

Design and Implementation of a Reverse Proxy

Architecture for Cyber Attack Mitigation on Private

Cloud: A Case Study

Marco Ariano Kristyanto

Department of Informatics

University of Surabaya

Surabaya, Indonesia

marcokristyanto@staff.ubaya.ac.id

Abstract—Web applications are vital to the operation of

institutions and organizations. Numerous firms employ a

singular monolithic server architecture to host their essential

web-based applications. This technique may lower management

costs, but it also increases the risk of a single point of failure.

This paper presents a multi-VM isolation architecture

integrated with a Defense-in-Depth strategy, utilizing open-

source tools such as Nginx reverse proxy, Suricata, Fail2ban,

and iptables to address this challenge. This stratified security

methodology guarantees enhanced access to web services while

preserving cost-effectiveness for small to medium-sized

enterprises. Validation via penetration testing confirms that the

architecture can withstand DoS attacks and effectively operate

five separate web applications.

Keywords—Nginx, Open Source Security, Defense in Depth,

Reverse proxy, Private Cloud.

I. INTRODUCTION

In today's digital era, web applications play a vital role in
supporting the operational activities of organizations and
institutions. To simplify management, many organizations
consolidate critical web-based applications into a single,
monolithic server architecture. While this can help reduce
management costs, it can significantly increase security risks.
For example, when a server is attacked through DDoS, brute
force, or other vulnerabilities, this can lead to a single point of
failure that can paralyze all digital services, disrupting the
organization's operations. To address these risks and
problems, it is necessary to implement a layered security
strategy (Defense in Depth) appropriately and measurably.

This study is motivated by a case study of the failure of a
monolithic-based server architecture on a production server
running several web-based applications simultaneously. The
incident highlights the system's vulnerability to cyberattacks,
resulting in both operating system and hardware failures, and
demonstrates that an architecture lacking a properly
configured defense layer is insufficient to counter the growing
complexity of cyber threats.

Various approaches include migrating to commercial
cloud services, employing paid web application firewall
services, or leveraging a Content Delivery Network (CDN).
However, this solution also requires significant technical and
financial resources. Therefore, it cannot always be applied to
organizations or institutions with limited financial budgets
that still manage their architecture privately. Small and
medium-sized enterprises face challenges in implementing
commercial security services, as these solutions often exceed
their financial capabilities and require outsourcing critical data
flows to third-party suppliers. This raises issues with
budgetary constraints and data sovereignty.

Therefore, a study of the implementation of a practical,
affordable, replicable, and server-based security solution is
needed. This study proposes a new server architecture based
on multi-VMs, implementing a security strategy that
incorporates built-in firewalls, iptables, Fail2ban, and open-
source IDS as an additional layer of defense. By separating it
into multiple virtual machines, the server workload can be
balanced, and the risk of a single point of failure can be
minimized. Furthermore, the mitigation of cybersecurity
threats can be enhanced by controlling data traffic on proxies
and firewalls.

This study aims to design and evaluate a distributed
architecture with a layered defense for private cloud
environments. Focusing on the effectiveness of handling
cyberattacks and improving service management in multi-VM
architectures. The novelty of the research lies in the practical
combination of reverse proxy implementation with multi-VM
isolation equipped with open-source security layers. The
results of this study are expected to serve as a design reference
for small and medium-sized organizations that require
affordable layered defense solutions.

The remainder of the papers are as follows. Section I will
provide an overview of the research background. Section II
will discuss related works and literature review that were used
in this research. Section III will discuss the architecture
proposed in this research and explain its components. Section
IV will discuss the results and implementation of this
architecture, particularly in the context of handling
penetration testing. Section V will discuss the conclusion and
future works.

II. RELATED WORK

A. Nginx as Reverse Proxy

Nginx is widely used as a reverse proxy, particularly in

modern web architectures. For example, it is commonly

implemented as a load balancer, and comparisons with other

load balancing algorithms have shown that Nginx can be

more efficient. [1]. Other research on the use of nginx as a

load-balancing tool on cluster servers was also implemented

by [2]. Using Nginx as a web server backend combined with

a round-robin algorithm, the results showed that the

algorithm works well with Nginx as a reverse proxy in the

website architecture.

In addition to load balancing, the Nginx reverse proxy is

also used to improve security. For example, combining Nginx

with the NAXSI web application demonstrated significant

performance improvement when handling several penetration

testing experiments on the site, and also reduced CPU usage

on the web server [3].

Other studies have also described how Nginx can be used

to counter DDoS attacks by filtering the data traffic to the

server [4].

B. Firewall Technologies

Firewalls are an essential component in cyber defense.
Firewalls act as gatekeepers for data traffic entering a system
or server. They can be configured according to the system
owner's policies. [5] And regulate data traffic between the
Internet and intranet networks [6].

In addition to static rules, firewalls can also be configured
using dynamic rules. As research conducted by [7] Indicates
that dynamic firewalls are more robust in protecting and
securing networks and servers. In securing computer networks
and the internet, firewalls can be combined with other
components, such as IDS, for example, in securing big data
infrastructures. [8] And with a reverse proxy to secure the
web server [9].

Firewalls can also be enhanced with artificial intelligence,
specifically through machine learning algorithms to improve
their detection capabilities. Studies have shown that a web
firewall combined with AI can detect various threats,
including XSS attacks and SQL injection attacks. [10].

C. Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) serves as the eyes

and ears of cybersecurity, working proactively to monitor

network activity and identify the occurrence of attacks. IDS

(Intrusion Detection System) is often a signature-based

system and is used to secure computer architectures [11] as

well as cloud infrastructures [12].

IDS can be integrated with private cloud architectures

such as OpenStack. Implementation results have shown that

IDS can also improve the security of OpenStack [13].

D. Gap Analysis

The integration of Reverse Proxies with other security

techniques has also been explored in several advanced studies

to enhance the security of web-based applications. For

example, one study combined a web application firewall,

Fail2ban, an nginx reverse proxy, and PostgreSQL databases

to secure the Company's web-based applications,

demonstrating that the proposed solutions effectively protect

user applications.[14]. Another study about the integration of

Nginx reverse proxy architecture, DNS Bind services to

improve the access of institutional web-based applications

[15].

A review of previous studies reveals existing gaps. Most

research has focused on using Nginx as a load balancer or

standalone web application firewall, but has not explored its

role in isolating a multi-VM cloud architecture on a limited-

scale infrastructure. Additionally, the integration of Nginx

with other security solutions, such as Fail2ban, Suricata, and

iptables, for implementing a Defense-in-Depth strategy

remains underexplored. Addressing this gap is essential for

small and medium-sized organizations that require affordable

yet practical solutions to secure their private cloud

environments.

In addition to academic research, many businesses use

Content Delivery Networks (CDNs) and cloud-based Web

Application Firewalls (WAFs) to protect against DDoS and

intrusion threats. These services offer strong protection and

use large-scale infrastructure, but they cost a lot of money and

require businesses to send critical data traffic to third-party

suppliers. This kind of dependence could raise concerns

about data sovereignty, making it impossible for small and

medium-sized businesses with limited financial resources.

This study, on the other hand, uses open-source technologies

in a private cloud environment. This allows institutions to

maintain complete control over their data and infrastructure

while achieving security results comparable to those of

commercial products.

This gap presents an opportunity for research focused on

designing and implementing Nginx reverse proxy

architectures in multi-VM-based private cloud architectures,

serving not only as a load balancer or standalone WAF but

also as part of an integral layered security system. Therefore,

this study aims to fill this gap by presenting practical,

affordable, and replicable solutions, particularly for small and

medium-sized organizations.

III. SYSTEM ARCHITECTURE

This section contains information about the system
architecture that was implemented and tested in this study.
And the methodology used in the study

A. Overall System Architecture

The system architecture to be tested in this study is
presented in Fig. 1.`

As illustrated in Fig. 1, the overall flow for the proposed
architecture begins with the incoming traffic from the
internet, which is passed to the reverse proxy machine. The
Nginx reverse proxy is the primary security gateway, as seen
in Fig. 1. It filters traffic coming in from the Internet. After
that, the reverse proxy forwards requests to application VMs:
e.g., the primary web server, application VM 1, and
application VM 2. This keeps things separate and provides an
additional layer of security against potential threats. Requests
from the internet first go through the Nginx reverse proxy. It
demonstrates how reverse proxies and web-based
applications function on a private cloud based on Proxmox.
We chose Proxmox because it is open-source and can be
easily set up to meet the user's specific needs. You may also
set up Suricata and Fail2ban to watch traffic coming in from
the public IP.To maintain confidentiality and protect the
production environment, the Public IP Address and domain
shown in the pictures have been intentionally obfuscated.

B. Nginx Reverse Proxy VM Configurations

For VM, nginx servers use the Ubuntu LTS 24.04
Operating System, which then installs several supporting
applications as follows:

Fig. 1. The suggested system architecture for the private cloud
environment

• Nginx

• Fail2ban

• Suricata IDS

The architecture was deployed using the latest stable
releases of Nginx, Suricata, and Fail2ban. Additionally,
adjustments were made to the rule settings on the built-in
Linux firewall, ufw, as well as iptables. So the architecture of
the reverse proxy VM is as follows.

Suricata is configured by monitoring the data traffic that
enters the public IP address. In Fig. 2, the Public IP address
used is 203.114.0.0/16, through which Suricata will monitor
incoming data traffic. The address is installed on Ethernet
interface one on the Reverse Proxy VM, while Ethernet 2 will
be populated with a Private IP address that has a subnet of
192.168.x.x/24. Nginx reverse proxy is configured according
to the needs of each application.

C. Security Configurations

For Suricata configurations, use the default Suricata rules
that are updated using the default command, which is updated
periodically based on the standard ET Open rules. Then, for
Fail2ban, use the following configuration snippet on Fig. 3.

As shown in Fig. 3, an IP address is banned for 3600
seconds if it fails authentication 10 times within a 600-second
window. This rule helps mitigate brute-force attempts by
automatically blocking suspicious sources.. Additionally,
UFW and iptables are used to restrict open ports to only 80
(HTTP) and 443 (HTTPS), thereby minimizing the attack
surface.

D. Back-end web Application

Each back-end VM runs LAMP (Linux, Apache, MySQL,
and PHP) and PhpMyAdmin for database Management.
Applications are isolated on separate VMs to reduce
interdependency and prevent single points of failure.

IV. EXPERIMENTAL RESULT

This section presents the results of implementing the
designed architecture. A more detailed explanation of the
actions taken is provided in Section III, including instructions
on how to install each component and the penetration testing
that is conducted. The validation test of the components of
each web-based application has also been performed, and it
has shown that they continue to run normally, just as they
would in a monolithic application. Due to access limitations
and security policies on the organizational network, detailed
Suricata and Fail2ban log files could not be retrieved for
inclusion in this paper. However, the system’s response was
validated through penetration testing, as described in this
section.

A. Penetration testing

After the installation and preparation of each component
in section III. So the next stage is to conduct penetration
testing on the proposed architecture. The penetration testing
undertaken in this study is as follows:

• Port Scanning test: nmap

• ICMP flood test: hping3

• SYN TCP flood test: hping3

• Directory scanning test: dirb

The first penetration testing test was to do port scanning from
Kali Linux using the nmap command. The results of nmap
scanning are as follows:

Fig. 4 shows that the scanning experiment identified only
80 open ports, which were detected during the port scanning
experiment. While other ports can't be detected, this suggests
that the rules of the pre-configured UFW firewall are only
opening ports 80 and 443, which are accessible and
functioning properly.

The settings related to ports that are opened only 80 and
443 are indicated by using the following command:

• Sudo ufw allow 80

• Sudo ufw allow 443

According to the results of penetration testing, it was
demonstrated that the other ports were not exposed when
nmap port scanning was performed. In addition to port
scanning, the following test is to be carried out: directory
scanning.

The results of directory scanning found that some of the

contents of folders from the web application can be detected

with the dirb command. To overcome this, a slight

modification was made to the Nginx reverse proxy by adding

Fig. 2. Architecture for VM Reverse Proxy

Fig. 3. Example Configuration for Fail2Ban Jail Rule

Fig. 4. Result of port scanning attempt. The UFW responds, only ports 80

and 443 are open to the public.

an 'autoindex off' option. The results of these modifications

are shown in Fig. 5.
Fig. 5 shows that the implementation of autoindex=off

aims to prevent users from browsing directories that lack
index files. Although there has been no rescan after this
addition, autoindex=off is a practical implementation for
securing web servers.

B. ICMP and TCP DDOS Mitigation

Resistance tests against DOS attacks were also conducted

in this study. The test was performed using Hping3. Here is a

test ICMP flood using the HPing3 tools. Command sudo

hping3 <destination IP address> -p 80 -c 5. The experiment

yielded a 0% success rate. This means that the VM Proxy

rejects the formation of a SYN connection; the test results are

shown in Fig. 6.

The results of the TCP Null scan using HPING3 on port

80 showed that the server received no packets. This

demonstrates that iptables and Reverse proxy rules

effectively handle DoS attacks.

Then, the second test was carried out by sending a TCP

SYN flood to port 80, and the final result showed that out of

the 9.4 million packets sent to the server, none of them were

successful. This means that the combination of reverse

proxies and iptables is effective in mitigating SYN flood

attempts. This is referred to in Fig. 7.
The test for an ICMP flood was performed using hping3

with the command sudo hping3 –icmp –flood 203.104.0.0/16.

The results of this DDOS experiment are shown in Fig. 8. The
results of this experiment show that of the 8.1 million
submitted, all of them were 100% failed. This means that the
iptables rules set in Chapter 3 are working as expected. This
referred in Fig. 8.

C. Research Limitations

It is important to note that the validation test conducted in

this study has certain limitations. This section outlines the

limitations of the research tests conducted.

In this study, what has been tested so far is how the

architecture survives several penetration testing experiments,

such as:

• DDOS attack mitigation

• Port scanning.

• Directory scanning
Additionally, several test scenarios have not been

conducted, including the ability to handle incoming data
traffic. Then, how this architecture survives large-scale attacks
becomes a space for further research to answer this problem.
While this study validated the deployment of five applications,
the scalability of the proposed architectures to handle large
numbers of applications (10,20, or 100 applications) has not
yet been tested. This will be addressed in future works, along
with the architectures that handle large-scale attacks and VM
workloads.

Although detailed logs could not be exported this time,

the test confirmed that the proposed architecture is effective

in blocking unauthorized access and mitigating common

network threats. Due to organizational security policies, the

detailed log of Suricata and Fail2ban cannot be included in

this study. Future research will address this limitation by

designing controlled test environments that enable secure log

collection and analysis.

In addition, performance benchmarking (CPU

utilization, memory consumption, throughput, and latency)

was not conducted in this research, as controlled high-

intensity testing could not be undertaken due to

organizational restrictions in production mode. This remains

an essential limitation, which will be addressed in future

research using isolated test environments.

V. CONCLUSION AND FUTURE WORKS

A. Conclusion

This research successfully designed and implemented a
reverse proxy architecture combined with layered security,
executed on a limited-scale cloud environment. The proposed
architectural design was validated with five different
applications. This architecture can withstand penetration
testing attempts, specifically DDoS TCP attack (blocking 9.4
million packets sent to the server) and ICMP flood
experiments (blocking 8.1 million packets). Additionally,
access to each web-based application can run smoothly, just
like in a monolithic architecture. These results validate the
effectiveness of the Defense in Depth approach through the
integration of Nginx reverse proxies with open-source
security solutions (Fail2Ban, Suricata, iptables) as a practical
and affordable solution for organizations with limited-scale
private cloud infrastructure.

B. Future Works

This research still has considerable room for further
development, particularly in measuring nginx's performance

Fig. 5. Modification of Nginx Proxy Server to turn off the autoindex for

prevent the directory scanning

Fig. 6. Result of TCP Null scan using HPing3, which indicates the reverse

proxy architecture blocked all the incoming traffic.

Fig. 7. Result of HPing3 SYN Flood, which indicates the reverse proxy

architecture can handle the TCP DDOS attack

Fig. 8. Result of ICMP Flood penetration testing, which indicates the

architecture

in load balancing access to each web-based application.
Additionally, it is necessary to measure the performance of
Reverse Proxy VMs to determine how the VM can withstand
larger-scale cyberattack attempts. Future work will also
provide a detailed log-based analysis of Suricata and fail2ban,
and performance benchmarking will be conducted to evaluate
resource usage under both normal and attack conditions.
Scalability test with larger application sets (10,20, or 100 web
applications), and integration with firewalls, such as
OPNSense or other firewalls, to assess their performance and
the robustness of the architecture.

ACKNOWLEDGEMENT

The authors acknowledge the use of generative AI language
models (ChatGPT, GPT-4 model) to assist in refining and
editing the language of this manuscript. All ideas, results, and
interpretations are solely those of the authors.

REFERENCES

[1] K. I. Nikishin, “Load Balancer of Data in a Distributed Network via

Nginx Proxy Server,” Proc. Southwest State Univ., vol. 26, no. 3, pp.
98–111, Feb. 2023, doi: 10.21869/22231560-2022-26-3-98-111.

[2] J. Yu, J. Jiang, and W. Ye, “Design and implementation of adaptive

dynamic load balancing strategy based on server cluster,” Other
Conf., p. 90, Jul. 2024, doi: 10.1117/12.3031078.

[3] M. Innuddin, P. Irfan, and R. Hammad, “Improving the Security of an

Nginx Web Server with NAXSI as a Web Application Firewall,” J.
Apl. Teknol. Inf. dan Manaj., vol. 4, no. 2, pp. 148–156, Oct. 2023,

doi: 10.31102/JATIM.V4I2.2310.

[4] V. B. A. Pardosi, “Cost-Effective DDoS Mitigation: Leveraging
Nginx Reverse Proxy for Enhanced Server Protection,” J. Teknol. Inf.

dan Pendidik., vol. 17, no. 2, pp. 371–382, Dec. 2024, doi:

10.24036/JTIP.V17I2.845.
[5] L. Ceragioli, P. Degano, and L. Galletta, “Can my firewall system

enforce this policy?,” Comput. Secur., vol. 117, p. 102683, Jun. 2022,

doi: 10.1016/J.COSE.2022.102683.
[6] “Firewall Technology’s Importance in the Fight against the Internet

Security,” Am. J. Multidiscip. Res. Africa, Nov. 2021, doi:

10.58314/099098.
[7] S. Ahmadi, “Adaptive Cybersecurity: Dynamically Retrainable

Firewalls for Real-Time Network Protection,” Jan. 2025, Accessed:

Jul. 17, 2025. [Online]. Available: https://arxiv.org/pdf/2501.09033
[8] Q. Zhang, Z. Luo, and J. Zhang, “Analysis of the Application of

Firewall and Intrusion Detection Technology in Network Security in

the Era of Big Data,” 2023 2nd Int. Jt. Conf. Inf. Commun. Eng., pp.
167–171, 2023, doi: 10.1109/JCICE59059.2023.00042.

[9] D. Arnaldy and T. S. Hati, “Performance Analysis of Reverse Proxy

and Web Application Firewall with Telegram Bot as Attack
Notification on Web Server,” 2020 3rd Int. Conf. Comput. Informatics

Eng. IC2IE 2020, pp. 455–459, Sep. 2020, doi:

10.1109/IC2IE50715.2020.9274592.
[10] Y. Nikam, S. Ware, T. Patil, H. Waghmare, S. Dedgaonkar, and P.

Futane, “Ai-Based Web Application Firewall,” in IEEE International

Conference on “Computational, Communication and Information
Technology”, ICCCIT 2025, Institute of Electrical and Electronics

Engineers Inc., 2025, pp. 136–141. doi:

10.1109/ICCCIT62592.2025.10928035.
[11] K. Jiang and H. Zheng, “Design and Implementation of A Machine

Learning Enhanced Web Honeypot System,” Proc. - 2020 13th Int.

Congr. Image Signal Process. Biomed. Eng. Informatics, CISP-BMEI
2020, pp. 957–961, 2020, doi: 10.1109/CISP-

BMEI51763.2020.9263640.

[12] H. Gajjar and Z. Malek, “A Survey of Intrusion Detection System
(IDS) using Openstack Private Cloud,” 2020 Fourth World Conf.

Smart Trends Syst. Secur. Sustain., pp. 162–168, Jul. 2020, doi:

10.1109/WORLDS450073.2020.9210313.
[13] R. G. Roshan, V. S. Salanke, and S. Nagasundari, “Leveraging

OpenStack-based Private Cloud for Intrusion Detection Using Deep
Learning Techniques,” 2024 First Int. Conf. Women Comput., 2024,

doi: 10.1109/INCOWOCO64194.2024.10863595.

[14] R. Sime, N. Sezgin, and F. Ağgün, “An Integrated Web Security
Application: Integration Of Nginx Reverse Proxy, Fail2ban, Waf,

Postgresql and Laravel,” Balk. J. Electr. Comput. Eng., vol. 13, no. 1,

pp. 106–111, Mar. 2025, doi: 10.17694/BAJECE.1547456.
[15] L. Zhe, D. Gengsheng, Z. Jingjing, and D. Wei, “Research and

Implementation of Dual-stack Web Service Architecture Based on

Intelligent DNS and Reverse Proxy Technology,” 2020 12th Int. Conf.
Adv. Infocomm Technol. ICAIT 2020, pp. 68–73, Nov. 2020, doi:

10.1109/ICAIT51223.2020.9315501.

