

Formulation and characterization of dermal patch containing mangosteen (*Garcinia mangostana* L.) peel extract using ethyl cellulose and polyvinylpyrrolidone polymers

Ni Luh Dewi Aryani^{1*}, Rismawati^{1,3}, Marisca Evalina Gondokesumo²

¹Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya,
Jl. Raya Kalirungkut, Rungkut, Surabaya, Indonesia

²Department of Biology Pharmacy, Faculty of Pharmacy, University of Surabaya,
Jl. Raya Kalirungkut, Rungkut, Surabaya, Indonesia

³Department of Pharmaceutics, Faculty of Health Sciences, University PGRI Adi Buana Surabaya,
Jl. Dukuh Mananggal XII, Gayungan, Surabaya, Indonesia

Submitted: December 1, 2024

Reviewed: January 8, 2025

Accepted: September 30, 2025

ABSTRACT

Mangosteen peel extract (*Garcinia mangostana* L.) shows strong potential in treating diabetic ulcers. Topical applications via dermal patches enable direct delivery of active compounds while protecting wounds from contaminants, preventing bacterial invasion, and maintaining moisture factors essential for promoting effective wound healing in diabetic patients. The dermal patches of mangosteen peel extract were developed using a combination of EC and PVP K-30 polymers. Previously, the mangosteen peels were extracted utilizing the ultrasound-assisted extraction method. Subsequently, the dermal patches were prepared utilizing solvent casting techniques, employing a combination of ethyl cellulose and polyvinyl pyrrolidone in ratios of 1:3 (F1), 1:2 (F2), and 1:1 (F3). The dermal patches were assessed for their physicochemical properties, including organoleptic characteristics, thickness, weight uniformity, folding endurance, moisture uptake, moisture loss, and pH values. The content of alpha-mangostin was analyzed using UV spectrophotometry, while the interactions between the active ingredient and excipients were examined through Fourier Transform Infrared Spectroscopy. The crystallinity profiles were analyzed using an X-ray diffractometer. Surface morphologies were assessed using scanning electron microscopy. The dermal patches were thin, light yellow, smelled of menthol, uniform in size, and exhibited good folding endurance (>300 folds). The moisture uptake and moisture loss were minimal. The pH values ranged from 6.99 to 7.24. The total xanthone concentrations in patches F1, F2, and F3 were $95.26\% \pm 0.47$, $71.42\% \pm 1.99$, and $78.54\% \pm 0.47$, respectively. It showed no chemical interaction between active ingredients and excipients and had amorphous forms. The surface morphologies displayed smoothness for F1, whereas F2 and F3 exhibited solid spots. It was concluded that formulation F1, which contained ethyl cellulose and polyvinyl pyrrolidone in a 1:3 ratio, was the optimal formulation.

Keywords: Dermal Patch, Ethyl Cellulose, *Garcinia mangostana* (L.), Polyvinylpyrrolidone K-30

Corresponding author:

Ni Luh Dewi Aryani

University of Surabaya

Jl. Raya Kalirungkut, Kalirungkut, Surabaya, East Java, Indonesia

Email: dewi_aryani@staff.ubaya.ac.id

INTRODUCTION

In Indonesia, mangosteen plants (*Garcinia mangostana* L.) Clusiaceae are widely cultivated, and their production continues to increase annually (Syahputra et al., 2021). Mangosteen peels make up over 50% of the fruit's total weight and are commonly treated as waste. However, peels have traditionally been used in medicine, especially in Southeast Asia (Syahputra et al., 2021). Compared to other fruit peels, mangosteen peel is particularly rich in compounds with strong antioxidant properties (Bi et al., 2023). The primary secondary metabolites found in mangosteen are xanthones, with 68 types identified in the entire fruit and 50 specifically concentrated in the peel (Gondokesumo et al., 2019, 2020). These bioactive compounds make mangosteen peel a promising candidate for diabetic ulcer treatment, as they have been shown to accelerate wound healing and inhibit bacterial growth, thereby reducing the risk of infection (Gondokesumo et al., 2023; Shafy et al., 2019). Topical treatments for diabetic ulcers, including the use of dermal patches, have demonstrated significant effectiveness (American Diabetes Association, 2024).

Dermal patches designed to treat diabetic ulcers protect wounds from external contaminants, block bacterial migration, and keep wounds moist, which aids healing (Holl et al., 2021). Patches are preferred over ointments or creams because they adhere better to the skin, which improves patient compliance with home care (Kavitha, 2014). A modern type of patch, known as a film patch, is commonly used for wounds and is particularly suitable for early-stage diabetic ulcers. The film patch allows the passage of water vapor, oxygen, and carbon dioxide, but acts as a barrier to water and microorganisms, making it ideal for superficial ulcers (Polk et al., 2021).

Previous research on mangosteen peel extract patches used bacterial cellulose (*Acetobacter xylinum*) as a film former, resulting in wet patches that were conducive to microbial growth (Gondokesumo et al., 2023). Mangosteen peel extract patches were also developed using chitosan and Na-alginate (Wijaya et al., 2023). Chitosan and Na-alginate are hydrophilic polymers (Herdiana et al., 2022; Samani et al., 2015). A different study revealed that the combination of chitosan and HPMC in the preparation of mangosteen peel extract patches resulted in high moisture content (13–23%), mainly due to the hygroscopic nature of HPMC (Azzahra et al., 2023). Patch matrix formulations using hydrophilic polymers, including hydroxypropyl methylcellulose (HPMC) or polyvinylpyrrolidone (PVP), often require the incorporation of hydrophobic polymers such as ethyl cellulose (EC) to achieve optimal physicochemical characteristics (Oktaviani & Sukmawati, 2024). The integration of hydrophobic and hydrophilic polymers allows the formation of a more balanced matrix system, as the complementary properties of each polymer can offset the limitations of the other. This dual polymer strategy is generally more effective than single polymers, which can result in less-than-optimal matrix properties. The recommended combination is EC and PVP, with a higher proportion of PVP to increase hydrophilicity and improve overall matrix performance (Oktaviani & Sukmawati, 2024).

Ethyl cellulose, a cellulose derivative, contributes to the structural integrity of the patch through its inherent hardness and flexibility and by increasing viscosity. On the other hand, PVP plays a vital role in forming a uniform film layer, offers excellent skin compatibility, and is highly soluble in various solvents. Specifically, PVP K-30 has been shown to improve penetration, modulate drug absorption, and stabilize active pharmaceutical ingredients (Fuziyanti et al., 2022). The combination of EC and PVP as film-forming agents not only results in a well-formed and drier film layer but also reduces the risk of microbial growth due to lower moisture retention (Zakaria et al., 2018). Research on polymer blends has further highlighted that such combinations can significantly influence critical matrix properties, including resistance to wrinkling, uniformity in weight and thickness, degree of shrinkage during drying, and water absorption capacity (Fuziyanti et al., 2022). This research focuses on formulating a patch that integrates mangosteen peel extract with a combination of EC and PVP K-30 to achieve optimal physicochemical properties, employing a solvent casting method followed by characterization testing.

MATERIALS AND METHODS

Materials

Mangosteen peels, simplicia powder *Garcinia mangostana* (L.), were purchased from PT. Indonesian Herbal Borobudur (Magelang, Indonesia). Other materials, such as alpha-mangostin p.a and EC p.a, were purchased from GLPBIO, PVP K-30 (Boai NKY), propylene glycol (DOW Chemical Pacific), menthol (Brataco), and ethanol 96% p.a (Merck). The equipments that have been used in this study were the analytical balance (Ohaus PA 224), ultrasonic bath (Branson 1510), hot plate and magnetic bar (Cimarec NH), oven (Mamert), UV-visible spectrophotometer (Shimadzu 1800), pH meter (Horiba), and micrometer screw gauge (Mitutoyo), fourier transform infrared spectroscopy (Agilent Cary), X-ray diffractometer (X'pert pro), and scanning electron microscopy (Hitachi).

Methods

Extraction of mangosteen peel

50 grams of the mangosteen peel simplicia powder were weighed and put into a glass beaker after being sieved through a 45-mesh sieve. Then, 500 mL of 96% ethanol was added, maintaining a solute-to-solvent ratio of 1:10. The mixture was stirred using a magnetic stirrer for 1 hour, followed by sonication at 55°C for 45 minutes to obtain a liquid extract. The resulting liquid extract was then filtered using Whatman No. 41 filter paper until no precipitate remained. The obtained extract was stored at room temperature for use in subsequent tests (Gondokesumo et al., 2020).

Determination of total xanthon content

A stock solution containing 100 µg/mL of alpha-mangostin was prepared by dissolving 5.0 mg of the substance in 50 mL of ethanol p.a. Concentrations of 2, 3, 4, 5, 6, 7, and 8 µg/mL were obtained by further diluting this solution (Mayefis et al., 2019). The absorbance of each standard solution at the maximum wavelength was measured to create a linear regression equation. 50 mL of ethanol p.a. was used to dissolve 0.1 mL of mangosteen peel extract. After that, 10 mL of ethanol was added to 0.5 mL of this solution to dilute it further. The linear regression equation obtained from the standard curve was used to calculate the absorbance of the solution and the total xanthone content (Aisha et al., 2013; Andayani & Verawati, 2015; Wijaya et al., 2023).

Formulation of dermal patch

The dermal patches were prepared using ethyl cellulose (EC) and polyvinylpyrrolidone K-30 (PVP K-30) at 1:1, 1:2, and 1:3 ratios, as shown in Table 1. The mixing process was conducted with the aid of a magnetic stirrer on a hot plate set at 50°C. EC was first dissolved in 96% ethanol in a beaker and stirred at medium speed for ± 3 minutes until fully dissolved (blend 1). Separately, PVP K-30 was dissolved in ethanol, combined with propylene glycol and menthol, and stirred at medium speed for ± 3 minutes (blend 2). After that, blend 2 was poured to blend 1 and stirred for ± 2 minutes to form a homogeneous polymer base. Subsequently, mangosteen peel extract was incorporated into the mixture. The final formulation was poured into molds with a diameter of 4 cm. Due to the thermolabile nature of the active ingredients, evaporation at high temperatures or using an oven was avoided. Therefore, drying was conducted at ambient temperature (Fauzana & Azhari Herli, 2021). The time required for the patches to dry was 72 hours.

Table 1. Dermal Patch Formulation with Variations of EC and PVP K-30

Formula	Concentration (%)					
	Extract Mangosteen	EC	PVP K-30	Propylene glycol	Menthol	Ethanol 96%
F1 (1:3)	1.62	3.20	9.62	1.78	0.26	83.44
F2 (1:2)	1.62	4.27	8.55	1.78	0.26	83.44
F3 (1:1)	1.62	6.41	6.41	1.78	0.26	83.44

The formula patch utilized a combination of EC: PVP K-30 in the ratios of 1:3 (F1), 1:2 (F2), and 1:1 (F3).

Evaluation of dermal patch Organoleptic observations

Organoleptic testing involves visual and sensory assessment of the product. This was a preliminary evaluation to ensure the product meets certain physical characteristics. Typically, transdermal patches are expected to be thin and smooth in texture, with a uniform size throughout (Saundharya et al., 2022).

Thickness

The patch's thickness was determined using a micrometer screw gauge. Measurements were conducted at three different points on each patch, and the average value was calculated for determining the patch's overall thickness (Santi et al., 2022).

Weight uniformity

For weight uniformity, every patch was weighed separately using an analytical device. Each patch's weight was compared to the mean weight of all patches in the formula to ensure consistency (Santi et al., 2022; Syarifah & Nabila, 2023).

Folding endurance

In this test, the patch was folded repeatedly at the same point until cracks appeared. This evaluates the patch's folding resistance, and a good patch typically withstands more than 300 folds without breaking (Parkash et al., 2024; Syarifah & Nabila, 2023).

Moisture uptake

Following a full day in a desiccator at ambient temperature, the patches were weighed. They were then weighed once more after spending an additional day in an oven set at 40°C. Ideally, the moisture uptake should be less than 15%, as found in previous studies. By calculating the difference between the final and initial weights and dividing that difference by the initial weight, the moisture uptake % was determined (Equation 1). The method was modified from prior research (Latif et al., 2021).

$$\text{Moisture Uptake} = (\text{Final weight} - \text{Initial weight}) / \text{Initial weight} \times 100\% \quad \dots \dots \dots (1)$$

Moisture loss

Each patch was weighed individually before and after drying to determine moisture loss. Initially, the patch was kept for 24 hours in a desiccator containing silica gel, after which it was reweighed. The percentage of moisture loss was determined by calculating the ratio of the weight difference between the initial and final measurements to the initial weight (Equation 2). The method was modified from previous research. This process was repeated three times for each formula to ensure accuracy. A good-quality patch generally shows a moisture loss of about 10% ([Latif et al., 2021](#); [Shabbir et al., 2017](#)).

$$\text{Moisture Uptake} = (\text{Initial weight} - \text{Final weight}) / \text{Initial weight} \times 100\% \dots \dots \dots (2)$$

Surface pH

The surface pH was evaluated by immersing the sample for 2 hours in 15 mL of distilled water, followed by measurement using a calibrated pH meter (Rozza et al., 2021).

Total xanthon content in dermal patches

The dermal patch was solubilized in 50 mL of 96% ethanol using a volumetric flask. The resulting solution was stirred for 24 h continuously in an incubator shaker, followed by sonication for 15 min to ensure complete dissolution. Subsequently the solution was suitably diluted with 96% ethanol to achieve the target absorbance range. The absorbance was recorded at the maximum wavelength by utilizing a UV-Vis spectrophotometer, and the total xanthone content was quantified using the linear regression equation derived from the standard calibration curve. Following the

determination of total xanthone content in the patch, the percentage recovery of xanthone was subsequently calculated (Equation 3) (Aisha et al., 2013; Latif et al., 2021; Wijaya et al., 2023; Zakaria et al., 2018).

$$\% \text{ Total xanthone recovery} = \text{Calculated concentration/Theoretical concentration} \times 100 \dots \dots \dots (3)$$

Fourier Transform Infrared (FT-IR)

The patches were examined utilizing Fourier Transform Infrared (FTIR) Spectroscopy within a spectral range of 4000 to 650 cm^{-1} , with a resolution of 4 cm^{-1} . FT-IR was applied to both the raw materials and the final patch formulations (F1, F2, F3) to identify key functional groups (Kriplani et al., 2021; Kusumawati et al., 2024; Suksaeree et al., 2014).

X-ray Diffraction (XRD)

Compatibility of polymers and menthol in the patch was evaluated through X-ray diffraction, run at 40 kV and 30 mA, with an angle range of 5°–40° (Suksaeree et al., 2014; Zaman et al., 2017).

Scanning Electron Microscopy (SEM)

Scanning electron microscopy (SEM, Hitachi) at a high voltage of 20 kV and 3000x magnification was employed to provide an overview of the surface structure and morphology of the patch components (Zaman et al., 2017).

Data Analysis

Results were reported as the mean \pm standard deviation ($n = 3$) and analyzed utilizing one-way ANOVA was used to analyze patch thickness, weight uniformity, moisture loss, moisture uptake, and surface pH. Additionally, post hoc tests were applied to analyze alpha-mangostin content, with a p-value less than 0.05 was regarded as statistically significant. Statistical analysis was undertaken by using SPSS software version 27.

RESULT AND DISCUSSION

Extraction of mangosteen peel

Mangosteen (*Garcinia mangostana* L.) peel extract was acquired utilizing the Ultrasound-Assisted Extraction (UAE) method, yielding 340 mL of extract (Figure 1). UAE employs ultrasonic waves to disrupt plant cell walls, enhancing the expulsion of secondary metabolites into the solvent. This method was chosen for its efficiency, shorter extraction time, and lower solvent usage than conventional techniques (Setiawan et al., 2023). The extraction used 96% ethanol, selected for its low toxicity and effectiveness in extracting active compounds while minimizing unwanted components (Wahyuningsih et al., 2024). The resulting extract was a dark brown liquid with a distinctive aroma and a bitter, slightly astringent taste. Total xanthone content was determined using alpha-mangostin as the marker compound (Socaciu et al., 2020). The total amount of xanthone yielded by mangosteen peel extract was (26.49 ± 1.6) mg in 1 mL of extract.

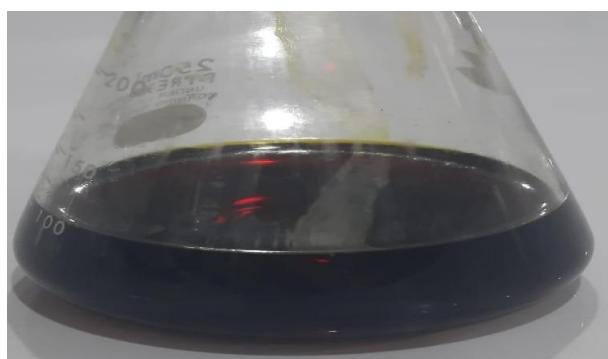
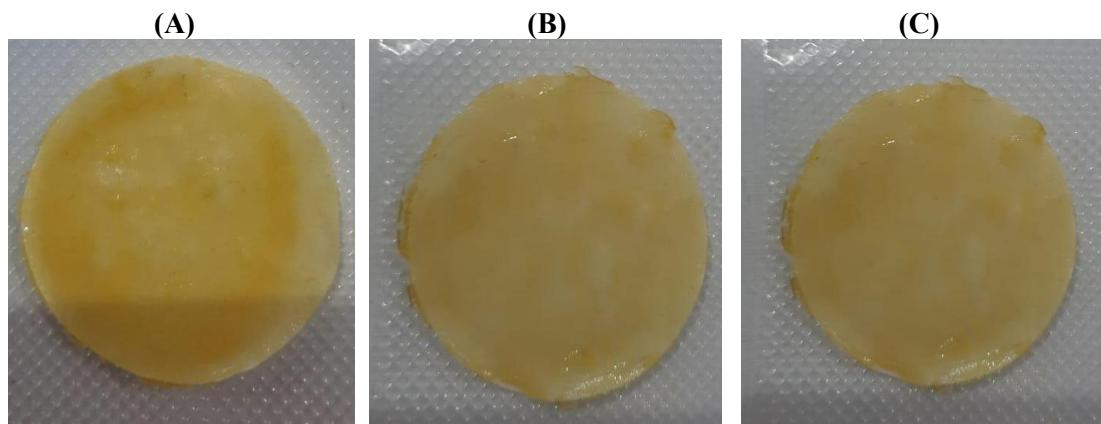



Figure 1. Mangosteen peel extraction results

The formulation of dermal patches

The physical appearance that could be observed in dermal patches is illustrated in [Figure 2](#). The dermal patch formulation containing *Garcinia mangostana* (L.) mangosteen peel extract was prepared in three different formulas (F1-F3), each with varying ratios of EC and PVP K-30 polymers. Solvent evaporation was used in the mangosteen peel extract dermal patch formulation. The polymers used were ethyl cellulose and polyvinylpyrrolidone K-30. Ethyl cellulose has hydrophobic properties, which were combined with polyvinylpyrrolidone K-30, which has hydrophilic properties, to regulate the release of active ingredients gradually. Hydrophilic polymers can provide rapid release at the initial stage, and lipophilic polymers will provide gradual release for a longer effect ([Franco & De Marco, 2020](#)).

Figure 2. Mangosteen peel extract patch. Patches with EC and PVP K-30 ratio (A) 1:3 (F1); (B) 1:2 (F2); (C) 1:1 (F3).

Evaluation of dermal patch

The organoleptic properties of the patches, including their shape, texture, color, and surface condition, were evaluated for each formula. The results of these observations are summarized in [Table 2](#), which details the physical characteristics of the prepared patches. The patch appears light yellow, changing from the original brown or purplish-red anthocyanins into mangosteen peel when combined with other ingredients. Since the patch was designed for single-dose administration, uneven distribution of the active ingredient was not expected to affect the total dose delivered. The formulation has a menthol scent to mask any unpleasant odors from the extract ([Saundharya et al., 2022](#)). The texture of F1, F2, and F3 patches showed slight moisture because of the hygroscopic properties of PVP K-30, menthol, and bioactive compounds in mangosteen peel extract ([Socaciu et al., 2020](#)). The visible blotches observed on the surface of the transdermal patch were attributed to the high viscosity of the matrix mixture. Viscous solutions are less capable of spreading uniformly over the substrate surface before solvent evaporation. As the solvent evaporates, the viscosity of the polymer-containing mixture increases further, leading to uneven surface formation, which manifests visually as spots or blotches ([Felton, 2013](#)).

Table 2. Organoleptic of the mangosteen peel patch

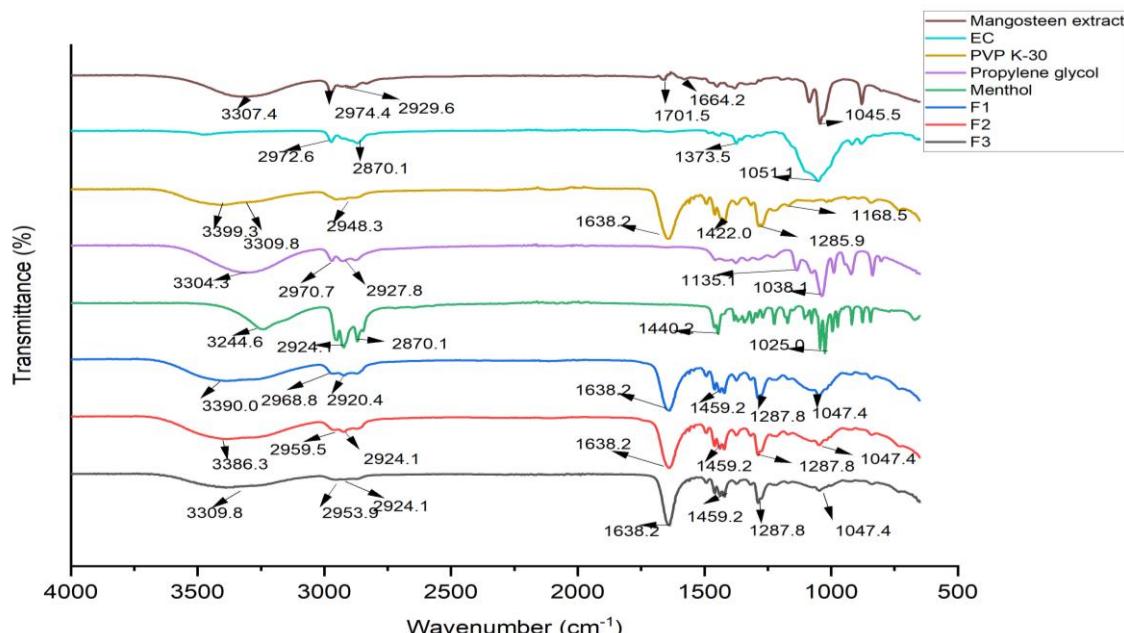
Formula	Shape	Texture	Color	Smell	Surface
	Thin Layer	Dryness	Light yellow	Special smell of menthol	Smoothness
F1	+	+	+	+	+
F2	+	+	+	+	+
F3	+	+	+	+	+

(+): Conforms to specifications; (-): Does not comply with specifications.

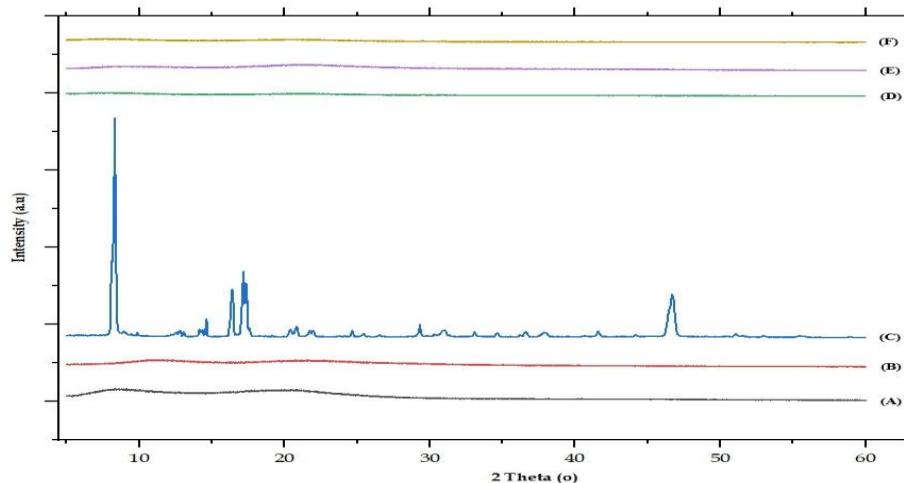
The folding endurance of patches was examined for folding resistance with folding repeatedly them at the same spot until they cracked or broke. All patches demonstrated excellent folding endurance, withstanding over 300 folds without failure (Parkash et al., 2024). It is essential in dermal patch formulation, showing that the patch can integrate with skin folds and resist tearing during use (Latif et al., 2021). Plasticizers are critical for flexibility, as they prevent the patch from cracking; without them, the patch would be brittle. The backing membrane also helps to improve folding endurance (Nandi & Mondal, 2022).

Thickness and weight uniformity Table 3 were observed, with a low standard deviation of $\leq 5\%$, indicating good thickness (less than 1 mm) and weight uniformity. A low standard deviation $\leq 5\%$ indicates that the preparation method used is skillful for patch development with little variability (Nandi & Mondal, 2022). Thickness and weight uniformity will affect flexibility, compactness, and brittleness (Santi et al., 2022; Wijaya et al., 2023). In this study, the low moisture uptake (no more than 15%) and loss values (no more than 10%), Table 3 indicate the patch remains stable during long-term storage and does not become brittle (Latif et al., 2021; Shabbir et al., 2017). Low moisture uptake prevents the patch from microbial contamination (Santi et al., 2022). The formulated patch's surface pH Table 3 was determined to assess the potential for skin irritation because acidic or basic pH can be irritating. The pH test on the dermal patch found the highest pH value in F3, which was 7.24, and the lowest pH in F1, which was 6.99. The influence of pH is important in wound healing, such as in diabetic wounds. Increasing the pH in the wound area to a more alkaline pH of up to 8.5 will be an optimal environment for the growth of bacteria that trigger wound infections (Fu et al., 2022). Conversely, a pH that is close to neutral can accelerate the wound-healing process. A clinical study on wounds, including diabetic wounds, showed that a wound pH value lower than 7.5 will accelerate the wound healing process, and the wound environment tends to become more acidic during the healing process (Mcardle et al., 2014).

The analysis of total amount of xanthones in the patch formulations Table 3 was carried out to determine the amount of active compound remaining after the formulation. The test results revealed the recovery percent of the patch F1, F2, and F3 were 95.26%, 71.42%, and 78.54%, respectively. The reductions in F2 and F3 were thought to be because of the higher viscosity of the mixture compared to F1, resulting in poor flow during the casting process, which causes incomplete transfer of the formulation into the mold and further loss of active compounds (Martin et al., 2011). These findings indicate that controlling the viscosity of the formulation and optimizing the casting process were needed to minimize the loss of active compounds and ensure the uniformity and effectiveness of the final dermal patch.


Table 3. Thickness, weight uniformity, moisture uptake, surface pH, and the recovery of total xanthone of the patch

Formula	Thickness (mm)	Weight Uniformity (g)	Moisture Uptake (%)	Moisture Loss (%)	Surface pH	The Recovery of Total Xanthone (%)
F1	0.67 ± 0.05	0.61 ± 0.03	7.03 ± 1.43	1.59 ± 0.08	6.99 ± 0.14	95.26 ± 0.47
F2	0.68 ± 0.09	0.64 ± 0.04	7.96 ± 1.30	1.59 ± 0.07	7.01 ± 0.14	71.42 ± 1.99
F3	0.71 ± 0.03	0.64 ± 0.03	6.37 ± 1.30	1.48 ± 0.05	7.24 ± 0.14	78.54 ± 0.47


The FTIR spectra of the EC, PVP K-30, propylene glycol, menthol, and patches F1, F2, and F3 Figure 3 were investigated to investigate potential interactions between active ingredients and excipients. The mangosteen peel extract spectrum showed characteristic peaks at 1045.51 cm^{-1} for C-O ether groups, 1664.25 cm^{-1} for (C=C) stretching, 1701.52 cm^{-1} for C=O stretching, 2974.41 cm^{-1} and 2929.68 cm^{-1} for (CH-) stretching, and 3307.42 cm^{-1} for (-OH) stretching (Rohman et al., 2020; Tejamukti et al., 2020). The EC spectrum exhibited characteristic peaks at 1051.10 cm^{-1} and

1278.47 cm⁻¹ for C-O-C stretching, 2870.05 cm⁻¹ and 2972.55 cm⁻¹ for C-H stretching, and 3369.57 cm⁻¹ and 3479.46 cm⁻¹ for O-H stretching (Nandi & Mondal, 2022). The PVP K-30 spectrum showed peaks at 1168.52 cm⁻¹ and 1285.93 cm⁻¹ for C-N stretching, 1638.16 cm⁻¹ for C=O amide bond absorption, 2948.32 cm⁻¹ for C-H bonds, and 3309.87 cm⁻¹ and 3399.33 cm⁻¹ for O-H stretching from absorbed water (Febriyenti et al., 2020). The FTIR spectra revealed several peaks within the formulations, confirming no chemical interaction between the active ingredients of mangosteen extract and the excipients (Latif et al., 2021).

The XRD analysis presented in Figure 4 was performed to assess the crystal structure of the material. The mangosteen peel extract was in liquid form. Consequently, its crystallinity was not assessed through XRD analysis. The XRD pattern showed a high peak at the 2-theta diffraction angle, indicating high crystallinity of menthol. In contrast, the X-ray diffraction spectra of the polymers EC and PVP K-30 showed no significant peaks, reflecting their amorphous nature. The diffraction spectra for formulations F1, F2, and F3 showed similar characteristic peaks as EC and PVP K-30, but with reduced intensity, as indicated by the broadened peak shape. The XRD patterns for F1, F2, and F3 had no sharp peaks, which confirmed the amorphous form. The decrease in peak intensity on the diffractograms indicates that the active ingredients were well dispersed in the polymer matrix (Sharma & Pancholi, 2012).

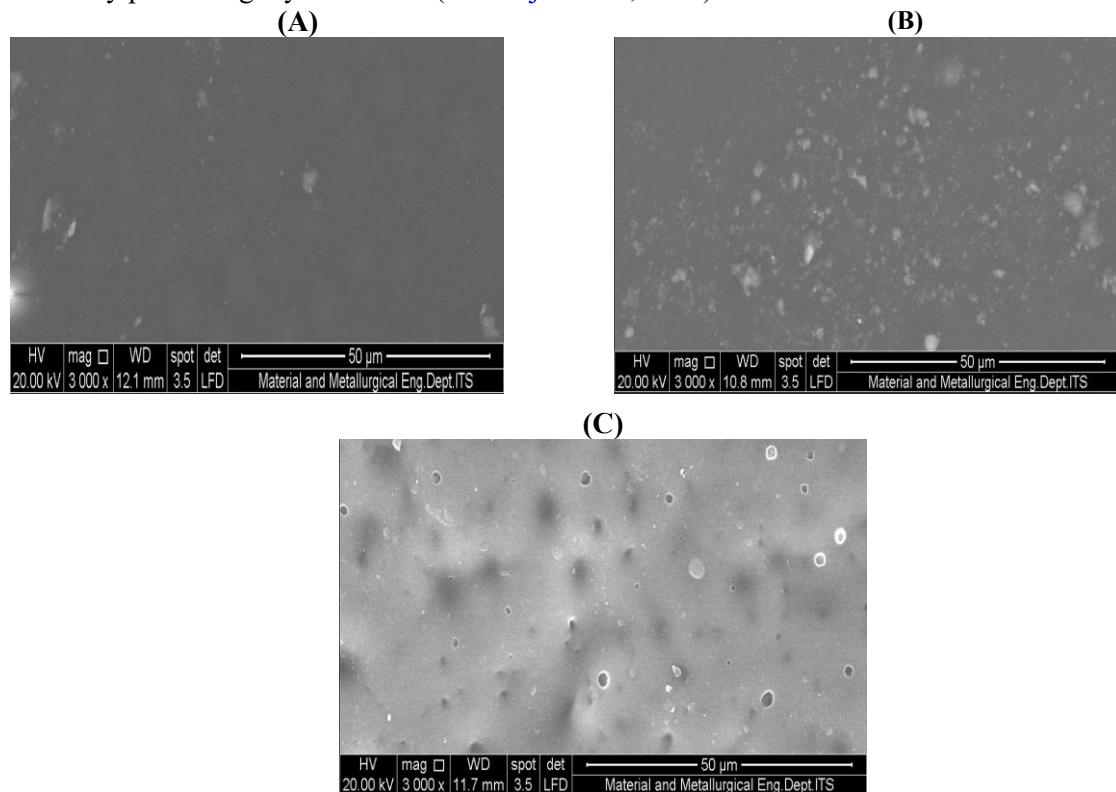


Figure 3. FT-IR spectra of mangosteen extract, EC, PVP K-30, propylene glycol, menthol, F1, F2, and F3

Figure 4. X-ray diffractogram of (A) EC, (B) PVP K-30, (C) menthol, (D) F1, (E) F2, (F) F3

SEM was conducted to examine the surface morphology of the patches. The results, presented in [Figure 5](#), revealed that a smoother and less porous surface was observed in F1, while a rougher surface was observed in F2 and F3. This was attributed to the higher concentration of PVP K-30 polymer in formula F1 compared to other formulations. Hydrophilic polymers such as PVP K-30 in patch formulations serve to prevent recrystallization through two mechanisms: exhibiting intermolecular hydrogen bonds with the active ingredients and occupying voids in the saturated matrix solution. In addition, they contribute to reducing the nucleation rate, effectively preventing crystallization ([Chatterjee et al., 2022](#)).

Figure 5. Surface morphology of the dermal patch (A) F1, (B) F2, and (C) F3 at a magnification of 3000x

CONCLUSION

Dermal patches containing mangosteen peel extract (*Garcinia mangostana* L.) utilizing a polymer combination of EC and PVP K 30 were successfully developed. Among all of the patch formulations, F1, utilizing a combination of EC and PVP K 30 in a 1:3 ratio, was identified as the optimal formula due to its physicochemical characteristics and smooth surface morphology.

ACKNOWLEDGEMENT

The authors gratefully acknowledge the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for the research funding support through the Kemendikbudristek Research Grant Program with number: 067/SP-Lit/LPPM-01/KemendikbudRistek/FF/VI/2024.

REFERENCES

Aisha, A. F., Abu-Salah, K. M., Ismail, Z., & Majid, A. M. S. A. (2013). Determination of total xanthones in *Garcinia mangostana* fruit rind extracts by ultraviolet (UV) spectrophotometry. *Journal of Medicinal Plants Research*, 7(1), 29–35. <https://doi.org/10.5897/JMPR11.1183>

American Diabetes Association. (2024). *Retinopathy, neuropathy, and foot care: Standards of care in diabetes*. *Diabetes Care*, 47(Suppl. 1), S231–S243. <https://doi.org/10.2337/dc24-S012>

Andayani, R., & Verawati, V. (2015). Pengaruh Metode Ekstraksi terhadap Kadar Xanton Total dalam Ekstrak Kulit Buah Manggis Matang (*Garcinia mangostana* L.) dengan Metode Spektrofotometri Ultraviolet. *Perkembangan Terkini Sains Farmasi & Klinik*, 1(2015), 353–361.

Azzahra, F. G., Ramadhani, U. K. S., Sukrasno, Adjeng, Andi N. T., & Andrifianie, F. (2023). The effect of PVP and EC polymer combinations on transdermal preparations in good patch characteristics: Review. *Pharmaceutical Journal of Indonesia*, 8(1), 55–62. <https://doi.org/10.15416/pji.v8i1.936>.

Bi, C., Xu, H., Yu, J., Ding, Z., & Liu, Z. (2023). Botanical characteristics, chemical components, biological activity, and potential applications of mangosteen. *PeerJ*, 11. <https://doi.org/10.7717/peerj.15329>

Chatterjee, B., Reddy, A., Santra, M., & Khamanga, S. (2022). Amorphization of Drugs for Transdermal Delivery-a Recent Update. In *Pharmaceutics* (Vol. 14, Issue 5). MDPI. <https://doi.org/10.3390/pharmaceutics14050983>

Fauzana, A., & Azhari Herli, M. (2021). Antioxidant activity of *Garcinia mangostana* L. peel extract at different drying temperatures. *Journal Of Pharmacy and Science*, 4(2), 37–43.

Febriyenti, Indra, P., Zaini, E., Ismed, F., & Lucida, H. (2020). Preparation and characterization of quercetin-polyvinylpyrrolidone K-30 spray dried solid dispersion. *Journal of Pharmacy & Pharmacognosy Research*, 8(2), 127–134.

Felton, L. A. (2013). Mechanisms of polymeric film formation. *International Journal of Pharmaceutics*. 457, 2, pp. 423–427. Elsevier B.V. <https://doi.org/10.1016/j.ijpharm.2012.12.027>

Franco, P., & De Marco, I. (2020). The use of poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. In *Polymers* (Vol. 12, Issue 5). MDPI AG. <https://doi.org/10.3390/POLYM12051114>

Fu, T., Stupnitskaia, P., & Matoori, S. (2022). Next-Generation Diagnostic Wound Dressings for Diabetic Wounds. In *ACS Measurement Science Au*, 2, 5, 377–384. American Chemical Society. <https://doi.org/10.1021/acsmeasuresciau.2c00023>

Fuziyanti, N., Najihudin, A., & Hindun, S. (2022). The effect of polymer combinations PVP:EC and HPMC:EC on transdermal preparations for good patch characteristics: Review. *Pharmaceutical Journal of Indonesia*, 7(2), 147–152.

Gondokesumo, M. E., Antonius, Y., & Agustin, Y. E. (2023). Effectivity of Patch Herbal Mixture Composed of Mangosteen Peel Extract and Bacterial Cellulose for Wound Healing. *Pharmacognosy Journal*, 15(3), 461–466. <https://doi.org/10.5530/pj.2023.15.102>

Gondokesumo, M. E., Pardjianto, B., Sumitro, S. B., Widowati, W., & Handono, K. (2019). Xanthones analysis and antioxidant activity analysis (Applying ESR) of six different maturity levels of mangosteen rind extract (Garcinia mangostana Linn.). *Pharmacognosy Journal*, 11(2), 369–373. <https://doi.org/10.5530/pj.2019.11.56>

Gondokesumo, M. E., Sumitro, S. B., Handono, K., Pardjianto, B., Widowati, W., & Utomo, D. H. (2020). A Computational Study to Predict Wound Healing Agents from the Peel of the Mangosteen (Garcinia mangostana L.) Extract. *International Journal Bioautomation*, 24(3), 265–276. <https://doi.org/10.7546/IJBA.2020.24.3.000607>

Herdiana, Y., Wathoni, N., Shamsuddin, S., & Muchtaridi, M. (2022). Drug release study of the chitosan-based nanoparticles. In *Helijon* (Vol. 8, Issue 1). Elsevier Ltd. <https://doi.org/10.1016/j.heliyon.2021.e08674>

Holl, J., Kowalewski, C., Zimek, Z., Fiedor, P., Kaminski, A., Oldak, T., Moniuszko, M., Eljaszewicz, A., & Steiger, S. (2021). *cells Chronic Diabetic Wounds and Their Treatment with Skin Substitutes*. <https://doi.org/10.3390/cells>

Kavitha, K. V. (2014). Choice of wound care in diabetic foot ulcer: A practical approach. *World Journal of Diabetes*, 5(4), 546. <https://doi.org/10.4239/wjd.v5.i4.546>

Kriplani, P., Guarve, K., & Singh Baghel, U. (2021). Formulation optimization and characterization of transdermal film of curcumin by response surface methodology. *Chinese Herbal Medicines*, 13(2), 274–285. <https://doi.org/10.1016/j.chmed.2020.12.001>

Kusumawati, I., Rullyansyah, S., Warsito, M. F., Pratama, Y. A., Hestianah, E. P., & Matsunami, K. (2024). Formulation and evaluation of encapsulated Graptophyllum pictum (L.) Griff. ethanolic extract in lipid vesicles for hemorrhoid treatment. *Journal of Pharmacy and Pharmacognosy Research*, 12(1), 27–38. https://doi.org/10.56499/jppres23.1655_12.1.27

Latif, M. S., Azad, A. K., Nawaz, A., Rashid, S. A., Rahman, M. H., Al Omar, S. Y., Bungau, S. G., Aleya, L., & Abdel-Daim, M. M. (2021). Ethyl cellulose and hydroxypropyl methyl cellulose blended methotrexate-loaded transdermal patches: In vitro and ex vivo. *Polymers*, 13(20). <https://doi.org/10.3390/polym13203455>

Martin, A. N., Sinko, P. J., & Singh, Yashveer. (2011). *Martin's physical pharmacy and pharmaceutical sciences: physical chemical and biopharmaceutical principles in the pharmaceutical sciences*. Lippincott Williams & Wilkins.

Mayefis, D., Anugerah, Y., & Rasyid, R. (2019). Determination of Total Xanthone Content in the Preparation of Mangosteen Pericarp Capsules (garcinia mangostana l.) Available on the Market using UV-Visible Spectrophotometry Method. *Majalah Obat Tradisional*, 24(2), 98–103. <https://doi.org/10.22146/mot.43871>

Mcardle, C., Lagan, K. M., & Mcdowell, D. A. (2014). The pH of Wound Fluid in Diabetic Foot Ulcers-the Way Forward in Detecting Clinical Infection. *Current Diabetes Reviews*, 10, 177–181.

Nandi, S., & Mondal, S. (2022). Fabrication and Evaluation of Matrix Type Novel Transdermal Patch Loaded with Tramadol Hydrochloride. *Turkish Journal of Pharmaceutical Sciences*, 19(5), 572–582. <https://doi.org/10.4274/tjps.galenos.2021.43678>

Oktaviani, R., & Sukmawati, A. (2024). Evaluation of the Use of Various Polymers for Transdermal Drug Delivery Matrix. *Journal of Integrative Natural Science*, 1(1), 11–20.

Parkash, M., Shoaib, M. H., Sikandar, M., Yousuf, R. I., Saleem, M. T., Ahmed, F. R., & Siddiqui, F. (2024). Formulation development, characterization, and mechanistic PBPK modeling of metoclopramide loaded halloysite nanotube (HNT) based drug-in-adhesive type transdermal drug delivery system. *Scientific Reports*, 14(1). <https://doi.org/10.1038/s41598-024-80089-8>

Polk, C., Sampson, M. M., Roshdy, D., & Davidson, L. E. (2021). Skin and Soft Tissue Infections in Patients with Diabetes Mellitus. In *Infectious Disease Clinics of North America* (Vol. 35, Issue 1, pp. 183–197). W.B. Saunders. <https://doi.org/10.1016/j.idc.2020.10.007>

Rohman, A., Arifah, F. H., Irnawati, Alam, G., & Muchtaridi, M. (2020). The application of FTIR spectroscopy and chemometrics for classification of Mangosteen extract and its correlation with alpha-mangostin. *Journal of Applied Pharmaceutical Science*, 10(4), 149–154. <https://doi.org/10.7324/JAPS.2020.104019>

Rozza, A. L., Beserra, F. P., Vieira, A. J., de Souza, E. O., Hussni, C. A., Martinez, E. R. M., Nóbrega, R. H., & Pellizzon, C. H. (2021). The use of menthol in skin wound healing anti-inflammatory potential, antioxidant defense system stimulation and increased epithelialization. *Pharmaceutics*, 13(11). <https://doi.org/10.3390/pharmaceutics13111902>

Samani, S. M., Ahmadi, F., Oveis, Z., & Amoozgar, Z. (2015). Chitosan based hydrogels: characteristics and pharmaceutical applications. In *Research in Pharmaceutical Sciences*, 10, 1.

Santi, T. D., Siregar, T. N., Sutriana, A., Andini, R., & Candra, A. (2022). Phytochemical test and optimization of transdermal patches of Carica papaya extract: Formulation design of candidate drug for wound healing. *Biodiversitas*, 23(6), 2904–2913. <https://doi.org/10.13057/biodiv/d230617>

Saundharya, P., Joseph, J., Rajalakshmi, G., & Shamy, M. (2022). Formulation of Wound Healing Transdermal Patch from Tubers Extract of Momordica Cymbalaria and its In-vitro Evaluation. *Hayat: The Saudi Journal of Life Sciences*, 7(7), 224–233. <https://doi.org/10.36348/sjls.2022.v07i07.004>

Setiawan, A. A., Budiman, J., & Prasetyo, A. (2023). Anti-Inflammatory Potency of Mangosteen (Garcinia mangostana L.): A Systematic Review. *Open Access Macedonian Journal of Medical Sciences*, 11(F), 58–66. <https://doi.org/10.3889/oamjms.2023.8746>

Shabbir, M., Ali, S., Raza, M., Sharif, A., Akhtar, F. M., Manan, A., Fazli, A. R., Younas, N., & Manzoor, I. (2017). Effect Of Hydrophilic and Hydrophobic Polymer on In Vitro Dissolution and Permeation of Bisoprolol Fumarate Through Transdermal Patch. *Acta poloniae pharmaceutica*, 74(1), 187–197.

Shafy, G. M., Mohammed, A., Jassim, N., & Mohammed, M. T. (2019). Study of phytochemical, antioxidant and anti-inflammatory of mangosteen (G. mangostana) and its ability to wound healing. *Plant Archive*, 19(1), 665–673.

Sharma, R. N., & Pancholi, S. S. (2012). Simple RP-HPLC method for determination of triple drug combination of valsartan, amlodipine and hydrochlorothiazide in human plasma. *Acta Pharmaceutica*, 62(1), 45–58. <https://doi.org/10.2478/v10007-012-0004-3>

Socaci, M. I., Fogarasi, M., Semeniuc, C. A., Socaci, S. A., Rotar, M. A., Mureşan, V., Pop, O. L., & Vodnar, D. C. (2020). Formulation and characterization of antimicrobial edible films based on whey protein isolate and tarragon essential oil. *Polymers*, 12(8). <https://doi.org/10.3390/POLYM12081748>

Suksaeree, J., Monton, C., Madaka, F., Chusut, T., Saingam, W., Pichayakorn, W., & Boonme, P. (2014). Formulation, Physicochemical Characterization, and In Vitro Study of Chitosan/HPMC Blends-Based Herbal Blended Patches. *AAPS PharmSciTech*, 16(1), 171–181. <https://doi.org/10.1208/s12249-014-0216-6>

Syahputra, M. R., Setiado, H., Siregar, L. A. M., & Damanik, R. I. (2021). Morphological characteristics of Mangosteen plants (Garcinia mangostana L.) in Langkat District, North Sumatera, Indonesia. *IOP Conference Series: Earth and Environmental Science*, 782(4). <https://doi.org/10.1088/1755-1315/782/4/042056>

Syarifah, A., & Nabila, N. (2023). Evaluation of Patch Ethanol Extract of Zingiber officinale Rosc. Var Amarum For Antiemetic. *Indonesian Journal of Pharmaceutical Science and Technology*, 2, 66–74.

Tejamukti, E. P., Setyaningsih, W., Irnawati, Yasir, B., Alam, G., & Rohman, A. (2020). Application of FTIR spectroscopy and HPLC combined with multivariate calibration for analysis of xanthones in mangosteen extracts. *Scientia Pharmaceutica*, 88(3), 1–11. <https://doi.org/10.3390/scipharm88030035>

Wahyuningsih, I., Fadilah, N. A., & Widyaningsih, W. (2024). In-vivo study of oleic acid and tween-80 on patch transdermal A.paniculata as anti-diabetic. *Pharmaciana*, 14(2), 195. <https://doi.org/10.12928/pharmaciana.v14i2.27851>

Wijaya, D. P., Mardiyanto, Herlina, Rizki, S., Nurhanif, Apriani, E. F., & Mulyani, L. N. (2023). Formulation and characterization transdermal patches with chitosan-alginate of mangosteen peel (garcinia mangostana l.). *Journal of Medical Pharmaceutical and Allied Sciences*, 12(6), 6199–6208. <https://doi.org/10.55522/jmpas.V12I6.5661>

Zakaria, N. N. A., Okello, E. J., Howes, M. J., Birch-Machin, M. A., & Bowman, A. (2018). In vitro protective effects of an aqueous extract of Clitoria ternatea L. flower against hydrogen peroxide-induced cytotoxicity and UV-induced mtDNA damage in human keratinocytes. *Phytotherapy Research*, 32(6), 1064–1072. <https://doi.org/10.1002/ptr.6045>

Zaman, M., Khalid, U., Abdul Ghafoor Raja, M., Siddique, W., Sultana, K., Amjad, M. W., Ur Rehman, A., & Ahmad Khan, M. (2017). Fabrication and characterization of matrix-type transdermal patches loaded with ramipril and repaglinide through cellulose-based hydrophilic and hydrophobic polymers: In vitro and ex vivo permeation studies. *Polymer - Plastics Technology and Engineering*, 56(16), 1713–1722. <https://doi.org/10.1080/03602559.2017.1289400>

About the Journal

Focus and Scope

Pharmaciana publishes original article in the all scopes of **Pharmaceutical Science** such as Pharmaceutics, Biopharmaceutics, Drug Delivery System, Physical Pharmacy, Chemical Pharmacy, Pharmaceutical Technology, Pharmaceutical Microbiology and Biotechnology, Pharmacology and Toxicology, Pharmacokinetics, Pharmaceutical Chemistry, Pharmaceutical Biology, Community and Clinical Pharmacy, Regulatory Affairs and Management Pharmacy, and Alternative Medicines.

Peer Review Process

Every submitted paper will be initialized review by a Section Editor whether it is suitable for **Pharmaciana's** focus and scope or has a major methodological flaw and similarity score by using [iThenticate](#). If the manuscript meets these requirements then the manuscript will be reviewed by a minimum of **two reviewers** and the review process uses a **Single-Blind Peer Review**.

Reviewing process will consider **novelty, objectivity, method, scientific impact, conclusion, and references**. The suggested decision will be evaluated in an editorial board meeting. Afterward, the editor will send a decision to the corresponding author.

Review Outcomes

Utilizing feedback from the peer review process, the Editor will make a final publication decision. The review process will take approximately 4 to 12 weeks. Decisions categories include:

1. **Decline Submission** - The manuscripts will not be published, and authors will not have the opportunity to resubmit a revised version of the manuscript to **Pharmaciana**.
2. **Resubmit for Review** - The submission needs to be re-worked, but it may be accepted with significant changes. However, It will require a second round of review.
3. **Revisions Required**- Manuscripts will be published in **Pharmaciana** under the condition that **minor/major modifications** are made. An editor will review revisions to ensure necessary updates are made before publication.
4. **Accept Submission**- Accepted manuscripts will be published in the current form, with no further modifications required.

Editing Stages

The Accepted manuscript will be continued to copyediting, layout editing, and proofreading before it is published.

Publication Frequency

This journal is published 3 times per year in March, July and November

Open Access Policy

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.

Publication Ethics

Pharmaciana is a scientific journal published by the University of Ahmad Dahlan worked closely with Ikatan Apoteker Indonesia (IAI). The Editorial Board is responsible for, among others, preventing publication malpractice. Unethical behavior is unacceptable, and the Pharmaciana does not tolerate plagiarism in any form. Authors who submitted articles: affirm that manuscript contents are original. Furthermore, the authors' submission also implies that the manuscript has not been published previously in any language, either wholly or partly, and is not currently submitted for publication elsewhere. Editors, authors, and reviewers, within the Pharmaciana, are to be fully committed to good publication practice and accept the responsibility for fulfilling the following duties and responsibilities, as set by the COPE Code of Conduct for Journal Editors. As part of the Core Practices, COPE has written guidelines on the <http://publicationethics.org/resources/guidelines>.

Section A: Publication and authorship

1. All submitted papers are subject to a strict peer-review process by reviewers that are experts in the area of the particular manuscript.
2. The review process is double-blind peer-review.
3. The factors that are taken into account in the review are relevance, soundness, significance, originality, readability, and language.
4. The possible decisions include acceptance, acceptance with revisions, or rejection.
5. If authors are encouraged to revise and resubmit a submission, there is no guarantee that the revised submission will be accepted.
6. Rejected articles will not be re-reviewed.
7. The paper acceptance is constrained by such legal requirements as shall then be in force regarding libel, copyright infringement, and plagiarism.
8. No research can be included in more than one publication.

Section B: Authors' responsibilities

1. Authors must certify that their manuscripts are their original work.
2. Authors must certify that the manuscript has not previously been published elsewhere.
3. Authors must certify that the manuscript is not currently being considered for publication elsewhere.
4. The authors must participate in the peer-review process.
5. Authors are obliged to provide retractions or corrections of mistakes.
6. All Authors mentioned in the paper must have significantly contributed to the research.
7. The authors must state that all data in the paper are real and authentic.
8. The authors must notify the Editors of any conflicts of interest.
9. The authors must identify all sources used in the creation of their manuscripts.
10. Authors must report any errors they discover in their published papers to the Editors.

Section C: Reviewers' responsibilities

1. Reviewers should keep all information regarding papers confidential and treat them as privileged information.
2. Reviews should be conducted objectively, with no personal criticism of the author.
3. Reviewers should express their views clearly with supporting arguments.
4. Reviewers should identify relevant published work that has not been cited by the authors.
5. Reviewers should also call to the Editor in Chief's attention any substantial similarity or overlap between the manuscript under consideration and any other published paper of which they have personal knowledge.
6. Reviewers should not review manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relationships or connections with any of the authors, companies, or institutions connected to the papers.

Section D: Editors' responsibilities

1. Editors have complete responsibility and authority to reject/accept an article.
2. Editors are responsible for the contents and overall quality of the publication.
3. Editors should always consider the needs of the authors and the readers when attempting to improve the publication.
4. Editors should guarantee the quality of the papers and the integrity of the academic record.
5. Editors should publish errata pages or make corrections when needed.
6. Editors should have a clear picture of research funding sources.
7. Editors should base their decisions solely on the papers' importance, originality, clarity, and relevance to the publication's scope.
8. Editors should not reverse their decisions nor overturn the ones of previous editors without serious reason.
9. Editors should preserve the anonymity of reviewers.
10. Editors should ensure that all research material they publish conforms to internationally accepted ethical guidelines.
11. Editors should only accept a paper when reasonably certain.
12. Editors should act if they suspect misconduct, whether a paper is published or unpublished, and make all reasonable attempts to persist in obtaining a resolution to the problem.
13. Editors should not reject papers based on suspicions; they should have proof of misconduct.
14. Editors should not allow any conflicts of interest between staff, authors, reviewers, and board members

Conflicts of Interest

The journal requires that all authors disclose any potential sources of conflict of interest.

"The potential for conflict of interest and bias exists when professional judgment concerning a primary interest (such as patients' welfare or the validity of research) may be influenced by a secondary interest (such as financial gain). Perceptions of conflict of interest are as important as actual conflicts of interest."

Any interest or relationship, financial or otherwise that might be perceived as influencing an author's objectivity is considered a potential source of conflict of interest. These must be disclosed when directly relevant or directly related to the work that the authors describe in their manuscript. Potential sources of conflict of interest include, but are not limited to the following: patent or stock ownership, membership of a company board of directors, membership of an advisory board or committee for a company. If the authors have no conflict of interest to declare, they must also state this at submission. It is the responsibility of the corresponding author to review this policy with all authors and collectively to disclose with the submission.

Sponsors

- [Universitas Ahmad Dahlan](#)

[Author Guidelines](#)

[Editorial Boards](#)

[Reviewers](#)

[Focus and Scope](#)

[Publications Frequency](#)

[Copyright Notice](#)

[Open Access Process](#)

[Publication Ethics](#)

[Generative AI Policy](#)

[Withdrawal of Manuscripts](#)

[Retraction](#)

[Author\(s\) fee](#)

[Contact Us](#)

[Peer Review](#)

[Ethical Guidelines](#)

[Journal Business Model](#)

PHARMACIANA TEMPLATES

TOOLS

Current Issue

[ATOM 1.0](#)[RSS 2.0](#)[RSS 1.0](#)

PHARMACIANA INDEXED BY

sinta^{S2}
Science and Technology Index

DOAJ DIRECTORY OF
OPEN ACCESS
JOURNALS

PHARMACIANA VISITOR

00793416

StatCounter

[View Pharmaciana Stats](#)

Pharmaciana

ISSN Print: [2088-4559](#) | ISSN Online: [2477-0256](#)

Website: <http://journal3.uad.ac.id/index.php/pharmaciana>

Office: Faculty of Pharmacy, Universitas Ahmad Dahlan

Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia

Kode pos 55164

Email: pharmaciana@pharm.uad.ac.id ; admin.pharmaciana@pharm.uad.ac.id

Platform &
workflow by
OJS / PKP

[Home](#) / Editorial Team

Editorial Team

Editor in Chief

[Prof.Dr.apt. Nurkhasanah Mahfudh,M.Si.](#), (SCOPUS ID:56610264900), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Editorial Board

[apt., Phebe Hendra,M.Si., Ph.D.](#), (SCOPUS ID:56730290200), Sanata Dharma University, Indonesia

[Prof. Dr. apt. Dyah Aryani Perwitasari, M.Si., Ph.D.](#), (SCOPUS ID: 36114858900), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

[Dr. Kenny Chitcholtan](#), (SCOPUS ID: 8937155100), Christchurch School of Medicine and Health Sciences, New Zealand

[Prof. Dr. Irwandi Jaswir.](#), (SCOPUS ID: 6603028871), International Islamic University Malaysia (IIUM), Malaysia

[Dr. drh Sapto Yuliani, MP.](#), (SCOPUS ID: 57193663680), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

[Sukanya Dej-adisai Ph.D.](#), (SCOPUS ID: 6505795360), Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90110 Thailand, Thailand

[Dr. Fezah Binti Othman.](#), (SCOPUS ID: 55056108800), Universiti Putra Malaysia, Malaysia

[Prof. Dr. apt. Zullies Ikawati.](#), (SCOPUS ID: 7801693557), Fakultas Farmasi, Universitas Gadjah Mada, Yogyakarta, Indonesia

[Prof. Dr. apt. Abdul Rohman, MSi.](#), (SCOPUS ID: 32668020600), Fakultas Farmasi, Universitas Gadjah Mada Yogyakarta, Indonesia

[Prof. Dr. apt. Akhmad Kharis Nugroho, M.Si.](#), (SCOPUS ID: 8529275500), Fakultas Farmasi, Universitas Gadjah Mada, Indonesia

Dadan Hermawan, M.Si., Ph.D., (SCOPUS ID: 24475997000), Fakultas MIPA, Universitas Jenderal Soedirman, Indonesia

Dr. apt. Moch. Saiful Bachri, M.Si., (SCOPUS ID: 35723838800), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Dr. apt. Isnaeni Yudi Haryanto, M.S., (SCOPUS ID: 56073677600), Faculty of Pharmacy, Universitas Muhammadiyah Surabaya, Indonesia

Dr. apt. Keri Lestari Dandan, M.Si., (SCOPUS ID: 55070933000), Fakultas Farmasi, Universitas Padjadjaran, Indonesia

Dr. apt. Laela Hayu Nurani, M.Si., (SCOPUS ID: 57194229823), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

apt., Anita Sukmawati, Ph.D., (SCOPUS ID: 57201674678), Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Indonesia

Dr. apt. Nining Sugihartini, M.Si., (SCOPUS ID: 57190941190), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Dr. apt. Lannie Hadisoewignyo, M.Si., (SCOPUS ID: 57190941190), Fakultas Farmasi, Universitas Katolik Widya Mandala Surabaya, Indonesia

Iin Narwanti, M.Sc., Ph.D., Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Dr.apt. Nina Salamah, M.Sc., (SCOPUS ID: 57199730183), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

apt. Faridah Baroroh, M.Sc., (SCOPUS ID: 57215020545), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

apt. Susan Fitria Candradewi, M.Sc., (SCOPUS ID: 58139163800), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

apt. Citra Ariani Edityaningrum, M.Si., (SCOPUS ID: 56030451000), Faculty of Pharmacy, Universitas Ahmad Dahlan, Indonesia

Section Editor

Dr. Asrul Kamal Shafie, (SCOPUS ID: 26423357100), School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia

Prof. Kuniyoshi Shimizu, (SCOPUS ID: 7404960600), Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan

Dr. Asim Mansha, (SCOPUS ID: 36646537900), Department of Chemistry, Government College University, Faisalabad-38000, Pakistan, Pakistan

Prof. Tsanko S. Gechev, (SCOPUS ID : 6507572536) Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria

Zhongxiang Fang, (SCOPUS ID:11739266000), Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, 3010, Australia

Dr. Di Huang, (SCOPUS ID: 35213406500), Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR, China

Lyndy J McGaw, (SCOPUS ID: 55952645400), Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa, South Africa

Dr. Aziza Lfitat, (SCOPUS ID: 57226746784),, Laboratory of Physiology Pharmacology and Environmental Health, Faculty of Sciences Dhar El Mehraz, University Sidi Mohamed Ben Abdellah, B.P. 1796 Atlas, Fez, Morocco

Prof. Carlos Gabriel Arp, (SCOPUS ID: 57192681393), Centro de InvestigaciÃ³n y Desarrollo en CriotecnologÃa de Alimentos (CIDCA), Universidad Nacional de La Plata-Facultad de Ciencias Exactas, ComisiÃ³n de Investigaciones CientÃficas de La Provincia de Buenos Aires, Consejo Nacional de Investigaciones CientÃficas y TÃ©cnicas, 47 y 116, (C.P 1900) La Plata, Argentina, Argentina

Michael Felker,(SCOPUS ID:57212853431), Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina Divison of Cardiology, Duke University School of Medicine, Durham, North Carolina, United States

Rph., Ms., Ph.D Francis Capule, (SCOPUS ID: 56287033300), College of Pharmacy University of Philipines Manila, Philippines

Enade Perdana Istyastono, Ph.D., Apt., (SCOPUS ID: 26635157300), Fakultas of Pharmacy, Universitas Sanata Dharma, Yogyakarta, Indonesia

Dr. Nayana P Nair, (SCOPUS ID: 35213406500) Christian Medical College, Vellore, India

Abdolhossein Moghbel, (SCOPUS ID: 8845378900), Department of Pharmaceutics, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

[Author Guidelines](#)[Editorial Boards](#)[Reviewers](#)[Focus and Scope](#)[Publications Frequency](#)[Copyright Notice](#)[Open Access Process](#)[Publication Ethics](#)[Generative AI Policy](#)[Withdrawal of Manuscripts](#)[Retraction](#)[Author\(s\) fee](#)[Contact Us](#)[Peer Review](#)[Ethical Guidelines](#)[Journal Business Model](#)[PHARMACIANA TEMPLATES](#)

TOOLS

Current Issue

[ATOM 1.0](#)

[RSS 2.0](#)

[RSS 1.0](#)

PHARMACIANA INDEXED BY

sinta^{S2}
Science and Technology Index

DOAJ DIRECTORY OF
OPEN ACCESS
JOURNALS

PHARMACIANA VISITOR

00793414

StatCounter

[View Pharmaciana Stats](#)

Pharmaciana

ISSN Print: [2088-4559](#) | ISSN Online: [2477-0256](#)

Website: <http://journal3.uad.ac.id/index.php/pharmaciana>

Office: Faculty of Pharmacy, Universitas Ahmad Dahlan

Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta, Indonesia

Kode pos 55164

Email: pharmaciana@pharm.uad.ac.id ; admin.pharmaciana@pharm.uad.ac.id

Platform &
workflow by
OJS / PKP