

Effectiveness as tyrosinase inhibitor from active compounds of *Centella asiatica* (L.) Urb., ethyl ascorbic acid, and coenzyme Q10 as skin whitening by *in silico* evaluation

[Eficacia como inhibidor de la tirosinasa de compuestos activos de *Centella asiatica* (L.) Urb., ácido etilascórbico y coenzima Q10 para el blanqueamiento de la piel mediante la evaluación *in silico*]

Ni L. D. Aryani¹, Dini Kesuma^{2*}, Armiza D. Yasinta¹, Elya Andreyana²

¹Department of Pharmaceutics, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia.

²Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, Indonesia.

*E-mail: dinikesuma@gmail.com, dini_kesuma@staff.ubaya.ac.id

Abstract

Context: Hyperpigmentation and melasma are often treated with hydroquinone-based topical creams. Despite its effectiveness, hydroquinone use is limited by irritation, photosensitivity, and oxidation sensitivity, making long-term application unfavorable.

Aims: To explore *Centella asiatica* phytochemicals as natural alternatives in topical formulations, in combination with oxidative chemical agents such as ethyl ascorbic acid and coenzyme Q10, through preliminary *in silico* evaluation.

Methods: Molecular docking and molecular dynamics simulations were conducted on asiatic acid, madecassic acid, asiaticoside, and madecassoside from *C. asiatica*, along with ethyl ascorbic acid and coenzyme Q10, against the tyrosinase enzyme (PDB: 5I3A). Docking was performed using Molegro Virtual Docker (Molexus v7), and molecular dynamics simulations were carried out in Maestro (Schrödinger) for 100 ns.

Results: Asiatic acid exhibited the most promising activity, with binding affinity comparable to hydroquinone and stable interactions during 100 ns simulations (average RMSD \sim 3 Å). Glycoside derivatives (asiaticoside and madecassoside) showed weak and unstable binding. Notably, 3-o-ethyl ascorbic acid demonstrated stronger binding energy and superior stability (average RMSD 2.971 Å) than hydroquinone, whereas coenzyme Q10 displayed positive binding free energy and poor stability.

Conclusions: The findings suggest that asiatic acid is the most active anti-hyperpigmentation compound in *C. asiatica*, while glycosides lack tyrosinase inhibitory activity. Incorporation of 3-o-ethyl ascorbic acid, rather than coenzyme Q10, could enhance the efficacy of *C. asiatica*-based topical formulations for hyperpigmentation management.

Keywords: *Centella asiatica*; molecular docking; molecular dynamics; hyperpigmentation; tyrosinase.

Resumen

Contexto: La hiperpigmentación y el melasma a menudo se tratan con cremas tópicas a base de hidroquinona. A pesar de su eficacia, el uso de hidroquinona está limitado por la irritación, la fotosensibilidad y la sensibilidad a la oxidación, lo que hace que la aplicación a largo plazo resulte desfavorable.

Objetivos: Explorar los fitoquímicos de *Centella asiática* como alternativas naturales en formulaciones tópicas, en combinación con agentes químicos oxidativos como el ácido etilascórbico y la coenzima Q10, mediante evaluación preliminar *in silico*.

Métodos: Se realizaron simulaciones de acoplamiento molecular y dinámica molecular de ácido asiático, ácido madecásico, asiaticósido y madecasósido de *C. asiatica*, junto con ácido etilascórbico y coenzima Q10, contra la enzima tirosinasa (PDB: 5I3A). El acoplamiento se realizó con Molegro Virtual Docker (Molexus v7) y las simulaciones de dinámica molecular se realizaron en Maestro (Schrödinger) durante 100 ns.

Resultados: El ácido asiático exhibió la actividad más prometedora, con una afinidad de unión comparable a la de la hidroquinona y interacciones estables durante simulaciones de 100 ns (RMSD promedio de \sim 3 Å). Los derivados de glucósidos (asiaticósido y madecasósido) mostraron una unión débil e inestable. En particular, el ácido 3-o-ethylascórbico demostró una energía de unión más alta y una estabilidad superior (RMSD promedio de 2,971 Å) que la hidroquinona, mientras que la coenzima Q10 mostró una energía libre de unión positiva y una estabilidad deficiente.

Conclusiones: Los hallazgos sugieren que el ácido asiático es el compuesto antihiperpigmentación más activo en *C. asiatica*, mientras que los glucósidos carecen de actividad inhibidora de la tirosinasa. La incorporación de ácido 3-o-ethylascórbico, en lugar de la coenzima Q10, podría mejorar la eficacia de las formulaciones tópicas basadas en *C. asiatica* para el tratamiento de la hiperpigmentación.

Palabras Clave: acoplamiento molecular; *Centella asiática*; dinámica molecular; hiperpigmentación; tirosinasa.

ARTICLE INFO

Received: May 7, 2025.

Accepted: November 7, 2025.

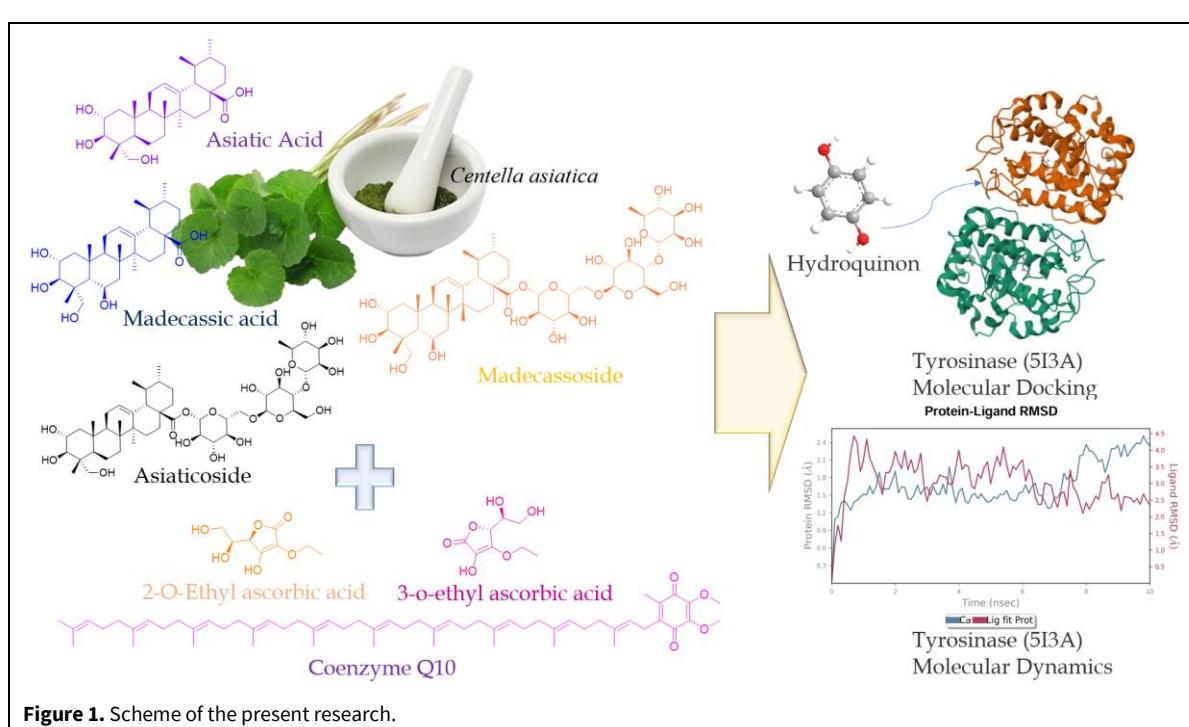
Available Online: January 28, 2026.

AUTHOR INFO

ORCID: [0000-0002-2097-4721](https://orcid.org/0000-0002-2097-4721) (NLDA)

[0000-0002-6612-372X](https://orcid.org/0000-0002-6612-372X) (DK)

INTRODUCTION


The skin is the body's outermost organ, serving as a protective barrier against external exposure while also playing an essential role in aesthetics and personal identity. One of the main components that determines skin color is melanin, the most abundant pigment in the epidermis. Melanin serves as the primary defense against ultraviolet (UV) radiation-induced damage (Solano, 2020). However, excessive UV exposure can stimulate increased melanin production, leading to hyperpigmentation. The prevalence of hyperpigmentation varies across populations, with higher rates observed among Malay and Indian populations in Asia compared to fair-skinned Chinese populations. Environmental factors, such as Indonesia's tropical climate, also contribute to the high incidence of hyperpigmentation (Slominski et al., 2022).

Hyperpigmentation can be caused by a variety of internal and external factors, including hormonal changes, dermatitis, drug use, and sun exposure (Suyanto & Saraswati, 2023). One of the key enzymes involved in melanin biosynthesis is tyrosinase, a copper-containing metalloprotein. This enzyme plays a protective role against UV damage, yet it is also the primary target in melanin-inhibition strategies aimed at preventing hyperpigmentation. Therefore, inhibition of tyrosinase activity has become a widely developed approach to reduce melanin accumulation in the skin (Noh et al., 2020).

Several natural compounds have been identified as tyrosinase inhibitors, such as arbutin, azelaic acid, kojic acid, hydroquinone, and other phenolic compounds. Polyphenols and flavonoids found in plants are known to inhibit tyrosinase by blocking the oxidation reactions of L-tyrosine, or L-DOPA, catalysed by the enzyme (Boateng et al., 2023; Harahap et al., 2024).

Centella asiatica (L.) Urb., commonly known as pegagan, is a plant from the Apiaceae family that exhibits various pharmacological activities, primarily due to its triterpenoid constituents such as asiaticoside, madecassoside, asiatic acid, and madecassic acid (Fig. 1). Extracts of *C. asiatica* have been used in cosmetic formulations and have demonstrated tyrosinase inhibitory activity of 31.25% at a concentration of 1.67 mg/mL (Fernanda et al., 2023). These triterpenoid compounds are known to promote skin tissue regeneration and reduce melanin content by inhibiting tyrosinase mRNA expression (Chang, 2009; Fernanda et al., 2023).

Ethyl ascorbic acid (EAA) is a stable derivative of vitamin C with superior skin permeability compared to other ascorbic acid derivatives. EAA is widely used in cosmetics as an antioxidant, anti-aging agent, and tyrosinase inhibitor (Iliopoulos et al., 2019). It plays a role in preventing hyperpigmentation primarily through the inhibition of tyrosinase (Chen et al., 2021).

Figure 1. Scheme of the present research.

$$\Delta G_{bind} = E_{\text{complex(minimized)}} - (E_{\text{protein(unbound,minimized}}} + E_{\text{lig(unbound,minimized)}}) \quad [1]$$

Where: ΔG_{bind} denotes the calculated binding free energy; $E_{\text{complex(minimized)}}$ corresponds to the minimized MM-GBSA energy of the optimized ligand–protein complex; $E_{\text{protein(unbound, minimized)}}$ represents the minimized MM-GBSA energy of the protein after separation from its ligand; and $E_{\text{ligand (unbound, minimized)}}$ refers to the minimized MM-GBSA energy of the ligand once relaxed and detached from the crystal complex (Ekowati et al., 2023).

Coenzyme Q10 is a component of the mitochondrial electron transport chain and functions as a potent antioxidant. In addition to protecting cells from free radical damage, coenzyme Q10 has been shown to suppress tyrosinase activity by inhibiting cAMP-mediated CREB signaling, thereby reducing melanin synthesis (Atapour-Mashhad et al., 2024; Jiménez-Jiménez et al., 2023).

This study aims to evaluate the tyrosinase inhibitory activity of *C. asiatica* extract, coenzyme Q10, and ethyl ascorbic acid using *in silico* methods. *In silico* evaluations were performed through molecular docking to predict ligand interactions with the tyrosinase enzyme and assess binding affinities, followed by molecular dynamics simulations to examine the stability of the complexes over a 100 ns simulation period. Molecular docking and dynamics analyses were carried out using Molegro Virtual Docker and Desmond (Schrödinger), targeting the tyrosinase enzyme (PDB ID: 5I3A), with hydroquinone, kojic acid, and arbutin as reference ligands to assess the inhibitory potential of the test compounds.

MATERIAL AND METHODS

Molecular docking procedure

Four major phytochemicals from *C. asiatica* (asiatic acid, madecassic acid, asiaticoside, and madecassoside), along with two vitamin C derivatives, namely 2-o-ethyl ascorbic acid and 3-o-ethyl ascorbic acid, and coenzyme Q10, were prepared as ligands. The molecular structures were initially drawn in 2D using ChemBioDraw version 11. These 2D structures were converted to 3D using the Molecular Operating Environment (MOE) software. The 3D ligands were energy-minimized using the MMFF94x force field to obtain the most stable conformations, and the resulting structures were saved in PDB format (Halgren, 1996).

The tyrosinase enzyme was obtained from the Protein Data Bank (PDB ID: 5I3A) and was preprocessed using Molexus version 7 software (Deri et al., 2016). To validate the docking protocol, the enzyme was redocked with its native ligand (hydroquinone) and with kojic acid and arbutin to ensure the reliability of the docking process for further analysis. Subsequently, the validated docking setup was used to dock the four major phytochemicals from *C. asiatica* along with the three additional compounds.

Tyrosinase is a key enzyme involved in the biosynthesis of skin pigment (melanin), produced by melanocyte cells in the epidermis. During aging, overproduction of melanin can occur, leading to hyperpigmentation via melanogenesis, which is catalyzed by tyrosinase (Deri et al., 2016). Therefore, inhibition of tyrosinase plays a critical role in reducing hyperpigmentation in skin tissue and was selected as the molecular target in this study.

Molecular dynamics procedure

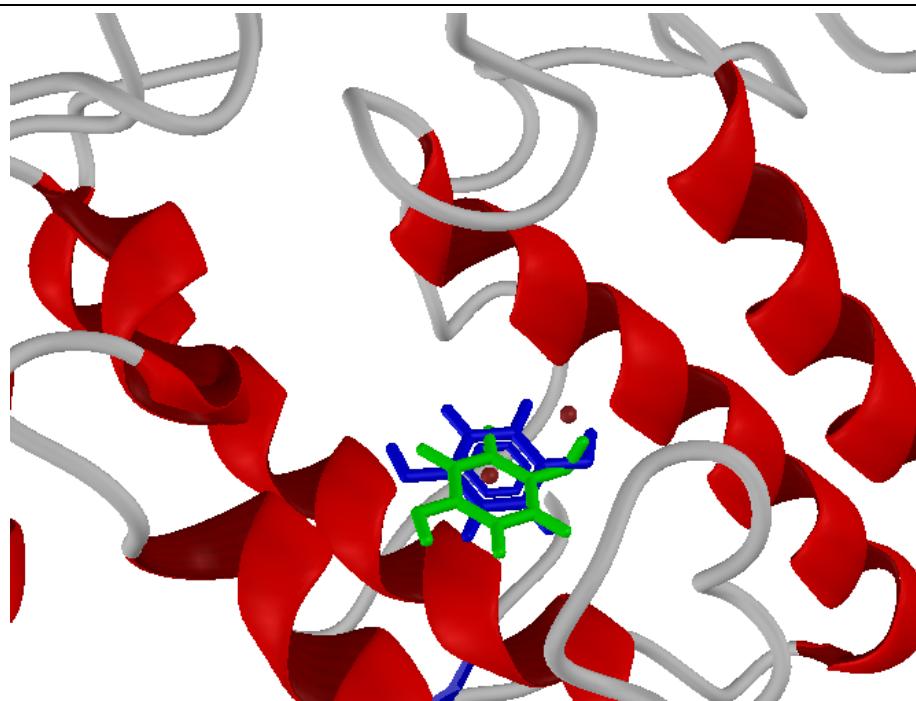
After molecular docking was completed using Molexus, each ligand-tyrosinase complex was saved as a PDB file. These files were then subjected to molecular dynamics (MD) simulations using Desmond (Schrödinger) software. MD simulations were performed on eight compounds: the native ligand (hydroquinone), asiatic acid, madecassic acid, asiaticoside, madecassoside, two vitamin C derivatives (2-o-ethyl ascorbic acid and 3-o-ethyl ascorbic acid), and coenzyme Q10. The aim of the MD simulation was to evaluate the stability of interactions between each ligand and the tyrosinase enzyme over time.

Simulations were carried out for 100 nanoseconds using the TIP4P water model at normal pressure and temperature (NPT). The simulations were run at 300 K and 1.01325 bar within a cubic water box of dimensions $10 \text{ \AA} \times 10 \text{ \AA} \times 10 \text{ \AA}$. Energy snapshots were recorded every 10 picoseconds. The temperature and pressure were maintained using the Nose–Hoover chain thermostat and the Martyna–Tobias–Klein barostat algorithms, respectively. All minimized and equilibrated systems were simulated under periodic boundary conditions using the OPLS 2005 force field parameters for 10 ns under the NPT ensemble (Kesuma et al., 2025; Prasetyo et al., 2025; Ruswanto et al., 2022).

Molecular mechanics/generalized Born surface area (MM-GBSA) analysis was carried out using thermal_mmgbfa.py to estimate the binding free energy of ligand–protein complexes. This approach was essential for assessing the interaction strength of potential drug candidates and was defined by the following equation [1].

RESULTS AND DISCUSSION

Molecular docking result


Four major phytochemicals from *C. asiatica*—asiatic acid, madecassic acid, asiaticoside, and madecassoside—along with two vitamin C derivatives (2-*o*-ethyl ascorbic acid and 3-*o*-ethyl ascorbic acid) and coenzyme Q10, were prepared as ligands. The structures were initially drawn in two dimensions using ChemBioDraw version 11, then converted to three dimensions using MOE (Molecular Operating Environment). Each 3D ligand was energy-minimized using the MMFF94x force field to obtain the most stable conformation and saved in PDB format (Halgren, 1996; Putra et al., 2023).

The tyrosinase enzyme structure was retrieved from the Protein Data Bank (PDB ID: 5I3A) and prepared using Molexus version 7 software (Deri et al., 2016). To validate the docking protocol, tyrosinase was redocked with its known ligand, hydroquinone. The validation yielded a root-mean-square deviation (RMSD) of 1.46 Å, confirming that the docking protocol was reliable and could be used for subsequent docking simulations of the selected phytochemicals and additional compounds. In addition to RMSD values, another crucial parameter in the redocking process is the interaction profile between the experimental SC-XRD ligand and the simulated docking ligand. The analysis revealed no significant differences in amino acid interactions, with both ligands showing 100%

similarity in their binding residues. Specifically, the ligands consistently interacted with the residues His 20, His 42, His 60, Asn 205, His 208, and Val 218. This high degree of overlap confirms the reliability of the docking protocol and validates the accuracy of the docking simulation in reproducing the experimental binding mode.

The docking grid was defined with coordinates X = 2.74 Å, Y = 99.89 Å, and Z = 25.11 Å, encompassing a binding cavity surrounded by 13 key amino acids: His 42, His 60, His 204, Asn 205, His 208, Met 215, Gly 216, Val 217, Val 218, Ala 221, Phe 227, and His 231. Additionally, two zinc ions were present as cofactors within the binding site. The RMSD value obtained (<2 Å) indicates that the docking method used is valid for predicting the binding affinity and interaction of the test compounds with the tyrosinase enzyme (Sulistiyawaty et al., 2016; 2023; Widiyana et al., 2016).

Based on the molecular docking results, a Moldock score was obtained, representing the predicted binding interaction between the ligand and the receptor. A lower Moldock score indicates a higher binding affinity and better compatibility between the ligand and the receptor. The docking results can also be visualized and interpreted to provide a comprehensive overview of the ligand-receptor interactions, including hydrogen bonding, hydrophobic interactions, and electronic interactions. These interactions are summarized in Table 1 and illustrated in Fig. 2.

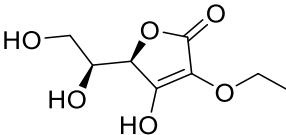
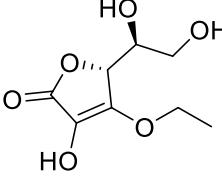
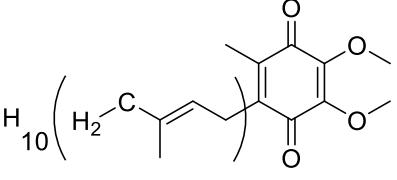





Figure 2. Comparison of the native ligand (dark blue) with the docking result simulation (green) by Molexus Ver.7 with RMSD of 1.46 Å.

Table 1. The molecular docking result of native ligand (hydroquinone) and phytochemicals of *Centella asiatica* into the active site of tyrosinase.

Compound	Moldock score (kcal/mol)	Hydrogen bond	Steric Interaction
	-52.64 ± 1.23	His 42 (2.66 Å) Asn 205 (2.51 Å) Val 218 (3.41 Å)	His 20; His 42; His 60; His 208; Val 218
Native ligand (hydroquinone)			
	-66.54 ± 0.74	Asn 205 (3.29 Å) Met 215 (2.69 Å)	His 204; Asn 205; His 208; Met 215; Val 217; Val 218
Kojic acid			
	-66.53 ± 0.98	Asn 205 (2.80; 3.10 Å) Met 215 (3.53 Å) Gly 216 (2.66 Å)	His 204; Asn 205; His 208; Gly 216; Val 217; Val 218
Arbutin			
	323.56 ± 1.88	His 42 (1.27; 2.61 Å) Gly 46 (2.73 Å) His 208 (2.56 Å) Arg 209 (2.03 Å) Val 218 (2.56 Å)	His 42; Gly 46; Asn 57; Met 61; Phe 197; Asn 205; His 208; Arg 209; Met 215; Val 217; Val 218; Pro 219; Ala 221; Phe 227
Asiaticoside			
	145.54 ± 1.98	Asp 55 (2.91 Å) Met 61 (2.46; 3.19 Å) Glu 195 (1.53: 1.82 Å) Asn 205 (2.31 Å)	His 42; Asp 55; Asn 57; His 60; Met 61; Glu 195; Phe 197; His 204; Asn 205; His 208; Arg 209; Met 215; Gly 216; Val 217; Val 218; Pro 219; Ala 221
Madecassoside			
	-45.81 ± 1.68	-	Phe 197; Asn 205; Arg 209; Val 218
Asiatic acid			

Table 1. The molecular docking result of native ligand (hydroquinone) and phytochemicals of *Centella asiatica* into the active site of tyrosinase (continued...)

Compound	Moldock score (kcal/mol)	Hydrogen bond	Steric Interaction
	-42.62 ± 1.57	Asn 205 (2.78 Å)	Gly 46; Asn 57; His 60 Met 61; Gly 196; Phe 197 Asn 205; Arg 209
Madecassic acid			
	-64.28 ± 0.43	His 42 (3.23 Å) Asn 205 (3.04 Å)	His 42 Asn 205 Val 218
2-β-ethyl ascorbic acid			
	-61.47 ± 0.54	Asn 205 (2.93 Å)	Asn 205 His 208 Gly 216
3-β-ethyl ascorbic acid			
	725.54 ± 1.97	His 42 (1.83 Å)	His 42; Gly 43; Gly 46; Lys 47; Ala 59; His 60; Met 61; Phe 65; His 69; Glu 195; Asn 205; His 208; Arg 209; Met 215; Gly 216; Val 217; Val 218; Pro 219 Ala 221
Coenzyme Q10			

Hydroquinone, the native ligand of the tyrosinase enzyme, is widely used clinically to treat hyperpigmentation and melasma (Dipiro et al., 2020; Sweetman, 2009). Hydroquinone exhibits a binding energy (Moldock score) of -52.64 kcal/mol on tyrosinase, forming hydrogen bonds with the amino acid residues His 42 (2.66 Å), Asn 205 (2.51 Å), and Val 218 (3.41 Å), as well as steric (hydrophobic/van der Waals) interactions with His 20, His 42, His 60, His 208, and Val 218 (Figs. 3 and 4). Natural compounds commonly used to inhibit tyrosinase, such as kojic acid and arbutin, were also used as reference drug standards in the molecular docking process of this study. Both kojic acid and arbutin share structural similarity with hydroquinone, which explains their favorable docking scores of -66.54 kcal/mol and -66.53 kcal/mol, respectively. Arbutin, also known as arbutoside, is the glycosylated form of hydroquinone. Upon hydrolysis, arbutin releases the aglycone hydroquinone and a glucose moiety. Kojic acid formed hydrogen bonds with amino acid residues Asn 205 (3.29 Å) and Met 215 (2.69 Å), categorized as

weak (>3.2 Å) and moderate (2.5–3.2 Å), respectively (Arunan et al., 2011; Steiner, 2002). In total, kojic acid formed hydrogen bonds with six residues: His 204, Asn 205, His 208, Met 215, Val 217, and Val 218, while also establishing steric interactions with the identical six residues. Meanwhile, arbutin formed three hydrogen bonds with Asn 205 (2.80 and 3.10 Å), Met 215 (3.53 Å), and Gly 216 (2.66 Å). Based on bond distances, arbutin displayed moderate hydrogen bonding (2.2–3.2 Å) with Asn 205 and Gly 216, and a weak hydrogen bond (>3.2 Å) with Met 215. Additionally, arbutin exhibited steric interactions with six residues: His 204, Asn 205, His 208, Gly 216, Val 217, and Val 218.

Among the phytochemicals in *C. asiatica*, asiatic acid and madecassic acid demonstrated potential tyrosinase-inhibitory activity, whereas asiaticoside and madecassoside yielded negative results in molecular docking.

Asiatic acid and madecassic acid, which belong to the terpenoid class, exhibited binding energies of -

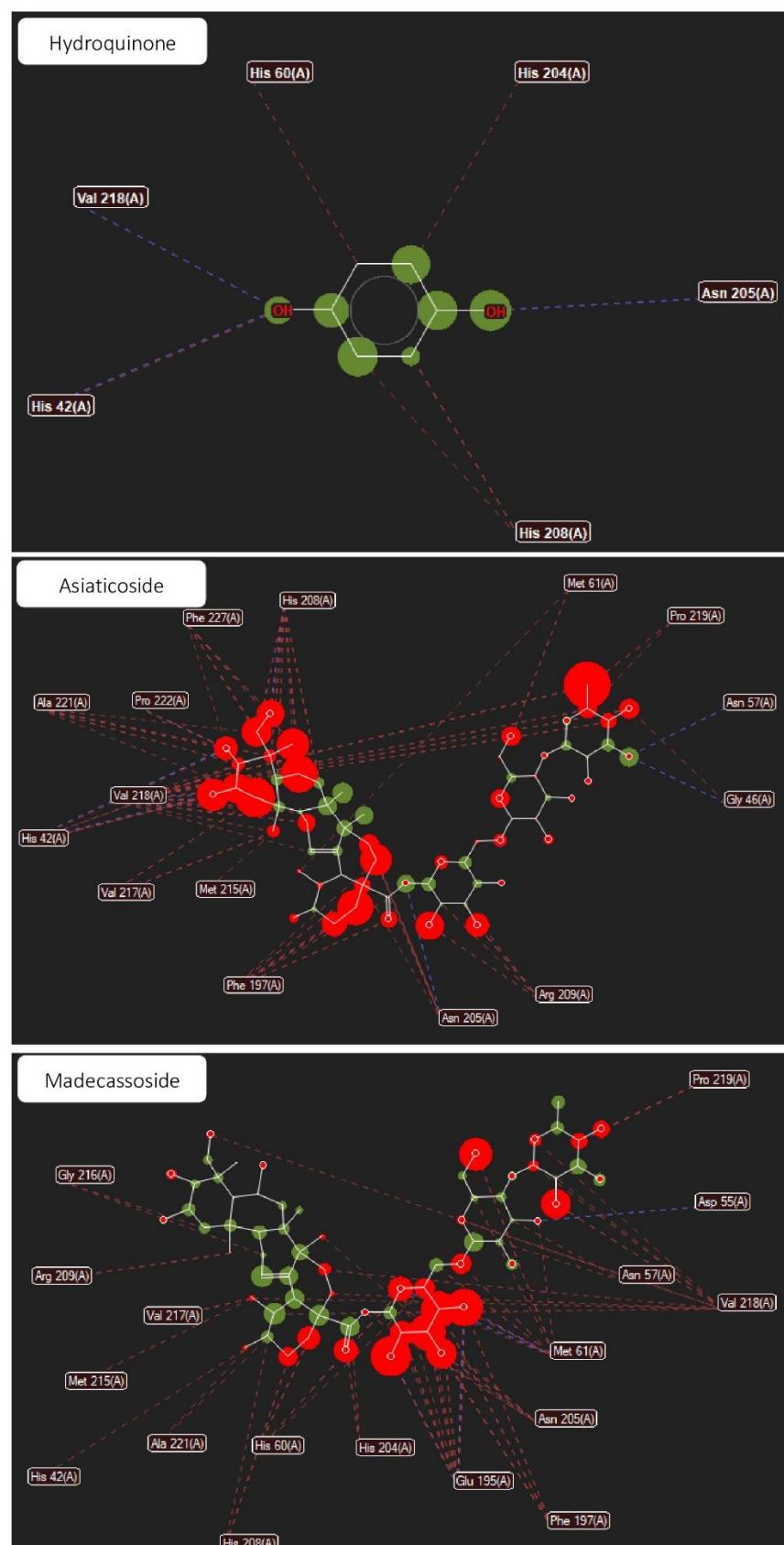
45.81 kcal/mol and -42.62 kcal/mol, respectively. Although these values are higher (less negative) than those for hydroquinone (-52.64 kcal/mol), they still indicate a relatively strong predicted inhibitory activity against tyrosinase, suggesting that both compounds have promising potential. Asiatic acid showed steric interactions with Phe 197, Asn 205, Arg 209, and Val 218. Madecassic acid formed a hydrogen bond with Asn 205 and steric interactions with Gly 46, Asn 57, His 60, Met 61, Gly 196, Phe 197, Asn 205, and Arg 209, as shown in Table 1 and Figs. 3–4.

Asiaticoside, a glycoside phytochemical in *C. asiatica*, consists of an aglycone (asiatic acid) bound to a trisaccharide chain composed of glucose-glucose-rhamnose (Badal & Delgoda, 2016). Glycosides are typically water-soluble due to their positive Log S values (Badal & Delgoda, 2016); however, their bulky structures often result in poor compatibility with receptor-binding sites. Generally, glycosides must undergo enzymatic hydrolysis in the human body to release their aglycone moieties, which are responsible for the pharmacological activity (Liu et al., 2022; Walle et al., 2005; Yousefi et al., 2015; Zhang et al., 2012). The molecular docking of asiaticoside to tyrosinase produced a Moldock score of +323.56 kcal/mol, indicating an incompatible interaction due to the molecule's large size and poor fit within the small hydroquinone binding cavity, which resulted in significant overlap and red zones in the active site (Figs. 3 and 4).

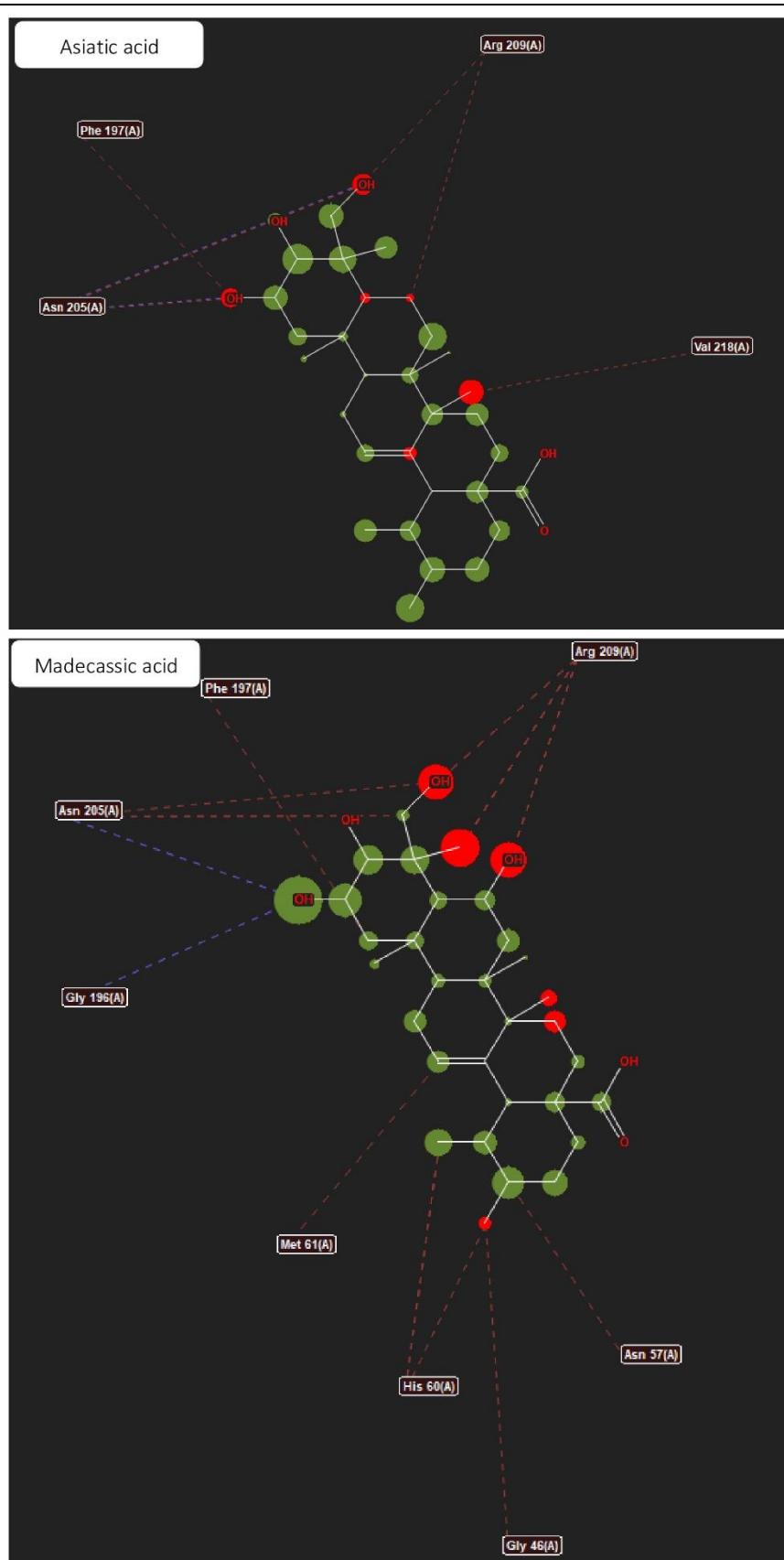
Similarly, madecassoside – another glycoside in *C. asiatica* composed of madecassic acid as the aglycone and a glucose-glucose-rhamnose trisaccharide chain – also showed poor binding compatibility in molecular docking. The Moldock score of madecassoside was +145.54 kcal/mol, indicating a lack of effective binding to the tyrosinase active site. As with asiaticoside, the molecule's large size causes spatial overlap in the hydroquinone cavity, as visualized by red zones in the active site (Figs. 3 and 4).

Among the three additional compounds evaluated, 2-*o*-ethyl ascorbic acid and 3-*o*-ethyl ascorbic acid demonstrated inhibitory activity against tyrosinase, whereas coenzyme Q10 did not exhibit significant inhibitory potential. Both 2-*o*-ethyl ascorbic acid and 3-*o*-ethyl ascorbic acid are esterified derivatives of ascorbic acid. The ester group in these molecules enhances their lipophilicity, facilitating deeper skin penetration and prolonging their antioxidant effect (Chen et al., 2021). Vitamin C and its derivatives have been clinically validated for the treatment of melasma and other forms of hyperpigmentation. These findings are consistent with the molecular docking results showing that these derivatives can inhibit tyrosinase activity more effectively than the native ligand hydroquinone.

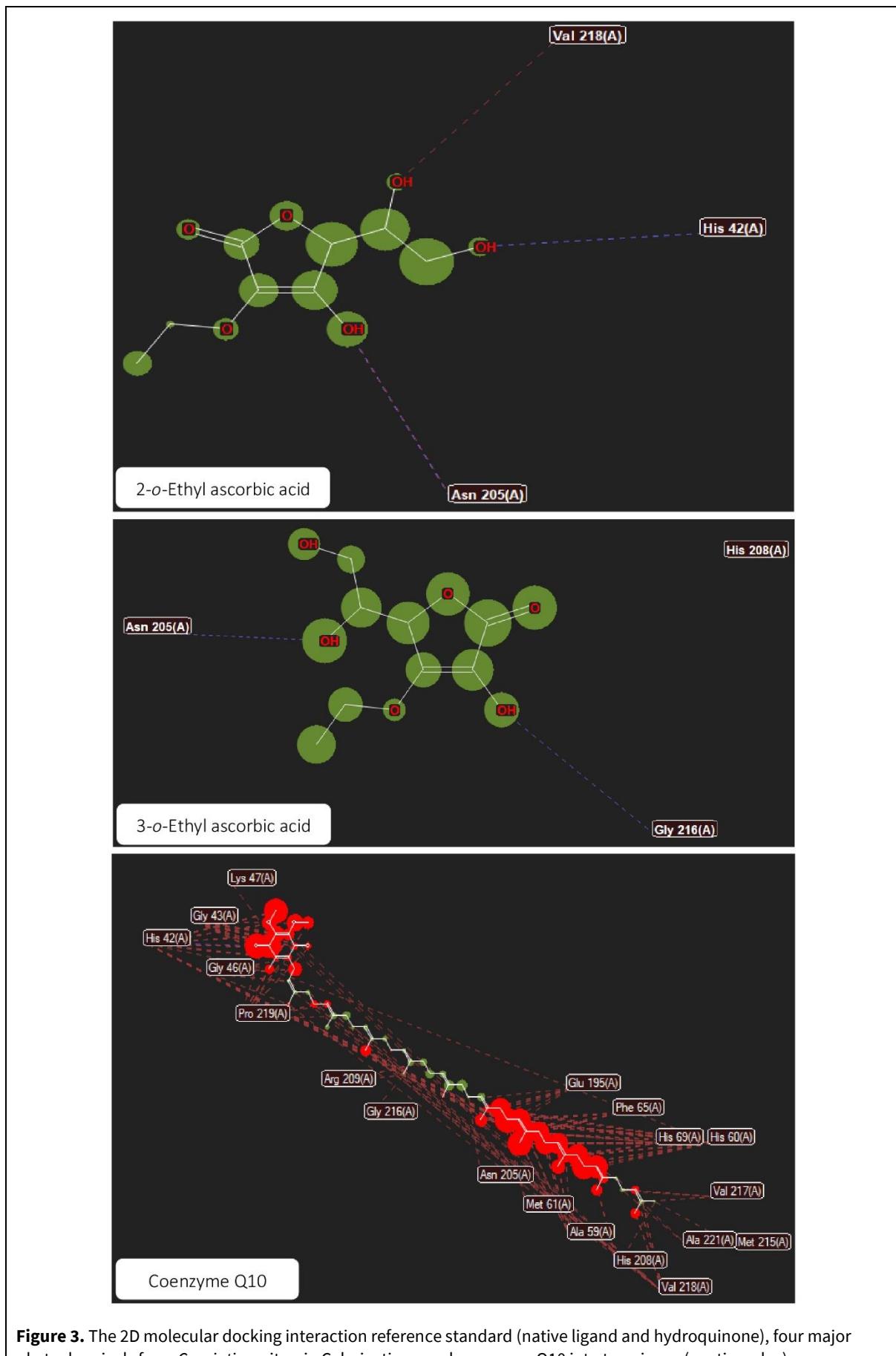
2-*o*-ethyl ascorbic acid exhibited a Moldock score of -64.28 kcal/mol, lower than hydroquinone (-52.64 kcal/mol), suggesting a stronger predicted binding affinity. It formed hydrogen bonds with His 42 and Asn 205, and steric interactions with His 42, Asn 205, and Val 218. 2-*o*-ethyl ascorbic acid demonstrated good compatibility with the active site of tyrosinase due to its molecular volume, which closely resembles that of hydroquinone. As a result, no spatial overlap was observed in the cavity, indicated by the absence of red zones in the cavity area (Figs. 3 and 4).

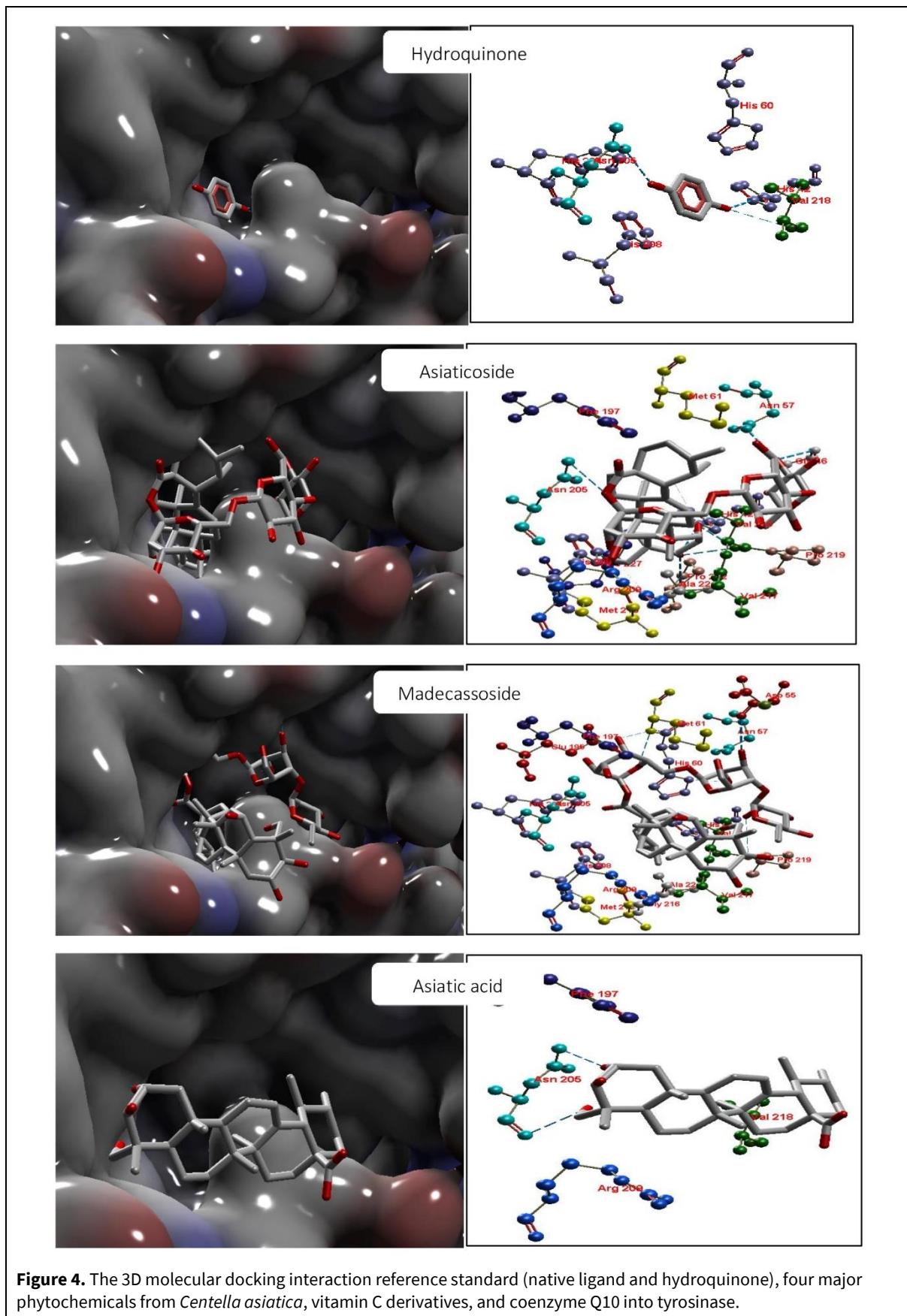

Similarly, 3-*o*-ethyl ascorbic acid showed a Moldock score of -61.47 kcal/mol, also lower than that of hydroquinone. It formed hydrogen bonds with Asn 205 and steric interactions with His 42, Asn 205, and Val 218. Like 2-*o*-ethyl ascorbic acid, this derivative exhibited structural compatibility with the tyrosinase active site, occupying the cavity without overlap, as evidenced by the lack of red zones (Figs. 3 and 4).

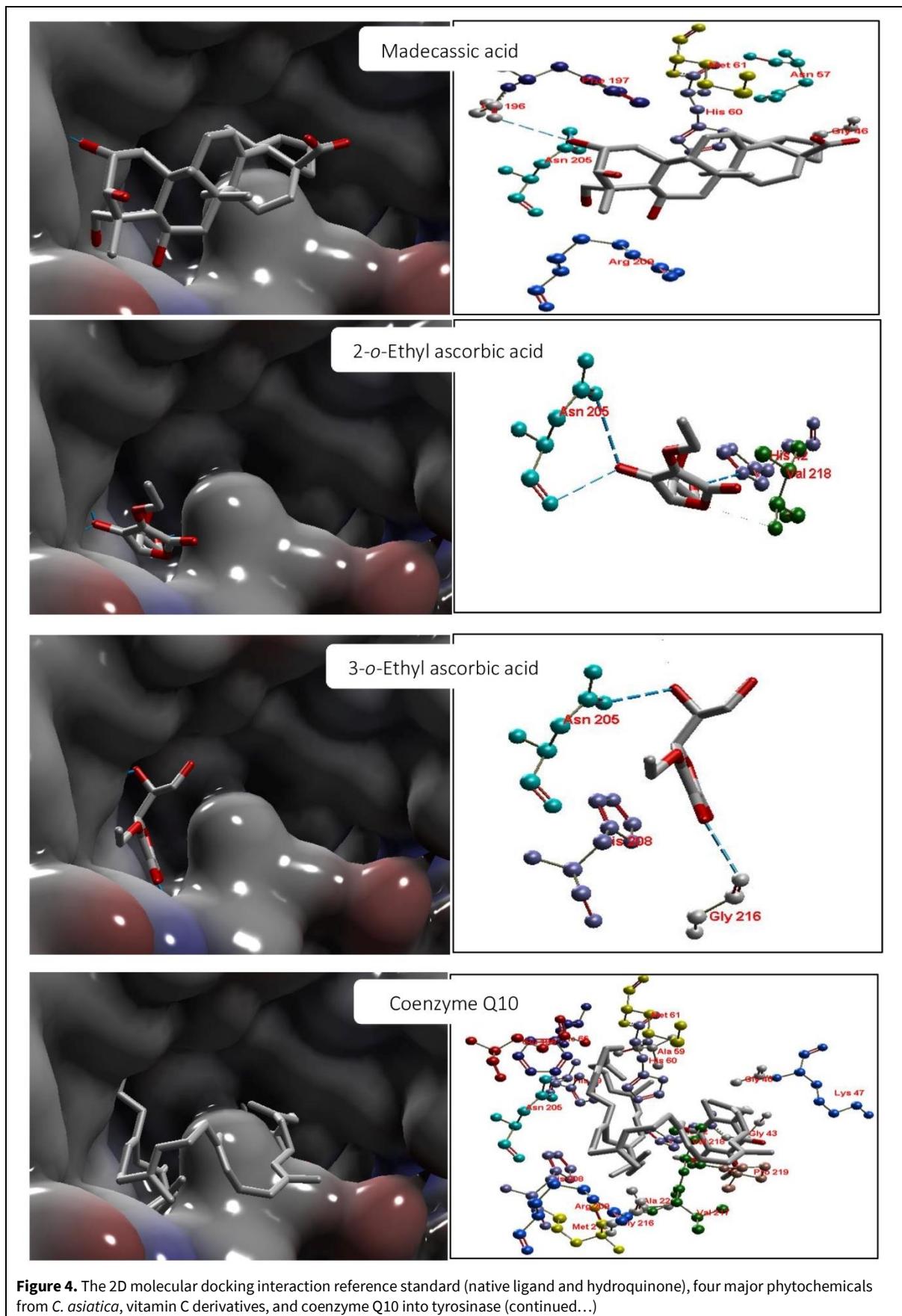
In contrast, coenzyme Q10 had a Moldock score of +725.54 kcal/mol, significantly higher than hydroquinone, indicating poor binding compatibility with tyrosinase. Its large molecular size makes it unsuitable for the relatively small binding cavity of hydroquinone, leading to spatial overlap and the appearance of red zones in the active cavity area (Figs. 3 and 4). Although coenzyme Q10 is known for its antioxidant properties, it does not appear to act via direct tyrosinase inhibition and is therefore less suitable for treating hyperpigmentation or melasma through this mechanism.


Molecular dynamics result

The molecular docking results are supported by molecular dynamics simulations that ran from 0 to 100 ns. The main objective of the molecular dynamics process run for 100 ns is to observe the stability of the bond between the drug and receptor. The bond stability can be assessed from the RMSD profile, where a value of < 2 Å indicates very stable binding, 2–3 Å indicates stable binding, and > 3 Å indicates unstable binding (Henzler-Wildman & Kern, 2007; Kesuma et al., 2025; Putra et al., 2025; Ruswanto et al., 2022).


The molecular dynamics results align with the molecular docking results, showing that the compounds coenzyme Q10, madecassoside, and asiaticoside do not have stable binding with tyrosinase, as indicated by RMSD values > 3 Å. The average RMSD values during the 100 ns run were 10.311 Å for coenzyme Q10, 5.800 Å for madecassoside, and 6.746 Å for asiaticoside. These molecular dynamics results also correspond with the molecular docking results, which indicate very high moldock scores.


Figure 3. The 2D molecular docking interaction reference standard (native ligand and hydroquinone), four major phytochemicals from *C. asiatica*, vitamin C derivatives, and coenzyme Q10 into tyrosinase.


Figure 3. The 2D molecular docking interaction reference standard (native ligand and hydroquinone), four major phytochemicals from *C. asiatica*, vitamin C derivatives, and coenzyme Q10 into tyrosinase (continued...)

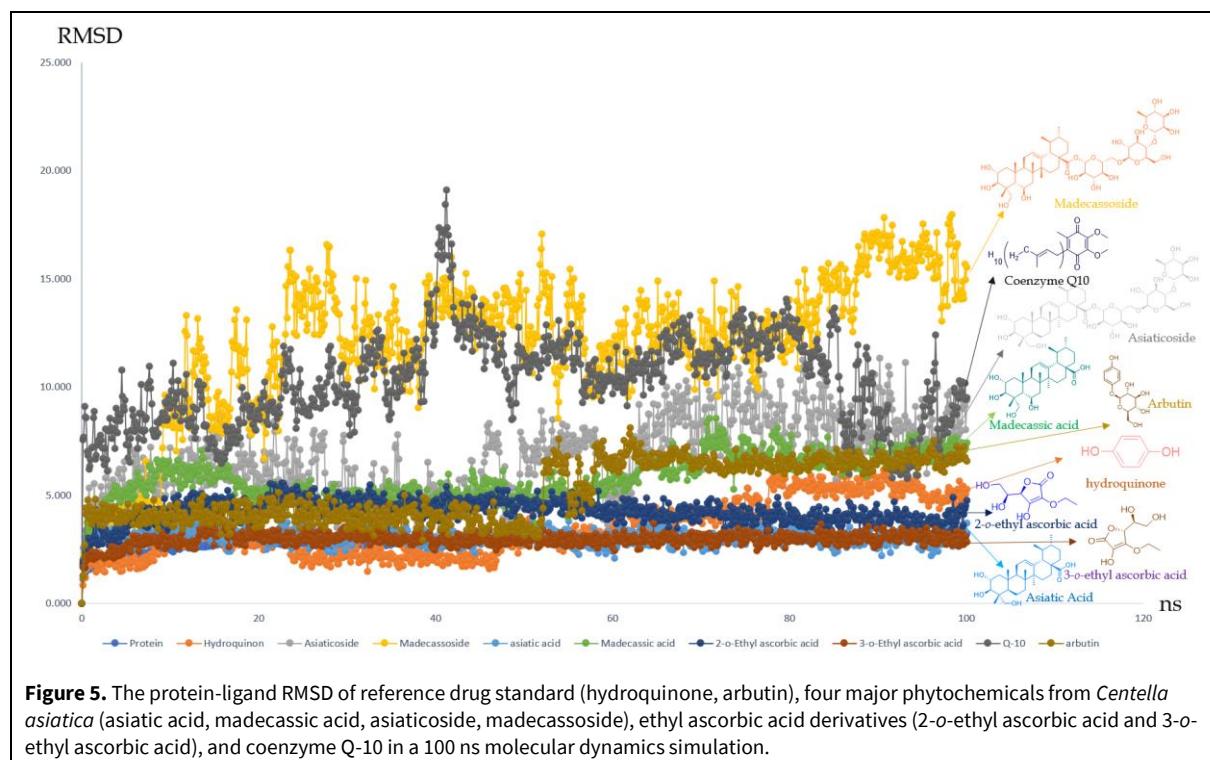

Figure 3. The 2D molecular docking interaction reference standard (native ligand and hydroquinone), four major phytochemicals from *C. asiatica*, vitamin C derivatives, and coenzyme Q10 into tyrosinase (continued...)

Figure 4. The 3D molecular docking interaction reference standard (native ligand and hydroquinone), four major phytochemicals from *Centella asiatica*, vitamin C derivatives, and coenzyme Q10 into tyrosinase.

Figure 4. The 2D molecular docking interaction reference standard (native ligand and hydroquinone), four major phytochemicals from *C. asiatica*, vitamin C derivatives, and coenzyme Q10 into tyrosinase (continued...)

Figure 5. The protein-ligand RMSD of reference drug standard (hydroquinone, arbutin), four major phytochemicals from *Centella asiatica* (asiatic acid, madecassic acid, asiaticoside, madecassoside), ethyl ascorbic acid derivatives (2-o-ethyl ascorbic acid and 3-o-ethyl ascorbic acid), and coenzyme Q-10 in a 100 ns molecular dynamics simulation.

Table 2. Results of MM-GBSA (ΔG) and RMSD of compounds from a 100 ns molecular dynamics simulation.

Compound	MM-GBSA (ΔG) Kcal/mol	Average RMSD	Min. RMSD	Max. RMSD
Hydroquinone	-79.67	3.456	0.848	6.187
Arbutin	-55.72	5.201	1.261	8.132
Asiaticoside	5.65	6.746	2.013	11.347
Madecassoside	1.23	11.983	1.918	17.973
Asiatic acid	-88.50	3.069	1.997	4.225
Madecassic acid	-44.67	5.800	1.703	8.549
2-o-Ethyl ascorbic acid	-85.34	4.234	1.652	5.583
3-o-ethyl ascorbic acid	-89.21	2.971	1.679	4.083
Coenzyme Q10	10.27	10.311	5.790	19.110

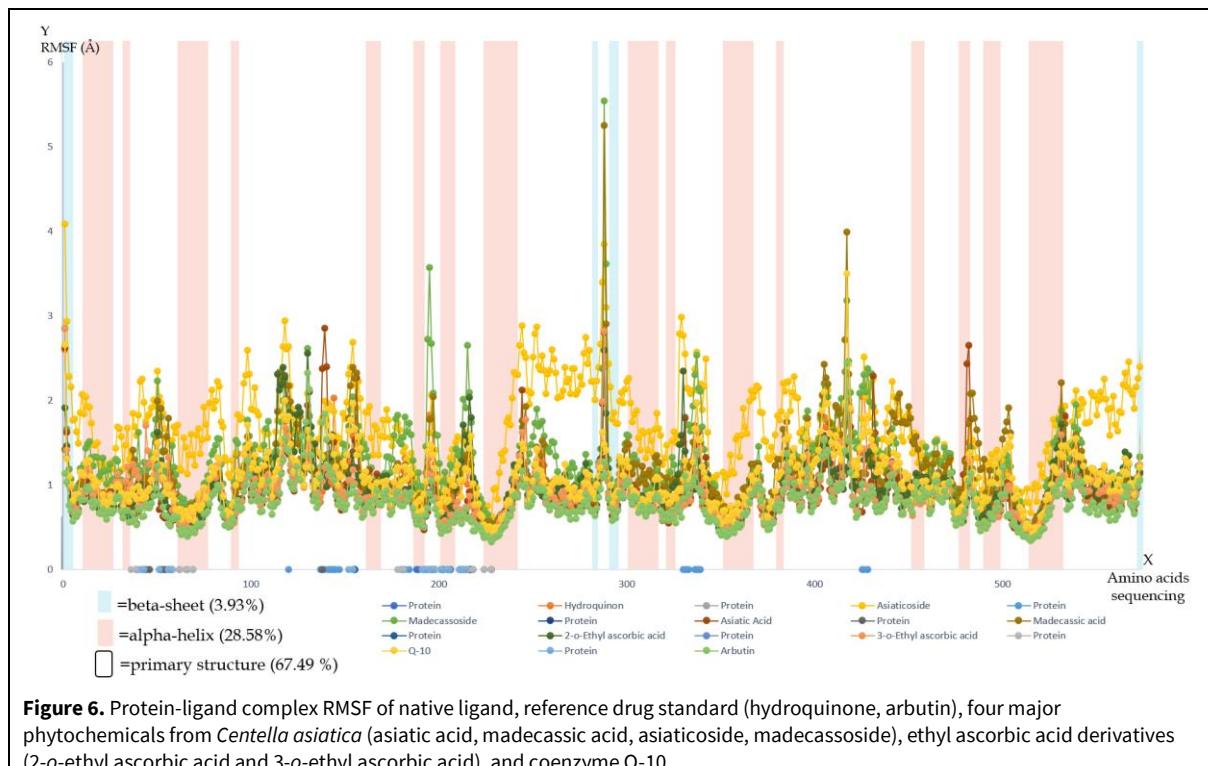
Asiatic acid and madecassic acid show better RMSD profiles compared to coenzyme Q10, madecassoside, and asiaticoside. The hydrolysis of madecassoside and asiaticoside produces aglycone compounds in the form of madecassic acid and asiatic acid, resulting in smaller and more stable structures that bind more effectively to tyrosinase, with average RMSD values approaching 3 Å.

The compound 3-o-ethyl ascorbic acid, a derivative of vitamin C, has the most stable bond and inhibits tyrosinase, with an average RMSD of 2.971 Å, which is much lower than that of the native ligand or the standard reference drug, hydroquinone, which has an average RMSD of 3.456 Å. This result aligns with the molecular docking results, where the compound 3-o-ethyl

ascorbic acid has a MM-GBSA (ΔG) score of -89.21 kcal/mol, lower than that of hydroquinone (-79.67 kcal/mol; Table 2). Meanwhile, the compound 3-o-ethyl ascorbic acid shows poor binding stability, as observed from its molecular dynamics profile (Fig. 5).

The molecular docking results provided an initial estimation of the binding affinity of the tested compounds toward the target protein, as reflected by the Moldock score. However, these results required further validation through molecular dynamics simulations and MM-GBSA calculations, which better represent biological conditions. The docking results, MM-GBSA binding free energy (ΔG), and 100 ns molecular dynamics simulations for each compound are summarized in Table 2. MM-GBSA ΔG , and RMSD were

analysed to evaluate the stability of ligand–receptor complexes (Greenidge et al., 2012; Hou et al., 2011).


As a reference, hydroquinone (synthetic standard) exhibited an MM-GBSA ΔG of -79.67 kcal/mol with an average RMSD of 3.456 Å. In comparison, arbutin (natural standard) showed weaker binding (ΔG -55.72 kcal/mol) and less stability (average RMSD 5.201 Å). Several tested compounds demonstrated superior results to both standards. 3-o-ethyl ascorbic acid (ΔG -89.21 kcal/mol, RMSD 2.971 Å) and asiatic acid (ΔG -88.50 kcal/mol, RMSD 3.069 Å) formed more stable interactions than hydroquinone and arbutin. 2-o-ethyl ascorbic acid (ΔG -85.34 kcal/mol, RMSD 4.234 Å) also showed stronger binding than hydroquinone, although with slightly higher RMSD. Conversely, asiaticoside, madecassoside, and coenzyme Q10 displayed positive ΔG values and high RMSD, indicating unstable interactions.

Hydroquinone is widely used as the reference drug in hyperpigmentation therapy, while arbutin serves as a safer natural analog, though it is less potent because it must be enzymatically hydrolyzed to release hydroquinone as its aglycone. Therefore, comparison with both standards is important for assessing new candidates. The present findings highlight asiatic acid and 3-o-ethyl ascorbic acid as stronger candidates, supported by lower ΔG values (<-88.50 kcal/mol) and small RMSD (<3.5 Å), suggesting strong and stable ligand–receptor interactions throughout the 100 ns simulation.

Although 2-o-ethyl ascorbic acid exhibited a slightly higher RMSD, its ΔG was lower than that of hydroquinone (-85.34 vs. -79.67 kcal/mol), indicating promising potential that warrants further validation. Compared to arbutin, most candidates (asiatic acid, 2-o-ethyl ascorbic acid, and 3-o-ethyl ascorbic acid) demonstrated significantly lower ΔG and smaller RMSD, confirming arbutin's weaker and less stable binding profile. In contrast, bulky glycosides such as asiaticoside and madecassoside, as well as coenzyme Q10, did not exhibit favorable binding (positive ΔG , RMSD >10 Å), thus excluding them as potential candidates.

In summary, relative to the two standards (hydroquinone and arbutin), asiatic acid, 3-o-ethyl ascorbic acid, and 2-o-ethyl ascorbic acid emerged as the strongest candidates, not only more stable than arbutin but also showing superior binding energies compared to hydroquinone.

The total secondary structure content of tyrosinase was 32.51%, consisting of 28.58% α -helices and 3.93% β -sheets (Fig. 6), while the remaining 67.49% comprised primary structural elements. RMSF analysis revealed that the tested compounds interacted with several amino acid residues similar to the native ligand, with RMSF values <1.5 Å (Ekowati et al., 2023; Ghahremanian et al., 2022). Such low RMSF values suggest reduced flexibility, indicating that the compounds bind precisely at the core domain or active-site pocket of tyrosinase, as illustrated in Fig. 6.

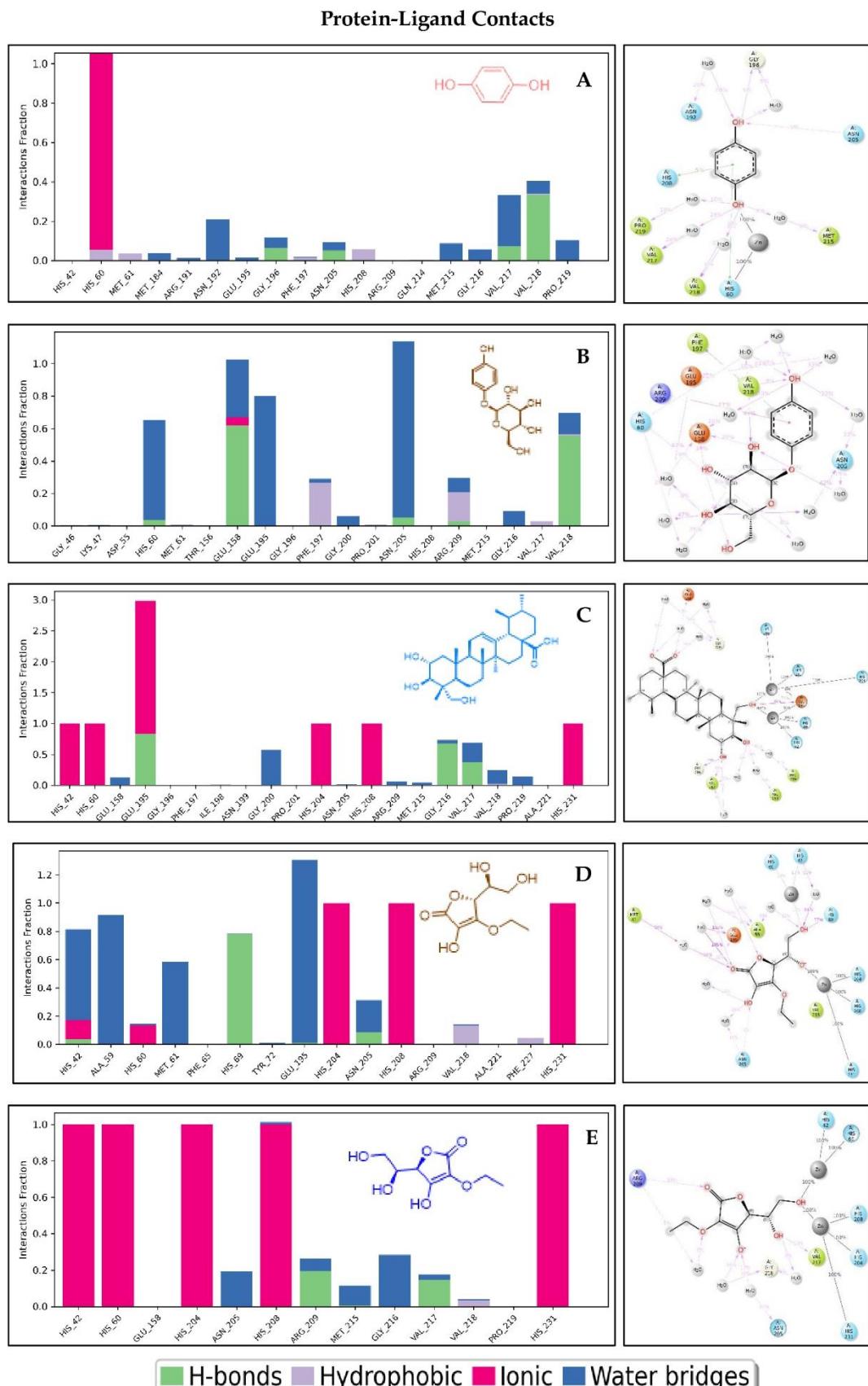
Figure 6. Protein-ligand complex RMSF of native ligand, reference drug standard (hydroquinone, arbutin), four major phytochemicals from *Centella asiatica* (asiatic acid, madecassoside, asiaticoside, madecassoside), ethyl ascorbic acid derivatives (2-o-ethyl ascorbic acid and 3-o-ethyl ascorbic acid), and coenzyme Q-10.

Molecular dynamics results of each compound over a 100 ns simulation demonstrated stable interactions with several amino acid residues. Native ligand (hydroquinone): Hydrogen bonds were formed with four amino acid residues: Gly 194 (6.5%); Asn 205 (5.2%); Val 217 (5.6%); Val 218 (33.4%). Ionic/electronic interactions were formed with one amino acid residue: His 60 (100%). Hydrophobic/steric interactions were formed with six amino acid residues: His 60 (5.4%); Met 61 (3.5%); Met 184 (0.1%); Phe 197 (1.6%); His 208 (5.8%); Val 218 (0.6%). Water bridges interactions were formed with 13 amino acid residues: Met 184 (3.3%); Arg 191 (1.4%); Asn 192 (21.0%); Glu 195 (1.7%); Gly 196 (5.1%); Phe 197 (0.5%); Asn 205 (4.2%); Gln 214 (0.3%); Met 215 (8.8%); Gly 216 (5.6%); Val 217 (26.1%); Val 218 (6.6%); Pro (10.5%). Protein-ligand contact results for the native ligand are shown in Fig. 7.

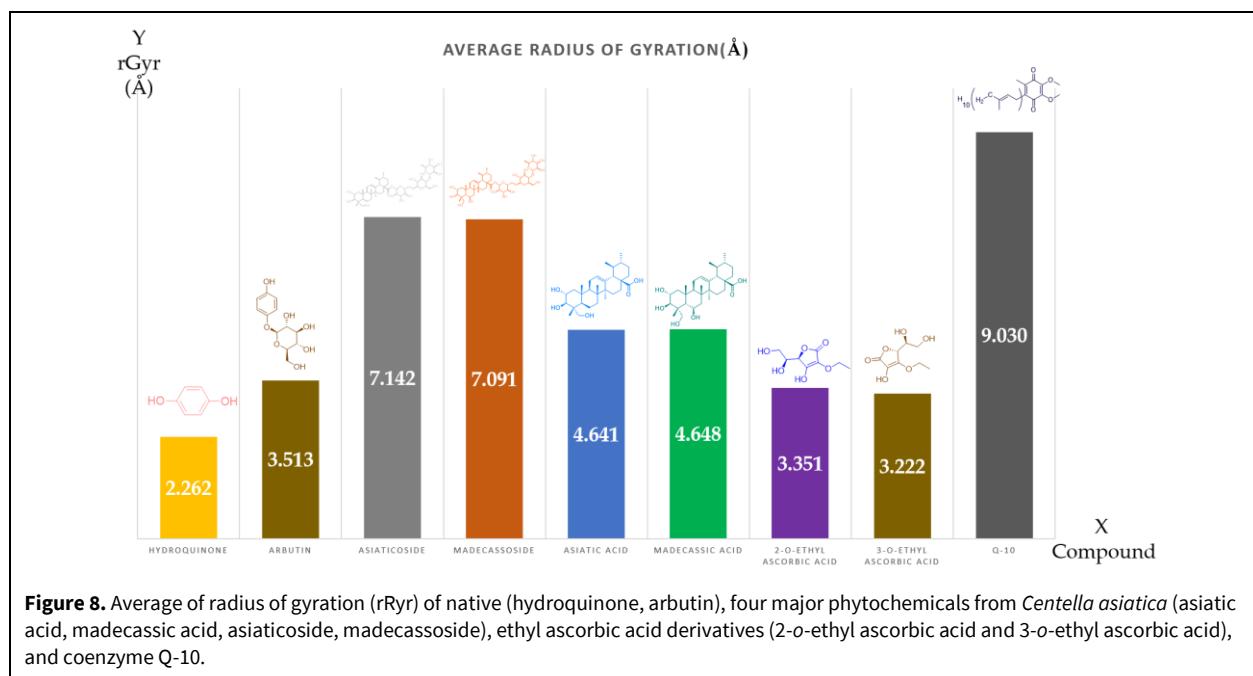
Arbutin: Hydrogen bonds were formed with five amino acid residues: His 60 (3.6%); Glu 158 (61.8%); Asn 205 (5.2%); Arg 209 (3.0%); Val 218 (55.8%). Ionic/electronic interactions were formed with one amino acid residue: Glu 158 (4.9%). Hydrophobic/steric interactions were formed with six amino acid residues: Met 61 (1.0%); Phe 197 (26.6%); Pro 201 (1.2%); Arg 209 (17.9%); Val 217 (3.1%); Val (0.8%). Water bridges interactions were formed with 13 amino acid residues: Gly 46 (0.1%); Lys 47 (0.2%); Asp 55 (0.1%); His 60 (61.6%); Thr 156 (0.1%); Glu 158 (35.7%); Glu 195 (79.9%); Phe 197 (2.2%); Gly 200 (6.0%); Asn 205 (100%); Arg 209 (8.9%); Gly 216 (8.9%); Val 208 (13.2%). Protein-ligand contact results for the native ligand are shown in Fig. 7.

Asiaticoside: Hydrogen bonds were formed with seven amino acid residues: Asp 55 (50.8%); Asn 57 (1.0%); His 60 (74.7 %); Glu 148 (4.5%); Glu 195 (100%); Asn 205 (29.9%); Arg 209 (5.4%).

Ionic/electronic interactions were formed with four amino acid residues: Asn 57 (1.2%); His 204 (100%); His 208 (100%); His 231 (100%). Hydrophobic/steric interactions were formed with five amino acid residues: Met 61 (4.0%); Phe 65 (44.9%); Phe 197 (41.7%); Pro 201 (0.1%); Val 218 (15.5%). Water bridges interactions were formed with 16 amino acid residues: His 42 (0.6%); His 49 (0.1%); Asp 55 (47.9%); Asn 57 (28.0%); Ala 59 (0.1%); His 69 (0.8%); Lys 151 (0.1%); Glu 158 (7.8%); Gly 200 (0.2%); Asn 205 (2.5%); Arg 209 (2.3%); Met 215 (1.5%); Gly 216 (0.5%); Val 217 (0.1%); Val 218 (2.1%); Pro 219(0.4%).


Madecassoside: Hydrogen bond were formed with 16 amino acid residues: Gly 46 (1.5 %); Lys 47 (0.7%); His 49 (4.1%); Asp 140 (1.2%); Glu 141 (100%); Gln 142 (2.6%); Asn 144 (0.7%); Pro 145 (1.2%); Lys (1.0%); Glu 158 (22.3%); Gly (1.2%); Asn 199 (2.3%); Asn 205 (17.3 %); Arg 209 (1.1%); Gly 216 (6.0%); Val 218 (5.0%).

Ionic/electronic interactions were formed with four amino acid residues: His 42 (100 %); His 60 (100 %); Asn 199 (2.6%); Gly 200 (1.6 %). Hydrophobic/steric interactions were formed with four amino acid residues: Phe 197 (0.8%); Val 217 (1.6%); Val 218 (3.3%); Pro 219 (3.1%). Water bridges interactions were formed with 19 amino acid residues: Gly 46 (2.1%); Lys 47 (15.0%); Asp 55 (2.1%); Asp 140 (9.7%); Glu 141 (3.6%); Gln 142 (5.4%); Asn 144 (2.5%); Pro 145 (2.4%); Glu 158 (15.9%); Glu 195 (2.4%); Gly 196 (5.4%); Asn 199 (5.4%); Asn 205 (20.2%); Arg 209 (8.7%); Met 215 (4.9%); Gly 216 (6.4%); Val 217 (6.9%); Val 218 (9.6%); Pro 219 (3.9%).


Asiatic acid: Hydrogen bonds were formed with three amino acid residues: Glu 195 (84.1%); Gly 216 (67.3%); Val 217 (37.7%). Ionic/electronic interactions were formed with six amino acid residues: His 42 (100%); His 60 (100%); Glu 195 (100%); His 204 (100 %); His 208 (100%); His 231 (100%). Hydrophobic/steric interactions were formed with one amino acid residue: Val 218 (2.3%). Water bridges interactions were formed with 17 amino acid residues: Glu 158 (13.1%); Glu 195 (0.2%); Gly 196 (0.5%); Phe 197 (0.4%); Ile 198 (1.2%); Asn 199 (0.3%); Gly 200 (57.1%); Pro 201 (0.1%); Asn 205 (2.2%); His 208 (0.2%); Arg 209 (5.5%); Met 215 (4.8%); Gly 216 (5.8%); Val 217 (31.4%); Val 218 (22.7%); Pro 219 (13.9%); Ala 221 (0.9%). Protein-ligand contact results for the native ligand are shown in Fig. 7.

Madecassic acid: Hydrogen bonds were formed with five amino acid residues: His 60 (5.9%); Glu 195 (55.4%); Gly 196 (27.4%); Asn 205 (22.4%); Arg 209 (2.6%). Hydrophobic/steric interactions were formed with six amino acid residues: Met 61 (7.4%); Met 184 (10.5%); Phe (32.2%); Pro 201 (9.4%); Val 218 (13.2%); Pro 219 (0.1%). Water bridges interactions were formed with 15 amino acid residues: Lys 47 (0.1%); His 49 (0.2%); Asp 55 (2.3%); Asn 57 (0.3%); His 60 (0.7%); Glu 141 (0.1%); Glu 158 (1.3%); Met 184 (10.5%); Gly 196 (2.7%); Gly 200 (0.3%); Asn 205 (11.3%); Arg 209 (7.2%); Gly 216 (1.0%); Val 218 (5.0%); Pro 219 (0.1%).

2-o-Ethyl ascorbic acid: Hydrogen bonds were formed with three amino acid residues: Arg 209 (19.6%), Met 215 (0.1%), and Val 217 (14.8%). Ionic/electronic interactions were formed with six amino acid residues: His 42 (100%); His 60 (100%); Glu 195 (100%); His 204 (100 %); His 208 (100%); His 231 (100%). Hydrophobic/steric interactions were formed with one amino acid residue: Val 218 (3.5%). Water bridges interactions were formed with eight amino acid residues: Glu 158 (0.1 %); Asn 205 (19.3%); Arg 209 (6.9%); Met 215 (10.6%); Gly 216 (28.4%); Val 217 (2.9%); Val 218 (0.5%); Pro 219 (0.1%). Protein-ligand contact results for the native ligand are shown in Fig. 7.

Figure 7. The protein-ligand interaction contacts with tyrosinase (**A**) native ligand (hydroquinone), (**B**) arbutin, (**C**) asiatic acid, (**D**) 3-o-ethyl ascorbic acid, and (**E**) 2-o-ethyl ascorbic acid in a 100 ns molecular dynamics simulation.

Figure 8. Average of radius of gyration (r_{RyR}) of native (hydroquinone, arbutin), four major phytochemicals from *Centella asiatica* (asiatic acid, madecassic acid, asiaticoside, madecassoside), ethyl ascorbic acid derivatives (2-o-ethyl ascorbic acid and 3-o-ethyl ascorbic acid), and coenzyme Q-10.

3-o-Ethyl ascorbic acid: Hydrogen bonds were formed with four amino acid residues: His 42 (3.8%); His 69 (77.8%); Glu 195 (1.0%); Asn 205 (8.6%). Ionic/electronic interactions were formed with seven amino acid residues: His 42 (13.5%); Ala 59 (0.1%); His 60 (13.5%); Met 61 (0.1%); His 204 (100%); His 208 (100%); His 231 (100%). Hydrophobic/steric interactions were formed with three amino acid residues: Val 218 (13.3%), Ala 221 (0.4%), and Phe 227 (4.5%). Water bridges interactions were formed with 12 amino acid residues: His 42 (64.2%); Ala 59 (91.0%); His 60 (0.1%); Met 61 (58.2 %); Phe 65 (0.1%); His 69 (0.3%); Tyr 72 (1.1%); Glu 195 (100%); Asn 205 (22.7%); Arg 209 (0.1%); Val 218 (0.1%); Ala 221 (0.1%). Protein-ligand contact results for the native ligand are shown in Fig. 7.

Coenzyme Q10: Hydrogen bonds were formed with two amino acid residues: His 42 (0.1%); His 69 (10.7%). Ionic/electronic interactions were formed with three amino acid residues: His 204 (100 %), His 208 (100%), and His 231 (100%). Hydrophobic/steric interactions were formed with 14 amino acid residues: His 42 (0.1%); Ala 59 (0.2%); Met 61 (9.0%); Phe 65 (32.2%); Trp 68 (24.3%); Trp 72 (22.0%); Pro 181 (0.1%); Met 184 (17.0%); Phe 197 (46.1%); Ile 198 (8.5%); Val 217 (0.1%); Val 218 (27.3%); Ala 221 (11.8%); Phe 227 (67.7%). Water bridges interactions were formed with six amino acid residues: Ile 39 (0.1%); Ala 59 (4.1 %); His 69 (7.5%); Tyr 72 (0.3%); Glu 195 (0.7%); Gly 216 (0.1%).

Radius of gyration (R_g) analysis was performed to evaluate the degree of compaction and structural stability of the ligand–protein complexes during the 100 ns molecular dynamics simulation (Lobanov et al.,

2008). The average R_g values of each compound are presented in Fig. 8 and analyzed in conjunction with Table 2, alongside binding free energy (MM-GBSA) and RMSD values.

Hydroquinone, as the synthetic reference standard, exhibited a low R_g value (2.262 Å), indicating a relatively compact complex, with an MM-GBSA ΔG of -79.67 kcal/mol. In contrast, arbutin showed a higher R_g (3.513 Å) and weaker binding energy (-55.72 kcal/mol). Asiatic acid (R_g 4.641 Å; ΔG -88.50 kcal/mol) and 3-o-ethyl ascorbic acid (R_g 3.222 Å; ΔG -89.21 kcal/mol) demonstrated the lowest ΔG values with moderate R_g , suggesting stable interactions with a reasonably compact structural conformation. Similarly, 2-o-ethyl ascorbic acid (R_g 3.351 Å; ΔG -85.34 kcal/mol) displayed favorable results. In contrast, larger molecules such as asiaticoside (R_g 7.142 Å), madecassoside (R_g 7.091 Å), and coenzyme Q10 (R_g 9.030 Å) exhibited substantially higher R_g values, with positive or only slightly negative ΔG and elevated RMSD values. These findings indicate unstable complexes with looser structural conformations throughout the simulation.

R_g reflects the degree of compaction of a ligand–protein complex. A lower R_g value generally indicates a more compact and stable complex, whereas a higher R_g value suggests excessive flexibility or unstable binding. In this study, hydroquinone exhibited the lowest R_g (2.262 Å), consistent with its small molecular size, which allows tight interaction within the protein's active pocket. Interestingly, several test candidates showed higher binding energies than hydroquinone, despite slightly higher R_g values.

Among these, 3-*o*-ethyl ascorbic acid and asiatic acid emerged as the most promising candidates. Both compounds showed the lowest ΔG values (-89.21 and -88.50 kcal/mol, respectively) and moderate R_g values (3.222–4.641 Å), which remain within a stable range. This indicates that although their complexes are slightly more flexible than hydroquinone, the binding energies achieved are significantly stronger and more stable. Conversely, arbutin, the natural reference standard, exhibited a weaker binding energy (-55.72 kcal/mol) and a higher R_g than hydroquinone, consistent with previous reports that arbutin is less potent than hydroquinone. Larger molecules, such as asiaticoside and madecassoside, displayed R_g values >7 nm, positive ΔG , and very high RMSD (>10 Å), indicating unstable complexes prone to dissociation during the simulation. Similarly, coenzyme Q10 showed the highest R_g (9.030 nm) with a positive ΔG (10.27 kcal/mol), suggesting an inability to form favorable thermodynamic interactions.

Overall, the combined analysis of R_g , MM-GBSA, RMSD, and RMSF demonstrated that 3-*o*-ethyl ascorbic acid and asiatic acid are the best candidates, as they maintained structural stability (relatively low R_g , RMSD <3.5 Å, RMSF <3 Å) while exhibiting stronger binding energies than both hydroquinone and arbutin.

Based on molecular docking and molecular dynamics studies, it can be concluded that the phytochemicals from *C. asiatica* responsible for the pharmacological effect as an anti-hyperpigmentation agent are asiatic acid, whereas its glycoside forms are inactive in inhibiting tyrosinase, according to *in silico* studies. The addition of 3-*o*-ethyl ascorbic acid to the antimelasma cream formulation is more likely to enhance the anti-hyperpigmentation activity, as this compound has been shown *in silico* to be more potent at inhibiting tyrosinase than the clinically used standard reference drug, hydroquinone.

CONCLUSION

Based on molecular docking and molecular dynamics studies, it can be concluded that the phytochemicals from *C. asiatica* responsible for the pharmacological effect as an anti-hyperpigmentation agent are asiatic acid, while its glycoside forms are inactive in inhibiting tyrosinase according to *in silico* studies. The addition of 3-*o*-ethyl ascorbic acid to the antimelasma cream formulation is more likely to enhance anti-hyperpigmentation activity than coenzyme Q10.

CONFLICT OF INTEREST

The research was conducted entirely free from any involvement in commercial, financial, or personal matters that might be perceived as a possible conflict of interest or that

could have influenced the outcomes or interpretation of the study.

ACKNOWLEDGMENTS

This research was funded by the Ministry of Research, Technology, and Higher Education of the Republic of Indonesia for its financial support of this research via the research grant program (073/ST-Lit/LPPM-01/FF/VIII/2024, 037/SP-LIT/LPPM 01/KemendikbudRistek/FF/VI/2024).

GENERATIVE ARTIFICIAL INTELLIGENCE (AI)

The authors used Grammarly Inc. to improve the language and readability of the manuscript. The authors reviewed and edited the content and take full responsibility for its accuracy. No images were generated or manipulated using AI tools.

REFERENCES

Arunan E, Desiraju G, Klein R, Sadlej J, Scheiner S, Alkorta I, Clary D, Crabtree R, Dannenberg J, Hobza P, Kjaergaard H, Legon A, Mennucci B, Nesbitt D (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). *Pure Appl Chem* 83(8): 1637–1641. <https://doi.org/10.1351/PAC-REC-10-01-02>

Atapour-Mashhad H, Tayarani-Najaran Z, Golmohammadzadeh S (2024) Preparation and characterization of novel nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN) containing coenzyme Q10 as potent antioxidants and antityrosinase agents. *Heliyon* 10(11): e31429. <https://doi.org/10.1016/j.heliyon.2024.e31429>

Badal MS, Delgoda R (2016) *Pharmacognosy: Fundamentals, Applications and Strategies*. London: Academic Press.

Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander ED, El Hage D, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Christopher J, Murru S (2023) Synthesis, *in-silico* modelling, and *in-vitro* biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. *J Enzyme Inhib Med Chem* 38(1): 2205042. <https://doi.org/10.1080/14756366.2023.2205042>

Chang TS (2009) An updated review of tyrosinase inhibitors. *Int J Mol Sci* 10(6): 2440–2475. <https://doi.org/10.3390/ijms10062440>

Chen SJ, Hsue YC, Vudhya Gowrisankar Y, Chung YT, Zhang YZ, Way TD, Yang HL (2021) The anti-melanogenic effects of 3-*o*-ethyl ascorbic acid via NRF2-mediated α -MSH inhibition in UVA-irradiated keratinocytes and autophagy induction in melanocytes. *Free Radic Biol Med* 173: 151–169. <https://doi.org/10.1016/j.freeradbiomed.2021.07.030>

Deri B, Kanteev M, Goldfeder M, Lecina D, Guallar V, Adir N, Fishman A (2016) The unravelling of the complex pattern of tyrosinase inhibition. *Sci Rep* 6: 34993. <https://doi.org/10.1038/srep34993>

Dipiro JT, Yee GC, Posey M, Haines ST, Nolin TD, Ellingrod V (2020) *Pharmacotherapy: A pathophysiologic approach*. 11th ed. New York: McGraw-Hill.

Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS (2023) Potential utilization of phenolic acid compounds as anti-inflammatory agents through TNF- α convertase inhibition mechanisms: A network pharmacology, docking, and molecular dynamics study. *ACS Omega* 8(49): 46851–46868. <https://doi.org/10.1021/acsomega.3c06450>

Fernenda L, Ramadhani AP, Syukri Y (2023) Review: *Centella asiatica* (L.) Urban activity in dermatology. *J Sains Farm Klin* 9(3): 237-244. <https://doi.org/10.25077/jfsk.9.3.237-244.2022>

Ghahremanian S, Rashidi MM, Raeisi K, Toghraie D (2022) Molecular dynamics simulation approach for discovering potential inhibitors against SARS-CoV-2: A structural review. *J Mol Liq* 354: 118901. <https://doi.org/10.1016/j.molliq.2022.118901>

Greenidge PA, Kramer C, Mozziconacci JC, Wolf RM (2012) MM/GBSA binding energy prediction on the PDBbind data set: successes, failures, and directions for further improvement. *J Chem Inf Model* 53(1): 201-209. <https://doi.org/10.1021/ci300425v>

Halgren TA (1996) Merck Molecular Force Field. I Basis, form, scope, parametrization, and performance of MMFF94. *J Com Chem* 17(5-6): 490-519. [https://doi.org/10.1002/\(SICI\)1096-987X\(199604\)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P](https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P)

Harahap A, Triamarta S, Kharisma D, Hanifah W, Iqbal M, Arifa N, Ismed F (2024) Evaluation of the anti-tyrosinase-anti-aging potential and metabolite profiling from the bioactive fraction of corn cob (*Zea mays* L.). *Int J App Pharm* 16(Special Issue 1): 71-76. <https://doi.org/10.22159/ijap.2024.v16s1.18>

Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. *Nature* 450(7172): 964-972. <https://doi.org/10.1038/nature06522>

Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. *J Chem Inf Model* 51(1): 69-82. <https://doi.org/10.1021/ci100275a>

Iliopoulos F, Sil BC, Moore DJ, Lucas RA, Lane ME (2019) 3-O-ethyl-1-ascorbic acid: Characterisation and investigation of single solvent systems for delivery to the skin. *Int J Pharm X* 1: 100025. <https://doi.org/10.1016/j.ijpx.2019.100025>

Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG (2023) Coenzyme Q10 and dementia: A systematic review. *Antioxidants* 12(2): 533. <https://doi.org/10.3390/antiox1202053>

Kesuma D, Yuniarta TA, Suherto AD, Putra GS, Sutrisno S, Anwari F (2025) Synthesis, molecular docking, molecular dynamics, pharmacokinetics prediction and bioassay of N(phenylcarbamothioly)-4-chlorobenzamide as anti-breast cancer candidate. *J Pharm Pharmacogn Res* 13(2): 551-564. https://doi.org/10.56499/jppres24.2092_13.2.551

Liu L, Wang H, Chai X, Meng Q, Jiang S, Zhao F (2022) Advances in biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2. *Mini Rev Med Chem* 22(3): 437-448. <https://doi.org/10.2174/1389557521666210913114631>

Lobanov MY, Bogatyreva NS, Galzitskaya OV (2008) Radius of gyration as indicator of protein structure compactness. *Mol Biol (Moscow)* 42(4): 623-628. <https://doi.org/10.1134/S0026893308040195>

Noh H, Lee SJ, Jo HJ, Choi HW, Hong S, Kong KH (2020) Histidine residues at the copper-binding site in human tyrosinase are essential for its catalytic activities. *J Enzyme Inhib Med Chem* 35(1): 726-732. <https://doi.org/10.1080/14756366.2020.1740691>

Prasetyo A, Mumpuni E, Luthfiana D, Herowati R, Putra GS (2025) *In silico* discovery of potential sodium-glucose cotransporter-2 (SGLT-2) inhibitors from *Smallanthus sonchifolius* (Poepp.) H.Rob. via molecular docking and molecular dynamics simulation approach. *J Pharm Pharmacogn Res* 13(3): 716-728. https://doi.org/10.56499/jppres24.2104_13.3.716

Putra GS, Sulistyowaty MI, Yahmin Y, Sumari S, Retnosari R, Marfu'ah S, Anwari F, Suhud F, Kesuma D, Ma'arif B, Mardianto R, Sukkaew A, Yamauchi T (2025) *In silico* and *in vitro* antimarial activity evaluation of eugenol's transformation products against *Plasmodium falciparum* strain 3D7 using the Trager and Jensen method. *J Pharm Pharmacogn Res* 13(s1): S347-S370. https://doi.org/10.56499/jppres24.2286_13.s1.347

Putra GS, Sulistyowaty MI, Yuniarta TA, Yahmin Y, Sumari S, Saechan C, Yamauchi T (2023) QSAR study of benzylidene hydrazine benzamides derivatives with *in vitro* anticancer activity against human lung cancer cell line A459. *J Pharm Pharmacogn Res* 11(6): 1123-1136. https://doi.org/10.56499/jppres23.1718_11.6.1123

Ruswanto R, Nofianti T, Mardianingrum R, Kesuma D, Siswandono (2022) Design, molecular docking, and molecular dynamics of thiourea-iron (III) metal complexes as NUDT5 inhibitors for breast cancer treatment. *Helion* 8(9): e10694. <https://doi.org/10.1016/j.heliyon.2022.e10694>

Slominski RM, Sarna T, Plonka PM, Raman C, Brozyna AA, Slominski AT (2022) Melanoma, melanin, and melanogenesis: The Yin and Yang relationship. *Front Oncol* 12: 842496. <https://doi.org/10.3389/fonc.2022.842496>

Solano F (2020) Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. *Molecules* 25(7): 1537. <https://doi.org/10.3390/molecules25071537>

Steiner T (2002) The hydrogen bond in the solid state. *Angew Chem Int Ed Engl* 41(1): 49-76. [https://doi.org/10.1002/1521-3773\(20020104\)41:1%3C48::AID-ANIF48%3E3.0.CO;2-U](https://doi.org/10.1002/1521-3773(20020104)41:1%3C48::AID-ANIF48%3E3.0.CO;2-U)

Sulistyowaty MI, Nugroho AE, Putra GS, Ekowati J, Budiati T (2016) Syntheses, molecular docking study and anticancer activity examination of p-methoxycinnamoyl hydrazides. *Int J Pharm Clin Res* 8(6): 623-627.

Sulistyowaty MI, Putra GS, Budiati T, Indrianingsih AW, Anwari F, Kesuma D, Matsunami K, Yamauchi T (2023) Synthesis, *in silico* study, antibacterial and antifungal activities of N-phenylbenzamides. *Int J Mol Sci* 24(3): 2745. <https://doi.org/10.3390/ijms24032745>

Suyanto FC, Saraswati PDA (2023) Terapi laser untuk lesi hiperpigmentasi. *Cermin Dunia Kedokt* 50(8): 419-425. <https://doi.org/10.55175/cdk.v50i8.757>

Sweetman SC (2009) Martindale: The Complete Drug Reference 36th ed. London: Pharmaceutical Press.

Walle T, Browning AM, Steed LL, Reed SG, Walle UK (2005) Flavonoid glucosides are hydrolyzed and thus activated in the oral cavity in humans. *J Nutr* 135(1): 48-52. <https://doi.org/10.1093/jn/135.1.48>

Widiyana AP, Putra GS, Muchlashi LA, Sulistyowaty MI, Budiati T (2016) Design and molecular docking studies of quinazoline derivatives as antiproliferation. *J Farm Ilmu Kefarm Indones* 3(2): 44-48. <https://doi.org/10.20473/jfiki.v3i22016.44-48>

Yousefi S, Bayat S, Abdul Rahman MB, Ismail IS, Saki E, Abdulmalek E (2015) Synthesis and *in vitro* bioactivity evaluation of new glucose and xylitol ester derivatives of 5-aminosalicylic acid. *RSC Adv* 5: 97295-97307. <https://doi.org/10.1039/C5RA19623J>

Zhang CP, Liu G, Hu FL (2012) Hydrolysis of flavonoid glycosides by propolis β -glycosidase. *Nat Prod Res* 26(3): 270-273. <https://doi.org/10.1080/14786419.2010.541877>

AUTHOR CONTRIBUTION:

Contribution	Aryani NLD	Kesuma D	Yasinta AD	Andreyana E
Concepts or ideas	x	x		
Design	x	x		
Definition of intellectual content	x	x		
Literature search	x	x	x	x
Experimental studies	x	x		
Data acquisition	x	x	x	x
Data analysis		x	x	x
Statistical analysis		x		x
Manuscript preparation				x
Manuscript editing	x	x	x	x
Manuscript review	x	x	x	x

Citation Format: Aryani NLD, Kesuma D, Yasinta AD, Andreyana E (2026) Effectiveness as tyrosinase inhibitor from active compounds of *Centella asiatica* (L.) Urb., ethyl ascorbic acid, and coenzyme Q10 as skin whitening by *in silico* evaluation. *J Pharm Pharmacogn Res* 14(1): 2475.
<https://doi.org/10.56499/jppres.14.1.2475>

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (<http://creativecommons.org/licenses/by/4.0/>), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

Volume 14, Issue 1

J Pharm Pharmacogn Res 14(1), (January–February) 2026 (In Progress)

IFC (Journal of Pharmacy & Pharmacognosy Research).

1.- Original Article

Tukiran T. Tukiran, Syahrul L. Hendrawan, Andika P. Wardana (2026) **Inhibitory activity of the ethyl acetate extract of *Desmanthus virgatus* (L.) Willd. leaves against α -glucosidase enzyme: *In silico* and *in vitro* studies.** | [Actividad inhibitoria del extracto de acetato de etilo de hojas de *Desmanthus virgatus* contra la enzima α -glucosidasa. Estudios *in silico* e *in vitro*]. J Pharm Pharmacogn Res 14(1): 2419. https://doi.org/10.56499/jppres_14.1.2419 [3.02 Mb] [ABSTRACT]

2.- Original Article

Na'ilah I. Alifiyah, Wirdatun Nafisah, Rizki, Arie Aryanto, Hikmah Zikriyani (2026) **GC-M profiling and *in silico* multi-target docking of carvone, p-cymene, and linalool from *Cuminum cyminum* seeds extract against breast cancer proteins.** | [Perfiles GC-MS acoplamiento multiobjetivo *in silico* de carvona, p-cimeno y linalol del extracto de semillas de *Cuminum cyminum* contra proteínas de cáncer de mama]. J Pharm Pharmacogn Res 14(1): 2394. https://doi.org/10.56499/jppres_14.1.2394 [5.29 Mb] [ABSTRACT]

3.- Review

Rosemary Estremor-Rodríguez, Adriana Redondo-Barrera, Santiago Gil-Cure, Juan Garcés-Barraza, Neyder Contreras-Puentes (2026) **Use of curcumin as a potent therapeutic agent in Alzheimer's disease: A systematic review.** | [Uso de la curcumina como posible agente terapéutico en la enfermedad de Alzheimer: una revisión sistemática]. J Pharm Pharmacogn Res 14(1): 227-234. https://doi.org/10.56499/jppres_14.1.2274 [784 Kb] [ABSTRACT]

4.- Original Article

Munira Munira, Nurdin Saidi, Binawati Ginting, Suhartono Suhartono (2026) **GC-M analysis of active compounds from ethanolic extract of *Jatropha gossypiifolia* L. and antibacterial activity against *Pseudomonas aeruginosa*.** | [Análisis GC-MS de compuestos activos del extracto etanólico de *Jatropha gossypiifolia* L. y actividad antibacteriana frente a *Pseudomonas aeruginosa*]. J Pharm Pharmacogn Res 14(1): 235-242. https://doi.org/10.56499/jppres_14.1.2353 [866 Kb] [ABSTRACT]

5.- Original Article

Binawati Ginting, Nadia Isnaini, Khairan Khairan, Nurdin Saidi, Murniana Murniana, Muhammad Bahi, Mustanir Yahya, T. Zaid Thariq Gunana, Sitti Saleha, Cantika Dwiputri Riski (2026) **Antibacterial and anti-tyrosinase activity of eucalyptus leaf [*Melaleuca leucadendra* (L.) L.] acne spot emulgel: Formulation and evaluation.** | [Actividad antibacteriana y antitirosinasa del emulgel para el acné de hoja de eucalipto [*Melaleuca leucadendra* (L.) L.]: formulación y evaluación]. J Pharm Pharmacogn Res 14(1): 229-236. https://doi.org/10.56499/jppres_14.1.2299 [478 Kb] [ABSTRACT]

6.- Original Article

Herni Kusriani, Yani Mulyani, Rahmat Santoso, Garnadi Jafar, Fatiya Z. Ishmah, Nadhira A. Zahra (2026) **Pharmacological assessment of standardized *Curcuma longa* L. and *Centella asiatica* (L.) Urban extracts for diabetes management.** | [Evaluación farmacológica de extractos estandarizados de *Curcuma longa* y *Centella asiática* para el manejo de la diabetes]. J Pharm Pharmacogn Res 14(1): 229-236. https://doi.org/10.56499/jppres_14.1.2290 [881 Kb] [ABSTRACT]

7.- Review

Muhammad Maskur, Asep A. Prihanto, Muhamad Firdaus, Rahmi Nurdiani (2026) **Potentio of seaweed bioactives for pharmaceutical applications.** | [Potencial de los bioactivos d las algas marinas para aplicaciones farmacéuticas]. J Pharm Pharmacogn Res 14(1): 2477. https://doi.org/10.56499/jppres_14.1.2477 [648 Kb] [ABSTRACT]

8.- Original Article

Cyntiya Rahmawati, Heru Sasongko, Baiq Lenysia Puspita Anjani, Safwan Safwan (2026) **Cost-effectiveness analysis of AC vs. TAC chemotherapy in West Nusa Tenggar breast cancer patients.** | [Análisis de costo-efectividad de la quimioterapia AC vs. TAC en pacientes con cáncer de mama en Nusa Tenggara Occidental]. J Pharm Pharmacog Res 14(1): 2278. https://doi.org/10.56499/jppres_14.1.2278 [376 Kb] [ABSTRACT]

9.- Original Article

Cristina Herrera, Fabián Delgado-Rodríguez, Navilla Apú, Verónica Madrigal-Gamboc Marta Porras (2026) **Anti-inflammatory, antinociceptive, antioxidant, and antimicrobial activities of hydroalcoholic extracts of *Witheringia solanacea* L'Hér.** [Actividad antiinflamatoria, antinociceptiva, antioxidante y antimicrobiana de extracto hidroalcohólicos de *Witheringia solanacea* L'Hér]. J Pharm Pharmacogn Res 14(1): 230. https://doi.org/10.56499/jppres_14.1.2303 [1.07 Mb] [ABSTRACT]

10.- Original Article

Ambrocio T. Esteves Pairazaman, Jesús D. Collanque Pinto, Veronica L. Esteves Cárdenas, Elmer Oyarce Alvarado, Jose Rincon Chavez, Carmela G. Barboza Justiniano, Nelcy C. Quintana Marquez, Daniel R. Reyes Villalobos (2026) **Validación microbiológica de un desinfectante de superficies de amonio cuaternario al 0,25% mediante el método de dilución-neutralización.** | [Microbiological validation of a 0.25% quaternary ammonium surface disinfectant using the dilution-neutralisation method]. J Pharm Pharmacogn Res 14(1): 2205. https://doi.org/10.56499/jppres_14.1.2205 [1.02 Mb] [ABSTRACT]

11.- Original Article

Mohammed A. Alamri, Najeeb Ur Rehman, Mubarak A. Alamri, Gamal A. Soliman, Maged S. Abdel-Kader (2026) **Bronchodilator, erectogenic, and aphrodisiac effects of thymo carvacrol, and their acetate derivatives: *In vivo*, *ex vivo*, and *in silico* insights.** | [Efecto broncodilatadores, erectogénicos y afrodisíacos del timol, carvacrol y sus derivados acetato: conocimientos *in vivo*, *ex vivo* e *in silico*]. J Pharm Pharmacogn Res 14(1): 243. https://doi.org/10.56499/jppres_14.1.2435 [2.24 Mb] [ABSTRACT]

12.- Review

Che Muhammad Khairul Hisyam Ismail, Azlini Ismail, Azzmer Azzar Abdul Hamid, Mohd Ridzuan Mohd Abd Razak, Khairani Idah Mokhtar, Widya Lestari, Basma Ezzat Mustafa Alahmad (2026) **Honey's antiviral research landscape: A 28-year bibliometric analysis (1996–2024)**. | [Panorama de la investigación antiviral de la miel: un análisis bibliométrico de 28 años (1996–2024)]. J Pharm Pharmacogn Res 14(1): 243. https://doi.org/10.56499/jppres_14.1.2383 [1.39 Mb] [ABSTRACT]

13.- Original Article

Fatmeh Abu Eideh, Seeba Zachariah, Baljinder Singh (2026) **Practice channels, scope facilitators and challenges for cardiovascular care by community and hospital pharmacists in the UAE**. | [Canales de práctica, alcance, facilitadores y desafíos para la atención cardiovascular por parte de farmacéuticos comunitarios y hospitalarios en los EAU]. J Pharm Pharmacogn Res 14(1): 2137. https://doi.org/10.56499/jppres_14.1.2137 [321 Kb] [ABSTRACT]

14.- Original Article

Indira Prakoso, Yustinus Maladan, Fachrur Rizal Mahendra, Mochamad Nurcholis, Anissa Nofita Sari (2026) **Immunoinformatics design of a multi-epitope vaccine for *Chlamydia pneumoniae* targeting the Indonesian population**. | [Diseño inmunoinformático de una vacuna multiepítopa contra *Chlamydia pneumoniae* dirigida a la población indonesia]. J Pharm Pharmacogn Res 14(1): 2264. https://doi.org/10.56499/jppres_14.1.2264 [2.6 Mb] [ABSTRACT]

15.- Original Article

Agus Cahyono, Irwanto, Mahrus Abdur Rahman, Widjiati Widjiati (2026) **Sildenafil and metformin combination attenuates monocrotaline-induced pulmonary hypertension via TNF- α and ERK1/2 modulation**. | [Combinación de sildenafil y metformina atenúa la hipertensión pulmonar inducida por monocrotalina mediante la modulación de TNF- α y ERK1/2]. J Pharm Pharmacogn Res 14(1): 2507. https://doi.org/10.56499/jppres_14.1.2507 [903 Kb] [ABSTRACT]

16.- Original Article

Oktavia Rahayu Adianingsih, Wibi Riawan, Aina Angelina, Fifi Farida Fajrin, Violita Ay Puspita, Surya Saputri, Genera Dinan Adlina, Akbar Saitama, Eko Widaryanto (2026) **Effects of *Kaempferia galanga* L. extract on monosodium iodoacetate-induced osteoarthritis in rats.** | [Efectos del extracto de *Kaempferia galanga* L. sobre la osteoartritis inducida por yodoacetato monosódico en ratas]. J Pharm Pharmacogn Res 14(1): 2468. [984 Kb] [ABSTRACT]

17.- Original Article

Van Anh T. Pham, Hanh M. Hoang, Trung H. Le, Phong X. Pham, Hung D. Tran, Thanh C. Doan, Su Q. Pham, Hong L. To, Hung T. Bui, Loan T. T. Nguyen, Duong T. Dau (2026) **Bacteric cellulose wound dressing immersed in electrolyzed water: A promising treatment for burn injuries.** | [Apósito de celulosa bacteriana sumergido en agua electrolizada: un tratamiento prometedor para las quemaduras]. J Pharm Pharmacogn Res 14(1): 2466. [1.61 Mb] [ABSTRACT]

18.- Original Article

Fitmawati, Asih Rahayu Ajeng Agesti, Hestia Hairima, Khairunnisa, Nur Anisa, Titrawan Vita Sindiya (2026) **Identification of *Mangifera laurina* Blume potential as anticancer. An *in silico* study.** | [Identificación del potencial de *Mangifera laurina* Blume como anticancerígeno: estudio *in silico*]. J Pharm Pharmacogn Res 14(1): 240. [1.24 Mb] [ABSTRACT]

19.- Original Article

Mochamad Fathurohman, Tursino, Muhammad Azhari, Anjali Patel, Elin Julianti (2026) **Isolation and characterization of *Bacillus subtilis* BPP16: A marine-derived α -amylas producer.** | [Aislamiento y caracterización de *Bacillus subtilis* BPP16: un productor de α amilasa de origen marino]. J Pharm Pharmacogn Res 14(1): 2340. [871 Kb] [ABSTRACT]

20.- Original Article

Ni L. D. Aryani, Dini Kesuma, Armiza D. Yasinta, Elya Andreyana (2026) **Effectiveness of tyrosinase inhibitor from active compounds of *Centella asiatica* (L.) Urb., ethyl ascorbic acid, and coenzyme Q10 as skin whitening by *in silico* evaluation.** | [Eficacia como inhibidor de la tirosinasa de compuestos activos de *Centella asiatica* (L.) Urb, ácido etilascórbico y coenzima Q10 para el blanqueamiento de la piel mediante evaluación *in silico*]. J Pharm Pharmacogn Res 14(1): 2475. [2.03 Mb] [ABSTRACT]

21.- Original Article

Khalish Arsy Al Khairy Siregar, Fachrur Rizal Mahendra, Alfa Marzelino, Dwi Wahyu Indrian Joko Pebrianto Trinugroho, Febby Nurdyia Ningsih, Annisa Krama, Wirdatun Nafisah, Indri Putri Negari, Anissa Nofita Sari (2026) **Elucidation of therapeutic targets and mechanisms of *Clitoria ternatea* L. in colorectal cancer inhibition using network pharmacology and bioinformatics approaches.** | [Elucidación de dianas terapéuticas y mecanismos de *Clitoria ternatea* L. en la inhibición del cáncer colorrectal mediante enfoques de farmacología de redes y bioinformática]. J Pharm Pharmacogn Res 14(1): 2399. https://doi.org/10.56499/jppres_14.1.2399 [2.49 Mb] [ABSTRACT]

22.- Original Article

Kasta Gurning, Yehezkiel S. Kurniawan, Friska S. Silitonga, Muslih Anwar, Charlie E. d Fretes, Mario R. Sohilait, Endang Astuti, Sunarta, Winarto Haryadi (2026) **Phytochemical profiling, antimicrobial and antioxidant activities of *Coleus amboinicus* Lour. leaves: *In vitro*, network pharmacology, and molecular docking analyses.** | [Perfil fitoquímico, actividades antimicrobianas y antioxidantes de las hojas de *Coleus amboinicus* Lour. análisis *in vitro*, farmacología de redes y acoplamiento molecular]. J Pharm Pharmacog Res 14(1): 2440. https://doi.org/10.56499/jppres_14.1.2440 [1.74 Mb] [ABSTRACT]

23.- Review

Christopher D. Tristan, Risalina Myrtha, Nanang Wiyono, Irnizarifka Irnizarifka (2026) **Current landscape and future potential of sodium-glucose cotransporter 2 inhibitors in heart failure: A systematic review and bibliometric analysis.** | [Panorama actual y potencial futuro de los inhibidores del cotransportador de sodio y glucosa tipo 2 en la insuficiencia cardíaca: una revisión sistemática y análisis bibliométrico]. J Pharm Pharmacogn Res 14(1): 2253. https://doi.org/10.56499/jppres_14.1.2253 [2.79 Mb] [ABSTRACT]

24.- Original Article

Karnelasatri, Candra Julius Tahya, Shellina, Sri Wahyu Ningsih Munthe, Riskianto Andriyani, Marcelia Sugata (2026) **LC-MS/MS profiling, total phenolic and flavonoid contents, and antibacterial activity of *Allium cepa* L. peel extract against *Staphylococcus epidermidis*.** | [Perfil LC-MS/MS, contenido total de fenólicos y flavonoides y actividad antibacteriana del extracto de cáscara de *Allium cepa* L. contra *Staphylococcus epidermidis*]. J Pharm Pharmacogn Res 14(1): 2279. https://doi.org/10.56499/jppres_14.1.2279 [887 Kb] [ABSTRACT]

JPPRes

Journal of Pharmacy
& Pharmacognosy
Research

[Home](#) [About](#) [Archive](#) [Authors](#) [Reviewers](#) [Events](#) [Blog](#)

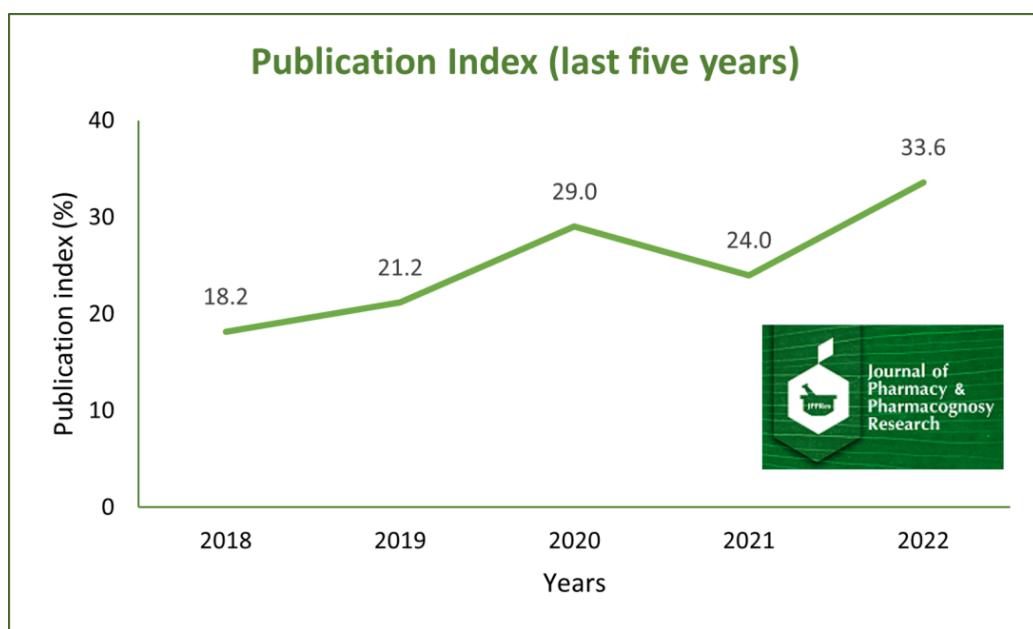
[Twitter](#) [LinkedIn](#) [Facebook](#)

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with by **AVAGAX Studio**

About

Description


The Journal of Pharmacy & Pharmacognosy Research (JPPRes) is an international, specialized and peer-reviewed open access journal, under the auspices of GarVal Editorial Ltda., which publishes studies in the pharmaceutical and herbal fields concerned with the physical, botanical, chemical, biological, toxicological properties and clinical applications of molecular entities, active pharmaceutical ingredients, devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture, evaluation and marketing. This journal publishes research papers, reviews, commentaries and letters to the editor as well as special issues and review of pre-and post-graduate thesis from pharmacists or professionals involved in Pharmaceutical Sciences or Pharmacognosy.

JPPRes has an acceptance rate of 33.6% (2022). The average time between submission and final decision is 100 days and the average time between acceptance and final publication is 15 days.

Manuscripts submitted to JPPRes are only accepted on the understanding that they are subject to editorial review and that they have not been, and will not be, published in whole or in part in any other journal.

The URL of the journal website is jppres.com/jppres. You can write to the editor through the following email:

[Email](#)

Language

JPPRes accepts, in Spanish or English, review articles, articles for educational forum, original research articles (full length and short communications), letter to editor and case reports. Articles concerning all aspects of Pharmacy and Pharmacognosy will be considered. Articles of general interest (e.g. methods, therapeutics, medical education, interesting websites, new drug information and commentary on a recent topic) are also welcome.

Manuscripts in which language is difficult to understand may be returned to the author for revision before scientific review.

Charges

In order to provide free access to readers, and to cover the costs of peer review, copyediting, typesetting, long-term archiving, and journal management, an article-processing charge **(APC) of 600 USD (US Dollars)** applies to papers accepted after peer review.

Audience

Biochemists, Biotechnologists, Botanists, Chemical Engineers, Clinical Pharmacologists, Medical Scientists, Medicinal Chemists, Natural Product Chemists, Pharmaceutical Scientists, Pharmacologists, Pathologists, Plant Scientists, and Toxicologists, among others.

Copyright

The copyright of the articles are those of the authors and the rights of editing and publishing to JPPRes. The articles published in the journal may be used freely for educational and scientific purposes as long as proper citation of these is made.

Areas

Alternative and Complementary Medicine, Analytical Toxicology, Biochemical Pharmacology, Biologicals, Chinese Medicine Resources, Clinical Pharmacology, Cosmetic Science, Drug Delivery System, Drug Information, Drug Metabolism, Education in Pharmacy, Pharmacology and Pharmacognosy, Ethnobotany and Ethnopharmacology, Food-Drug Interactions, Herbal-Drug Interactions, Drug-Drug Interactions, Formulations, Functional Foods and Nutraceuticals, Health and Medical Informatics, Herbal Medicine, Immunopharmacology, Medical Anthropology, Medication Management, Medicinal Chemistry, Molecular Medicine, Molecular Modeling, Molecular

Pharmacology, Neuropsychopharmacology, Nutrition, Pharmaceutical Care, Pharmaceutical Marketing, Pharmaceutical Microbiology, Pharmaceutical Raw Material Science, Pharmaceutical Research, Pharmaceuticals, Pharmaceutical Raw Materials, Pharmacodynamics, Pharmacoepidemiology, Pharmacogenetics, Pharmacogenomics, Pharmacokinetics, Pharmacology, Pharmacotherapy, Pharmacy Informatic, Pharmacy Practice, Pharmacognosy, Physical Pharmaceutics, Phytochemistry, Phytomedicine, Phytotherapy, Social and Administrative Pharmacy, Toxicology, Traditional Medicine, Vaccines, Veterinary Pharmacology, Zoopharmacognosy

Editorial Policy

JPPRes considers only original contributions submitted exclusively to the journal. Prior and duplicate publications are not allowed. Publication of abstract under conference proceedings will not be considered as prior publication. It is the duty of the authors to inform the JPPRes about all submissions and previous reports that might be regarded as prior or duplicate publication.

Manuscripts for publication will be considered on their individual merits. All manuscripts will be subjected to peer review. Normally manuscripts will be sent to at least two reviewers and their comments along with the editorial board's decision will be forwarded to the contributor for further action.

The JPPRes insists on ethical practices in both human and animal experiments. Evidence for approval by a local Ethics Committee must be supplied by the authors on demand. Animal experimental procedures should be as humane as possible and the details of anaesthetics and analgesics used should be clearly stated.

The ethical standards of experiments must be in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans and EU Directive 2010/63/EU for animal experiments. The journal will not consider any paper which is ethically unacceptable. A statement on ethics committee permission and ethical practices must be included in all research articles under the 'Materials and Methods' section. Uniform Requirements for manuscripts submitted to Biomedical Journals must be observed.

Authors must be careful when they reproduce text, tables or illustrations from other sources. Plagiarism will be viewed seriously. Please see instructions. All accepted papers are subject to editorial changes.

Abstracting and Indexing information:

Databases:

- EMBASE
- Chemical Abstracts Service (CAS), American Chemical Society (ACS)
- MIAR
- SHERPA/RoMEO
- Scopus
- Web of Science (Emerging Sources Citation Index)

Directories:

- DOAJ (Directory of Open Access Journals)
- REDALYC (Red de Revistas Científicas de América Latina y el Caribe, España y Portugal)
- REDIB (Red Iberoamericana de Innovación y Conocimiento Científico)
- ROAD (Directory of Open Access Scholarly Resources)
- Urlich's International Periodical Directory, New Jersey

Indexes:

- Google Scholar
- Index Copernicus International
- PERIODICA (Índice de Revistas Latinoamericanas en Ciencias – Dirección General de Bibliotecas, UNAM, Mexico)
- Qualis CAPES

Catalogues:

- HINARI (Research in Health Programme from the World Health Organization)
- LATINDEX (Sistema Regional de Información en Línea para Revistas Científicas de América Latina, el Caribe, España y Portugal)
- United States National Library of Medicine (NLM) – National Center for Biotechnology Information

You can also follow the content of the journal and the updates through Mendeley, Academia.org, and ResearchGate.

Note: This site does not host or receive funding from advertising.

Last Update: July 3th, 2023

[Home](#) [About](#) [Archive](#) [Authors](#) [Reviewers](#) [Events](#) [Blog](#)

[Twitter](#) [LinkedIn](#) [Facebook](#)

© 2013–2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license–Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ❤ by [AVAGAX Studio](#)

Editorial Board**Gabino Garrido**

Editor-in-Chief

[Scholar Google](#)[Scopus](#)[ResearchGate](#)[ORCID](#)

GarVal Editorial Ltda.

[Email](#)**Marisela Valdés González**

Executive Editor

[ORCID](#)

GarVal Editorial Ltda.

[Email](#)**Xavier Garrido**

Editorial and Design Manager

[LinkedIn](#)[Behance](#)[Web](#)

AVAGAX Studio

Antofagasta, Chile

[Email](#)**Editorial Board Members****Antonio Vassallo**

Dipartimento di Scienze. Università degli Studi della Basilicata, Potenza, Italia.

[Research Gate](#)[ORCID](#)[Scopus](#)**Bárbara B. Garrido Suárez**

Laboratorio de Farmacología y Toxicología, Centro de Investigación y Desarrollo de Medicamentos, La Habana, Cuba.

[Research Gate](#)[ORCID](#)**Carla Delporte**

Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile

[Research Gate](#)[ORCID](#)**Damaris Silveira**

Faculdade de Ciências da Saúde, Universidade de Brasília, Brazil

[Lattes](#)[ORCID](#)**Douglas S. de Almeida Chaves**

Dep. de Ciências Farmacêuticas (DCFar), Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Rodovia, RJ, Brazil

[ResearchGate](#)[ORCID](#)[Lattes](#)**Edgar Pastene**

Universidad de Concepción, Concepción, Chile

[ResearchGate](#)

[ORCID](#)

Etile Spegazzini

Universidad de Belgrano, Buenos Aires, Argentina

[ResearchGate](#)

Farid Chemat

Université Avignon et des Pays de Vaucluse, Avignon, France

[ResearchGate](#)

Fidel O. Castro

Departamento de Ciencias Pecuarias, Universidad de Concepción, Chillán, Chile

[ResearchGate](#)

[ORCID](#)

Guilherme N. L. do Nascimento

Universidade Federal de Tocantins. Brazil

ORCID**Jacqueline Sepúlveda**

Universidad de Concepción, Concepción, Chile

ResearchGateORCID**Jelena Nadinic**

Universidad de Buenos Aires, Argentina.

ResearchGateORCID**José H. Isaza-Martínez**

Universidad del Valle, Cali, Colombia

ResearchGateORCID

Juan C. Sepúlveda-Arias

Universidad Tecnológica de Pereira, Pereira, Colombia

[ResearchGate](#)[ORCID](#)**Madan Mohan Gupta**

School of Pharmacy, Faculty of Medical Sciences. The University of the West Indies,
Trinidad & Tobago, West Indies

[Google Scholar](#)[ORCID](#)**Mahomoodally M. Fawzi**

Department of Health Sciences, Faculty of Science, University of Mauritius. Mauritius.

[ORCID](#)[ResearchGate](#)**María Inés Isla**

Facultad de Ciencias Naturales e Instituto Miguel Lillo. Universidad Nacional de
Tucumán, Tucumán, Argentina.

[ResearchGate](#)[ORCID](#)

Marisol Fernández Alfonso

Facultad de Farmacia, Universidad Complutense de Madrid, España

[ResearchGate](#)[ORCID](#)**Mayank Gangwar**

Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi (UP) India

[Scholar Google](#)[ORCID](#)**Silvia Debenedetti**

Pharmacy Carrer. Universidad de Belgrano, Buenos Aires, Argentina

[ORCID](#)[ResearchGate](#)**Vikash Kumar Ruhil**

PDM College of Pharmacy, Bahadurgarh, Haryana, India

[Google Scholar](#)

Yasser Shahzad

Department of Pharmacy. COMSATS University Islamabad, Pakistan

[Scopus](#)[ORCID](#)[Google Scholar](#)

Reviewers

The reviewers will be recruited among researchers and clinicians with high international reputation in Pharmacy and Pharmacognosy.

Last Update: August 20th, 2023

[Home](#) [About](#) [Archive](#) [Authors](#) [Reviewers](#) [Events](#) [Blog](#)

[Twitter](#) [LinkedIn](#) [Facebook](#)

© 2013-2020 by the authors; licensee JPPRes, Antofagasta, Chile. This journal is an open-access journal distributed under the terms and conditions of the Creative Commons Attribution license-Non Commercial 4.0 international. The content on this site is intended for health professionals. If you are not a health professional, please talk to your doctor about any doubts or concerns regarding your health

Made with ❤ by **AVAGAX Studio**