

Medicinal Plants - International Journal of Phytomedicines and Related Industries

SCOPUS

About the Journal

Current Issue

Past Issues

Author Guidelines

Sample

Submit an Article

Set Up Alerts

Year: 2025 | Volume: 17 | Issue: 2

Anti-inflammatory potential of *Camellia sinensis* L. extract in an LPS-induced ARDS lung cell model via modulation of CCL-2, CXCL-9 and IFN- γ expression

Author:	Rizal Azis ^{1,2,*} , Wahyu Widowati ³ , Didik Priyandoko ⁴ , Hanna Sari Widya Kusuma ² , Dwi Nur Triharswi ² , Aris Muhamad Nurjamil ² , Vini Ayuni ² , Dhanar Septyawan Hadiprasetyo ^{2,5} , Marisca Evalina Gondokesumo ⁶ , Nguyen Bao Quoc ⁷	Total Page Count: 8	Published Online: Jul 25, 2025	DOI: 10.5958/0975-6892.2025.00032.9	Page Number: 323 to 330
---------	--	------------------------------	---	---	----------------------------------

1Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Depok, 16424, Indonesia

2Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung, 40163, Indonesia

3Faculty of Medicine, Maranatha Christian University, Bandung, 40164, Indonesia

4Biology Study Program, Faculty of Mathematics and Natural Science Education, Universitas Pendidikan Indonesia, Bandung, 40154, Indonesia

5Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, 40525, Indonesia

6Faculty of Pharmacy, University of Surabaya, Surabaya, 60293, Indonesia

7Faculty of Biological Sciences, Research Institute of Biotechnology and Environment, Nong Lam University, Ho Chi Minh City, 700000, Vietnam

Abstract

Acute Respiratory Distress Syndrome (ARDS) is a severe and potentially life-threatening condition characterized by alveolar-capillary inflammation, leading to lung injury, pulmonary edema, and respiratory failure. Acute Respiratory Distress Syndrome (ARDS) poses a significant challenge in ICUs due to high incidence and high mortality rates, despite advances in medical care. Effective management and treatment strategies are crucial to improving outcomes for patients with ARDS. This study investigates the anti-inflammatory effects of *Camellia sinensis* L. extract (CSE), rich in epigallocatechin gallate (EGCG), on inflammation-related gene expression in ARDS lung cell model treated with lipopolysaccharide (LPS). Rat alveolar epithelial type II (L2) lung cells induced by LPS were used as the ARDS model and treated with various concentrations of CSE. The gene expressions of CCL-2, CXCL-9, and IFN- γ were analyzed by qRT-PCR. CSE treatment decreased expression of pro-inflammatory genes CCL-2, CXCL-9, and IFN- γ 1.56 μ g/ml CSE concentration ($p < 0.05$). The results of the study revealed that CSE exhibited potential as an anti-inflammatory agent by inhibiting key inflammatory mediators, suggesting its therapeutic potential in managing ARDS.

Keywords

Cytokines, Inflammation mediators, Phytotherapy, Plant extracts, Polymerase chain reaction

Buy now

Click here →

IndianJournals.com is a vast collection of Indian scholarly and research publications

Products

Journals

Collections

For Authors

For Publishers

Price List

Company

About

Terms & Conditions

Privacy Policy

Copyright

FAQs

Account

Login/Register

Support

Contact us

Copyright © 2026 Indian Journals., its licensors, and contributors. All rights are reserved, including those for text and data mining, AI training, and similar technologies.