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ABSTRACT

In the era of Industry 4.0, utilizing big data to make real-time decisions becomes possible. In the mobility and trans-
portation area, including public transportation services, innovative practices could be incorporated to make better de-
cisions for the system and its users. This study proposes a novel dynamic bus routing model. In the proposed mathe-
matical formulation, previous bus routes are considered when designing new routes while minimizing the changes in
the routes. Such a decision on minimizing the changes is made to provide a better experience by the bus passengers. In
the numerical experiments, various data sets are solved. This study could be an initial study for the next studies to
discover other potential problems to solve within the context of big data and Industry 4.0.
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1. INTRODUCTION

The advancements of big data and Internet of Things
technologies enable various new possibilities, including
in the field of logistics (Wang et al., 2016). Some interest-
ing new ideas are the possibility to discover cargo move-
ments and perform accurate predictions on future delive-
ries (Zhong et al., 2015; Chen et al., 2021). More accu-
rate decision making can also be conducted in a real-time
fashion, considering various dynamics and changes in
real situations, e.g., price fluctuations and dynamic
changes caused by people’s behavior (Singgih and Kim,
2020; Singgih et al., 2024). Using the latest technology, it
is possible to understand changes in people’s movements,
e.g., the location sensors on smartphones, etc. In fact, the
fast development of sensors and big data opens great op-
portunities to utilize resources better and improve systems’
efficiency. In other words, to take advantage of the devel-
oped technology, more methods that deal with real-time

planning must be implemented to deal with the real-time
data and solve actual problems (Chai et al., 2025).

Several studies discussed the bus routing problem, as
listed in Table 1. In most cases, the static version is stu-
died with models that only generate new bus routes, in-
stead of considering the old and new routes simultaneous-
ly and observing the route changes. In these studies, bus
routes are determined considering the given people
movement demands and the bus network. The studies are
divided into two subgroups based on whether all people
movement demands are satisfied or not. The first sub-
group (that did not consider any bus route changes and
did not ensure people movement demand satisfaction) is
discussed as follows. In general, the studies minimized
the total bus travel times (Ma et al., 2023; Xiong et al.,
2025), as normally considered in many routing studies.
The studies in this subgroup did not ensure the people
movement demand satisfaction. To deal with this limita-
tion, the studies minimized the number of unsatisfied
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Table 1. Comparison to earlier studies

All people
Busroute movement L
Study change demand Objective Proposed method
satisfaction
. . Mathematical model, clustering and
Ma et al. (2023) No No Minimizing total bus travel times adaptive large neighborhood search
Tan et al. (2023) No No Maximizing total passenger travels Mathematical model
Minimizing total bus travel times, un- . .
Xiong et al. (2025) No No satisfied requests, violated time win- Mgthematwal model, variable
A neighborhood search
dows, and maximizing profit
Tong et al. (2017) No No Maximizing number of passengers Lagrangian decomoposition
Yuan et al. (2025) No Yes Mmlm?z.mg bus bunching and passen-  Mathematical model, branch and
ger waiting times bound
Chow et al. (2024) No Yes Mlnllmlzmg passenger waltlng and tra- Reinforcement learning
vel times and total bus operation cost
Avila-Ordoiiez et al. Minimizing penalty for route change . .
(2022) es Yes and total passenger travel times Genetic algorithm
This study Yes Yes Maximizing route similarity Mathematical model

movement demands or maximized the number of passen-
gers, as conducted in Ton et al. (2017) and Tan et al.
(2023). Studies in the second subgroup (that did not con-
sider any bus route changes, but ensured people move-
ment demand satisfaction) mainly minimized the passen-
ger waiting times (Chow et al., 2024; Yuan et al., 2025).
All of the studies above proposed different solution me-
thods (e.g., mathematical model, algorithm, and machine
learning-based optimization methods).

Most studies, including the studies mentioned
above, did not consider bus route changes. As stated in
the introduction section, the development of information
technology enables dynamic and real-time bus routing,
which would ultimately reduce bus operational costs
while providing better passenger satisfaction. Most ex-
isting studies ignore the initial routes and design any
new routes from scratch, which is not practical, consi-
dering that a lot of changes in the routes would make the
passengers much less comfortable because understand-
ing and adapting to the route changes would be difficult.
It is necessary to deal with changes in the real system
appropriately (Gu et al., 2022) to ensure people’s satis-
faction. Making real-time decisions would not only im-
prove the performance of the system but also attract
more positive responses from the service users (passen-
gers) (Larsen et al., 2023).

The dynamic bus routing considers route changes
from old (current) routes to new set of routes that must
occur as a response to changes in people flows (Avila-
Ordoiiez et al., 2022). Avila-Ordoiiez et al. (2022) consi-
dered such a dynamic bus routing problem and solved the
problem using a genetic algorithm method. Their study
minimized the penalty of route change and total passen-
ger travel times. Given the nature of the genetic algorithm,

there is no guarantee of producing optimal solutions for
the problem. To enrich the studies in this field, our study
proposes a novel way to deal with the dynamic bus
routing problem. Our study proposes a mathematical
model to define the dynamic bus routing problem and
solves the problem optimally. Such a study typically in-
troduces a novel problem formally using a mathematical
model representation and solves the problem optimally
using a mathematical solver, e.g., Gurobi in this study
(Doan €t al., 2018; Anthara et al., 2024). The research
question is: “How can we revise current bus routes when
the demand for passengers’ movements is changed while
ensuring the least possible changes in the routes? The
route similarity is maximized as a way to allow a smooth
adaptation of the passengers due to the possible frequent
route changes. Such similar routes are required especially
to assist a certain number of passengers who are still not
that familiar with using technology that allows real-time
bus route sharing. To ensure the minimization of the total
bus travel times, our study introduces a maximum thre-
shold that limits the increase of total bus travel times,
when the new routes are applied.

The rest of the study is as follows. Section 2 defines
the discussed dynamic bus routing optimization problem.
Section 3 proposes the mathematical model. Section 4
presents the numerical experiments. Section 5 concludes
the study and list some potential future research topics.

2. PROBLEM DEFINITION

The dynamic bus routing problem is solved anytime it
is considered necessary to provide better services to the
passengers by the decision makers, e.g., when a response to
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the demand changes is required (Su et al., 2024). When to
trigger the bus rerouting itself could be solved as another
optimization problem and requires further experiments and
data analysis. This triggering period could differ based on
the passenger flow density (e.g., whether peak hours are
considered or not; Bie et al., 2020). This situation fits a
short-term (intra-city or inter-city) bus route adjustment,
instead of a long-term bus route planning.

The studied dynamic bus routing problem considers
a complete bus network that consists of one bus depot 0
and several stations (1, 2, 3, ..., |N|). Times required to
travel (1) from depot O to each bus station i and (2) be-
tween stations are provided. A set of bus routes is given
(k=1,2,...|K]). The indices are used to identify old and
new routes simultaneously. In this study, initially, infor-
mation on old routes is given. After solving the problem,
new routes are designed that might replace the old routes
depending on the passengers’ travel requirements. Nodes
that are travelled in each old route K are recorded by using
ay parameter. Each bus route K has its fleet size f,. With a
same capacity C for all buses, the buses must be deployed
to satisfy all people group movement demands. The
people group movements (origins, destinations, and num-
ber of passengers) are identified as follows:

Each group p consists of a number of passengers g,
and travels from an original station Oy to a designated
station d,. The purpose of the travels can be for leisure,
business (work), education (school), personal activities,
etc (Yang and Gao, 2025). The origin-destination infor-
mation for each type of passenger can be extracted from
the smart card transactions (historical data), which have
been proven to be reliable and cost-effective (Rahmani et
al., 2025). When the people group movement changes,
the bus routes must be updated. New bus routes must be
determined by using decision variables X;, and W, which
represent pairs of nodes connected on each route and
nodes passed by each route, respectively. In this study,
considering that the total number of passengers remains
the same, the required total bus route capacity is the same,
and the new routes are considered as a refinement of the
existing bus routes.

Many changes in the bus routes could cause incon-
venience for the passengers, e.g., those who expect to
visit the same destinations. To ensure better satisfaction
for the passengers, the similarity between the old and the
new routes is maximized. Even though this study consid-
ers the total bus travel times in the constraints, different
from Avila-Ordoiiez et al. (2022) that minimized the total
travel times, this study still somehow minimizes the total
travel times by limiting the increase in the total travel
times. This study proposes a better approach by limiting
the total travel times to ensure the passengers’ satisfaction
better than Avila-Ordofiez et al. (2022) that allowed hav-
ing any longer bus routes than the initial routes. The route
similarity is assessed based on the number of same bus

stations in the old and new routes, considering that pas-
sengers who initially travel through the old routes would
expect to still travel on the same bus route to visit the
same designated stations.

This study assumes that the fleet size for each route k

(f) remains the same. Even though the proposed model
can generate new bus routes when any changes in the
people group movements occur, the proposed model
would fit better in cases with fewer group movement
changes that do not require changes in the fleet sizes.

The dynamic bus routing problem in this study is

summarized as follows:
1. Input (given parameters):

a. Bus network that consists of one depot and several
bus stations.

b. A set of current bus routes with their fleet sizes
and list of nodes travelled through the routes. All
buses have the same capacity.

c. A set of passenger groups with the number of pas-
sengers per group, their origin and designated bus
stations.

2. Output (decisions):

a. New bus routes with the list of new nodes tra-
velled through the routes.

b. Allocation of passenger groups to the new routes.

3. Objective:

Maximizing the similarity between the old and new

bus routes.

3. MATHEMATICAL MODEL

The mathematical model of the truck appointment
scheduling is presented below.

Sets

K : Set of routes (k= 1, 2, ..., |K])

N : Set of stations (i,j =1, 2, ..., [N|)

N’ : Set of stations and depot (i,j =0, 1,2, ..., |N|)

P : Set of passenger groups (p=1, 2, ..., |P))

Parameters

Qi . 1, if station i was traveled in the old version of
route k; otherwise, 0

c : Capacity of each bus

d, : Designated station of passenger group p

e : Percentage of allowed travel time increase for
each route

fi : Fleet size for route k

Ok : Total travel time of the old version of route k

0y : Origin station of passenger group p

o : Number of passengers in group p

t : Bus travel time required from station i to sta-
tion j
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Decision variables
: 1, if station i is traveled in the new and old
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Z

versions of route k; otherwise, 0

: 1, if station i is traveled through the new ver-

sion of route k; otherwise, 0

: 1, if the new version of route K includes a di-
rect movement from station i to station j; oth-

erwise, 0

: 1, if passengers in group p travel on the new

version of route k; otherwise

: 0 auxiliary variable for subtour elimination
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Objective (1) maximizes the similarity between the
old and new versions of bus routes. Constraints (2) and
(3) restrict each route K to start from and end at depot 0.
Constraints (4) guarantee the flow conservation for each
route k. Constraints (5) and (6) are the subtour elimina-
tion constraints. Suppose that a bus moves through route
k directly from station i to station j, these constraints
ensure that the value of variable Zy is larger than the
value of variable z,. In each route, the value of variable
zwould be equal to 1 on the first visited station, and the
value would be at most equal to [N|-1 on the last visited
station. Similar subtour elimination constraints are pre-
sented in Campuzano et al. (2020) and Zeng et al.
(2022). The constraints ensure that no subtour (that
starts and ends at any bus station) exists because the
buses must start and end their travels at the depot. Con-
straints (7)-(9) allow each passenger group p to be as-
signed to route K if route K passes through the origin and
destination of passenger group p. Constraints (7) set the
value of variable Wi, to be equal to 0 when station i is
not visited at all on route k. On the other hand, con-
straints (8) restrict the value of any variable X related to
station i and route K to be equal to 1 when the value of
variable W equals 0. Constraints (9) ensure that when
the movement of passenger group p is satisfied through
route K (Yy=1), then the route must pass the origin (0p)
and designated stations (dy) of the group by setting the
values of both related variables w to be equal to 1. Con-
straints (10) ensure each passenger group p is served by
a route. Constraints (11) limit the total number of pas-
sengers assigned to route K to be less than the total
available capacity in the fleet of route k. Constraints (12)
ensure the increase in total travel time of each route K to
be less than e percent of its old total travel time. Con-
straints (13) and (14) calculate the similarity indices
between the old and new versions of routes. Constraints
(15)-(17) are the binary and integer constraints. Con-
straints (12) are set to simultaneously reduce the incon-
venience experienced by the passengers (Avila-Ordofiez
et al., 2022) and the service provider that is caused by
the too large increase in the total bus travel times, when
compared with the initial routes. The increase in total
travel times must is limited to ensure less disturbance in
the whole bus operation (Esquivel-Gonzalez et al.,
2023). Such a constraint would restrict the set of feasi-
ble routes during the search. When the problem becomes
infeasible, the value of e can be increased, and the prob-
lem can be solved again. Such a strategy would ensure
an efficient search by focusing the search on a limited
search space. This study prioritizes the passengers’ con-
venience, which is reflected in the objective function,
more than the service providers (in Constraints (12)).
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4. NUMERICAL EXPERIMENTS

The mathematical model is written in Python pro-
gramming language and solved on Google Colab using
Gurobi Optimizer version 12.0.1 with the activated pre-
solving procedure. The processor used for the computa-
tions is Intel® Xeon® CPU at 2.20GHz. The code and
data are provided in the following link: https://github.com
/ivanksinggih/dynamic_bus routing math model and are
freely available for use, provided that this paper is proper-
ly cited.

To test the model, thirty data sets of various sizes are
generated. Testing the model on various problem sizes is
necessary to verify the model, understand how the solu-
tion method solves different cases, and becomes a refer-
ence for the next research, as conducted by many studies
(Singgih et al., 2020; Dahimi et al., 2025). Information on

the instances and the experiment results is shown in Table
2. For each instance, a complete network is generated that
satisfies the triangular inequality condition between any
of three connected stations/depot. Each row in Table 2 for
each of the small, medium, or large instance sets has a
difference in the specific capacity per route (e.g., as
shown in Figure 1) and the number of passengers for each
origin-destination pair (e.g., as shown in Figure 2). For
the same category (small, medium, or large), the bus net-
works can be the same or different. In all of the instances,
optimal solutions are obtained, shown by the gaps be-
tween upper and lower bounds that are equal to 0% in the
Gurobi results. Table 2 shows that the percentages of the
increase of total travel times on the new routes, when
contrasted to the old routes, are less than the set threshold.
It ensures the new routes are not much longer than the old
ones.

Table 2. Instances for numerical experiment and the experiment results

# of routes # of passenger

Average increase

(Maxi-mized) Total travel time

Data # of stations & total bus  S'OPS & total Splvmg route similarity in travel times of increase threshold

capa-city number of time (s) value - the routes %)
passengers = (new-old)/old

small 1 0.03 4 5.3% 10%
small 2 0.04 3 3.8% 10%
small 3 0.03 4 -9.6% 10%
small 4 0.05 4 3.7% 10%
small 5 0.03 4 -1.9% 10%
small 6 3 2&40 2&30 0.02 2 2.1% 10%
small 7 0.03 2 0.0% 10%
small 8 0.03 4 -6.5% 10%
small 9 0.04 5 -5.0% 10%
small 10 0.04 3 -7.0% 10%
medium_1 0.05 5 7.3% 15%
medium 2 0.09 6 8.0% 15%
medium 3 0.12 5 -9.5% 15%
medium 4 0.05 6 10.8% 15%
medium_5 0.18 5 4.2% 15%
medium_6 4 3&70 4&60 0.06 6 0.0% 15%
medium 7 0.04 6 2.1% 15%
medium_8 0.13 5 11.9% 15%
medium 9 0.13 4 12.2% 15%
medium_10 0.03 6 3.9% 15%
large 1 0.05 10 8.2% 20%
large 2 0.05 8 8.2% 20%
large 3 0.05 12 11.5% 20%
large 4 0.13 10 11.0% 20%
large 5 0.07 9 9.0% 20%
large 6 > 4&110 6 & 100 0.05 9 -11.4% 20%
large 7 0.47 7 9.1% 20%
large 8 0.19 7 11.5% 20%
large 9 0.27 7 6.4% 20%
large 10 0.42 5 17.4% 20%
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— Route 1 (2 buses @ 10 people)
= Route 2 (3 buses @ 10 people)
== Route 3 (2 buses @ 10 people)
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Figure 1. Bus network and route information in
medium_9 instance.
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Figure 2. Passenger group movements in medium 9
instance.
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Figure 3. New bus routes in medium_9 instance.
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Figure 4. Passenger group movements in medium 9
instance.
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Same bus stations ® [ ]
T T T
Route 3 (old)
Route 3 (new) (0] (0] 50%
Same bus stations [ ]

Figure 5. Route similarity in medium_9 instance.

An illustration of the results is provided based on
medium_9 instance. The initial bus route is presented in
Figure 1. The results show the updated bus routes (Figure
3) that satisfy all people group movement demands (Fig-
ure 2). Figure 4 and Figure 5 identifies the similar stations
on the old and new bus routes. In Figure 4, old and new
routes are shown (both routes are overlapped when they
are exactly the same with each other). Numbers close to
the stations represent the indices of the (old and new)
routes that travel through the stations together. The infor-
mation is summarized in Figure 5. Considering the limit
for the increase in the total travel times, the number of the
same stations on the old and new routes has been max-
imized (the route similarity percentage is measured when
contrasted with the stations in the old routes).

5. CONCLUSIONS

This study discussed a bus routing problem that con-
sidered previous bus routes when designing new routes
while minimizing the changes in the routes to provide a
better experience by the bus passengers. The problem was
formulated mathematically to solve larger data effectively.
It is shown that the proposed mathematical model obtains
optimal solutions for problems up to five number of sta-
tions, four number of routes, 110 of bus capacity, six pas-
senger groups, and a total of 100 passengers.

Future research could explore (1) the incorporation
of real data for setting the parameter values, e.g., the al-
lowed percentage in the increase of the total travel times
per bus route (which would be highly related to qualita-
tive research results as well), (2) various variants on the
dynamic bus routing problems and solution approaches,
and (3) a comprehensive framework that integrates data
collection and analysis through machine learning tech-
niques, thereby enhancing the outcomes of the optimiza-
tion process.
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