and the 
new routes is maximized. Even though this study consid-
ers the total bus travel times in the constraints, different 
from Avila-Ordóñez et al. (2022) that minimized the total 
travel times, this study still somehow minimizes the total 
travel times by limiting the increase in the total travel 
times. This study proposes a better approach by limiting 
the total travel times to ensure the passengers’ satisfaction 
better than Avila-Ordóñez et al. (2022) that allowed hav-
ing any longer bus routes than the initial routes. The route 
similarity is assessed based on the number of same bus 

stations in the old and new routes, considering that pas-
sengers who initially travel through the old routes would 
expect to still travel on the same bus route to visit the 
same designated stations. 

This study assumes that the fleet size for each route k 
(fk) remains the same. Even though the proposed model 
can generate new bus routes when any changes in the 
people group movements occur, the proposed model 
would fit better in cases with fewer group movement 
changes that do not require changes in the fleet sizes. 

The dynamic bus routing problem in this study is 
summarized as follows: 
1. Input (given parameters): 

a. Bus network that consists of one depot and several 
bus stations. 

b. A set of current bus routes with their fleet sizes 
and list of nodes travelled through the routes. All 
buses have the same capacity. 

c. A set of passenger groups with the number of pas-
sengers per group, their origin and designated bus 
stations. 

2. Output (decisions): 
a. New bus routes with the list of new nodes tra-

velled through the routes. 
b. Allocation of passenger groups to the new routes. 

3. Objective: 
Maximizing the similarity between the old and new 

bus routes. 

3. MATHEMATICAL MODEL 

The mathematical model of the truck appointment 
scheduling is presented below. 

 
Sets 
K : Set of routes (k = 1, 2, …, |K|) 
N : Set of stations (i,j = 1, 2, …, |N|) 
N’ : Set of stations and depot (i,j = 0, 1, 2, …, |N|) 
P : Set of passenger groups (p = 1, 2, …, |P|) 
 
Parameters 
aik : 1, if station i was traveled in the old version of 

route k; otherwise, 0 
c : Capacity of each bus 
dp : Designated station of passenger group p 
e : Percentage of allowed travel time increase for 

each route 
fk : Fleet size for route k 
gk : Total travel time of the old version of route k 
op : Origin station of passenger group p 
qp : Number of passengers in group p 
tij : Bus travel time required from station i to sta-

tion j 
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Decision variables 
vik : 1, if station i is traveled in the new and old 

versions of route k; otherwise, 0 
wik : 1, if station i is traveled through the new ver-

sion of route k; otherwise, 0 
xijk : 1, if the new version of route k includes a di-

rect movement from station i to station j; oth-
erwise, 0 

ypk : 1, if passengers in group p travel on the new 
version of route k; otherwise 

zik : 0 auxiliary variable for subtour elimination 
 

max ik
i N k K

v
∈ ∈
  (1) 

'
0 1jk

j N

x
∈

=  k K∀ ∈  (2) 

'
0 1i k

i N

x
∈

=  k K∀ ∈  (3) 

' '
ijk jik

j N j N

x x
∈ ∈

=   ,i N k K∀ ∈ ∈   (4) 

1 (1 )jk ik ijkz z M x≥ + − −  , ,i j N k K∀ ∈ ∈   (5) 

1ikz N≤ −  ,i N k K∀ ∈ ∈  (6) 

'
ik ijk

j N

w x
∈

≤   ,i N k K∀ ∈ ∈  (7) 

ijk ikx w≤  ', ,i N j N k K∀ ∈ ∈ ∈  (8) 

2
p po k d k pkw w y+ ≥  ,p P k K∀ ∈ ∈  (9) 

1pk
k K

y
∈

=  p P∀ ∈  (10) 

k pk p
p P

cf y q
∈

≥  k K∀ ∈  (11) 

' '
ijk ij k k

i N j N

x t g g e
∈ ∈

− ≤  k K∀ ∈  (12) 

ik ikv a≤  ,i N k K∀ ∈ ∈  (13) 

ik ikv w≤  ,i N k K∀ ∈ ∈  (14) 

{0,1}ijkx =  ', ,i j N k K∀ ∈ ∈  (15) 

{ }0,1pky =  ,p P k K∀ ∈ ∈  (16) 

{ }, 0,1ik ikv w =  ,i N k K∀ ∈ ∈  (17) 

integerikz =  ,i N k K∀ ∈ ∈  (18) 

Objective (1) maximizes the similarity between the 
old and new versions of bus routes. Constraints (2) and 
(3) restrict each route k to start from and end at depot 0. 
Constraints (4) guarantee the flow conservation for each 
route k. Constraints (5) and (6) are the subtour elimina-
tion constraints. Suppose that a bus moves through route 
k directly from station i to station j, these constraints 
ensure that the value of variable zjk is larger than the 
value of variable zik. In each route, the value of variable 
z would be equal to 1 on the first visited station, and the 
value would be at most equal to |N|-1 on the last visited 
station. Similar subtour elimination constraints are pre-
sented in Campuzano et al. (2020) and Zeng et al. 
(2022). The constraints ensure that no subtour (that 
starts and ends at any bus station) exists because the 
buses must start and end their travels at the depot. Con-
straints (7)-(9) allow each passenger group p to be as-
signed to route k if route k passes through the origin and 
destination of passenger group p. Constraints (7) set the 
value of variable wik to be equal to 0 when station i is 
not visited at all on route k. On the other hand, con-
straints (8) restrict the value of any variable x related to 
station i and route k to be equal to 1 when the value of 
variable wik equals 0. Constraints (9) ensure that when 
the movement of passenger group p is satisfied through 
route k (ypk=1), then the route must pass the origin (op) 
and designated stations (dp) of the group by setting the 
values of both related variables w to be equal to 1. Con-
straints (10) ensure each passenger group p is served by 
a route. Constraints (11) limit the total number of pas-
sengers assigned to route k to be less than the total 
available capacity in the fleet of route k. Constraints (12) 
ensure the increase in total travel time of each route k to 
be less than e percent of its old total travel time. Con-
straints (13) and (14) calculate the similarity indices 
between the old and new versions of routes. Constraints 
(15)-(17) are the binary and integer constraints. Con-
straints (12) are set to simultaneously reduce the incon-
venience experienced by the passengers (Avila-Ordóñez 
et al., 2022) and the service provider that is caused by 
the too large increase in the total bus travel times, when 
compared with the initial routes. The increase in total 
travel times must is limited to ensure less disturbance in 
the whole bus operation (Esquivel-González et al., 
2023). Such a constraint would restrict the set of feasi-
ble routes during the search. When the problem becomes 
infeasible, the value of e can be increased, and the prob-
lem can be solved again. Such a strategy would ensure 
an efficient search by focusing the search on a limited 
search space. This study prioritizes the passengers’ con-
venience, which is reflected in the objective function, 
more than the service providers (in Constraints (12)). 
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4. NUMERICAL EXPERIMENTS 

The mathematical model is written in Python pro-
gramming language and solved on Google Colab using 
Gurobi Optimizer version 12.0.1 with the activated pre-
solving procedure. The processor used for the computa-
tions is Intel® Xeon® CPU at 2.20GHz. The code and 
data are provided in the following link: https://github.com 
/ivanksinggih/dynamic_bus_routing_math_model and are 
freely available for use, provided that this paper is proper-
ly cited. 

To test the model, thirty data sets of various sizes are 
generated. Testing the model on various problem sizes is 
necessary to verify the model, understand how the solu-
tion method solves different cases, and becomes a refer-
ence for the next research, as conducted by many studies 
(Singgih et al., 2020; Dahimi et al., 2025). Information on 

the instances and the experiment results is shown in Table 
2. For each instance, a complete network is generated that 
satisfies the triangular inequality condition between any 
of three connected stations/depot. Each row in Table 2 for 
each of the small, medium, or large instance sets has a 
difference in the specific capacity per route (e.g., as 
shown in Figure 1) and the number of passengers for each 
origin-destination pair (e.g., as shown in Figure 2). For 
the same category (small, medium, or large), the bus net-
works can be the same or different. In all of the instances, 
optimal solutions are obtained, shown by the gaps be-
tween upper and lower bounds that are equal to 0% in the 
Gurobi results. Table 2 shows that the percentages of the 
increase of total travel times on the new routes, when 
contrasted to the old routes, are less than the set threshold. 
It ensures the new routes are not much longer than the old 
ones. 

 Table 2. Instances for numerical experiment and the experiment results 

Data # of stations 
# of routes 
& total bus 
capa-city 

# of passenger 
groups & total 

number of  
passengers 

Solving 
time (s) 

(Maxi-mized) 
route similarity 

value 

Average increase  
in travel times of 

the routes  
= (new-old)/old 

Total travel time 
increase threshold 

(%) 

small_1 

3 2 & 40 2 & 30 

0.03 4 5.3% 10% 
small_2 0.04 3 3.8% 10% 
small_3 0.03 4 -9.6% 10% 
small_4 0.05 4 3.7% 10% 
small_5 0.03 4 -1.9% 10% 
small_6 0.02 2 2.1% 10% 
small_7 0.03 2 0.0% 10% 
small_8 0.03 4 -6.5% 10% 
small_9 0.04 5 -5.0% 10% 
small_10 0.04 3 -7.0% 10% 

medium_1 

4 3 & 70 4 & 60 

0.05 5 7.3% 15% 
medium_2 0.09 6 8.0% 15% 
medium_3 0.12 5 -9.5% 15% 
medium_4 0.05 6 10.8% 15% 
medium_5 0.18 5 4.2% 15% 
medium_6 0.06 6 0.0% 15% 
medium_7 0.04 6 2.1% 15% 
medium_8 0.13 5 11.9% 15% 
medium_9 0.13 4 12.2% 15% 
medium_10 0.03 6 3.9% 15% 

large_1 

5 4 & 110 6 & 100 

0.05 10 8.2% 20% 
large_2 0.05 8 8.2% 20% 
large_3 0.05 12 11.5% 20% 
large_4 0.13 10 11.0% 20% 
large_5 0.07 9 9.0% 20% 
large_6 0.05 9 -11.4% 20% 
large_7 0.47 7 9.1% 20% 
large_8 0.19 7 11.5% 20% 
large_9 0.27 7 6.4% 20% 
large_10 0.42 5 17.4% 20% 
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Figure 5. Route similarity in medium_9 instance. 

 
An illustration of the results is provided based on 

medium_9 instance. The initial bus route is presented in 
Figure 1. The results show the updated bus routes (Figure 
3) that satisfy all people group movement demands (Fig-
ure 2). Figure 4 and Figure 5 identifies the similar stations 
on the old and new bus routes. In Figure 4, old and new 
routes are shown (both routes are overlapped when they 
are exactly the same with each other). Numbers close to 
the stations represent the indices of the (old and new) 
routes that travel through the stations together. The infor-
mation is summarized in Figure 5. Considering the limit 
for the increase in the total travel times, the number of the 
same stations on the old and new routes has been max-
imized (the route similarity percentage is measured when 
contrasted with the stations in the old routes). 

5. CONCLUSIONS 

This study discussed a bus routing problem that con-
sidered previous bus routes when designing new routes 
while minimizing the changes in the routes to provide a 
better experience by the bus passengers. The problem was 
formulated mathematically to solve larger data effectively. 
It is shown that the proposed mathematical model obtains 
optimal solutions for problems up to five number of sta-
tions, four number of routes, 110 of bus capacity, six pas-
senger groups, and a total of 100 passengers. 

Future research could explore (1) the incorporation 
of real data for setting the parameter values, e.g., the al-
lowed percentage in the increase of the total travel times 
per bus route (which would be highly related to qualita-
tive research results as well), (2) various variants on the 
dynamic bus routing problems and solution approaches, 
and (3) a comprehensive framework that integrates data 
collection and analysis through machine learning tech-
niques, thereby enhancing the outcomes of the optimiza-
tion process. 

 
Figure 1. Bus network and route information in  

medium_9 instance. 
 

 
Figure 2. Passenger group movements in medium_9  

instance. 
 

 
Figure 3. New bus routes in medium_9 instance. 

 

 
Figure 4. Passenger group movements in medium_9 

instance. 
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