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Abstract: Periodontitis is an inflammatory disease that affects the supporting structures
of the teeth and is a major contributor to tooth loss. Traditional diagnosis through clin-
ical examination and manual interpretation of two-dimensional (2D) dental radiographs
is prone to variability and subjectivity. The emergence of deep learning (DL) has im-
proved the way medical images are analyzed, including dental radiography. This study
systematically reviews the existing literature that uses DL approaches for the diagnosis of
periodontitis using two-dimensional (2D) dental radiographic images and evaluates their
diagnostic performance compared to clinical evaluations. A systematic literature review
(SLR) was conducted following the PRISMA 2020 protocol and guided by the PICO (Popu-
lations, Interventions, Comparisons, Outcomes) framework. Five major databases (Scopus,
PubMed, Semantic Scholar, Web of Science, and ScienceDirect) were searched for relevant
studies published between 2016 and 2025. A total of 27 studies (in 29 reports) were in-
cluded based on eligibility criteria, covering classification, segmentation, or detection tasks
using panoramic, periapical, or bitewing radiographs. Most DL models achieved excellent
performance with classification accuracies often exceeding 80% and segmentation Dice co-
efficients greater than 0.88. Although some models outperformed clinicians, external val-
idation and real-world deployment remain limited. In conclusion, this review shows the
feasibility of DL approaches in the diagnosis of automated periodontitis using 2D radio-
graphs, although challenges and limitations remain in standardization, robust validation,
and integration into clinical workflows.
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1 Introduction

Periodontitis is a chronic inflammatory disease that affects the supporting structures of
teeth and remains one of the most prevalent oral health problems worldwide [1, 2]. It is
one of the main causes of tooth loss in adults and has been shown to be associated with
other health conditions such as diabetes, cardiovascular disease, and adverse pregnancy
outcomes [3]. Therefore, a timely and accurate diagnosis of periodontitis is critical to effec-
tive treatment and prevention of further complications [4]. Traditionally, diagnosis relies
on clinical examination, including probing depth and bleeding on probing, combined with
visual assessment of 2D dental radiographic images, such as panoramic and periapical ra-
diographs. However, the interpretation of these images is highly subjective, prone to inter-
and intra-examiner variability, and limited by human perceptual constraints [5].

The introduction of artificial intelligence (AI), particularly deep learning (DL), has
brought a major transformation to medical image analysis. DL models, especially con-
volutional neural networks (CNN), have shown strong capabilities to detect and classify
complex patterns in various imaging modalities. In the field of dentistry, these models
offer the potential to automate radiograph interpretation, minimize diagnostic errors, and
support decision-making. Recent studies have explored the use of DL for analyzing 2D
dental images in detecting conditions such as caries, oral lesions, and more recently peri-
odontal diseases [6, 7]. Among these applications, the diagnosis of periodontitis remains
particularly challenging due to its subtle and often overlapping radiographic features [8].

Despite increasing research in this area, the effectiveness of DL models in diagnosing
periodontitis remains inconsistent due to variations in data set quality, imaging modalities,
model architectures, and evaluation methods. Furthermore, new DL architectures, such as
Vision Transformers (ViT) [9, 10], EfficientNet [11], MobileNet [12], YOLO [13, 14], along
with their hybrid variants [15, 16], have created the urgency of evaluating their suitability
for this task. Therefore, a complete and comprehensive systematic review of current evi-
dence is needed to determine whether DL-based approaches can offer reliable and accurate
solutions to identify periodontitis from 2D radiographic images.

The purpose of this review is to address the gap by evaluating studies that use DL
models to diagnose periodontitis using 2D dental radiographic images, with or without
comparison to the’ manual evaluation of clinicians. Studies involving any DL architecture,
single, combined or hybrid, used to detect, classify, or segment periodontitis from 2D radio-
graphic images, including panoramic, periapical, or bitewing radiographs, were included
in the scope of this review regardless of the origin or evaluation protocol of the dataset.

This systematic literature review (SLR) follows the PICO framework (Populations, In-
terventions, Comparisons, Outcomes) and adheres to the PRISMA 2020 (Preferred Report-
ing Items for Systematic Reviews and Meta-Analysis) guidelines to ensure methodological
transparency and reproducibility [17, 18]. The primary research question that guides this
review is “Does a deep learning approach prove effective in diagnosing periodontitis from
2D dental radiographic images compared to manual evaluation by clinicians?”. The find-
ings of this review are expected to benefit both researchers and clinicians by providing
insight into current capabilities, methodological trends, existing gaps, and directions for
future development and implementation in clinical workflows.
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2 Methodology

2.1 Research Design

The review was guided by the PICO framework to clearly define the scope and focus of the
study. The Population (P) included 2D dental radiographic images, including panoramic,
periapical, and bitewing radiographs, which are commonly used in periodontal diagnosis.
Intervention (I) consisted of DL approaches, including CNN, hybrid architecture, transfer
learning models, and other neural architecture designed for image recognition and classifi-
cation tasks. Comparison (C) refers to traditional or manual diagnostic methods conducted
by trained dentists or periodontists, included where available, to assess the relative perfor-
mance of diagnostics performed using a DL framework. The Outcome (O) focused on the
feasibility and diagnostic performance of DL models in detecting periodontitis, measured
by relevant metrics such as sensitivity, specificity, precision, and overall classification accu-
racy.

2.2 Information Sources

A systematic search was conducted on five electronic databases: Scopus, PubMed, Seman-
tic Scholar, Web of Science, and ScienceDirect. These databases are recognized as credi-
ble and trusted academic sources with a wide coverage of relevant and up-to-date peer-
reviewed literature. PubMed was included in particular for its strong focus on medical
research, as well as its open-access availability. The search was limited to peer-reviewed
articles published in English between January 2016 and May 2025 to relevantly capture
recent advances in deep learning (DL) for dental imaging.

2.3 Search Strategy

The search strategy was built around four core conceptual areas: deep learning, 2D dental
radiography, periodontitis, and image recognition. Keywords were adapted and refined
using terms from existing systematic reviews, with modifications to include the latest ter-
minologies in DL-driven diagnostics (Table 1). Boolean operators and database-specific
filters were applied to refine the results and eliminate irrelevant records (Table 2).

Table 1: Search keywords
Core Concept Keywords

Deep Learning “Deep Learning” OR “Deep Neural Network” OR “Convolu-
tional Neural Network” OR “Recurrent Neural Network” OR
“CNN” OR “RNN” OR “YOLO” [19]

2D Dental Radiography “Dental Radiography” OR “Dental Image” OR “Dental X-Ray”
OR “Panoramic” OR "“eriapical” OR “Bitewing” [20]

Periodontitis “Periodontitis” OR “Periodontal Disease” OR “Periodontal Bone
Loss” OR “Alveolar Bone Loss” [21, 22]

Image Recognition “Detection” OR “Classification” OR “Recognition” OR “Segmen-
tation”
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2.4 Eligibility Criteria

Inclusion criteria were defined to ensure the relevance and quality of the selected studies.
Articles were included if they: (1) applied deep learning techniques to analyze 2D den-
tal radiographic images; (2) aimed at detecting or diagnosing periodontitis; (3) reported
on diagnostic performance using quantitative metrics; (4) focused on human subjects and
clinical imaging; and (5) published in English in peer-reviewed journals or reputable con-
ference proceedings. Studies were excluded if they: (1) employed 3D imaging modalities
(e.g., CBCT or MRI); (2) did not utilize deep learning methods or provided insufficient
model detail; (3) did not explicitly address the diagnosis of periodontitis (focused solely on
other oral diseases); or (4) were reviews, editorials, or opinion articles.

2.5 Selection Process

The study selection process was conducted in four distinct phases according to the PRISMA
2020 guidelines: identification, screening, eligibility, and inclusion [18]. The PRISMA stan-
dardized checklist ensures a transparent and traceable flow of the literature selection pro-
cess by specifying which databases and keywords were used, what time range was cov-
ered, how many studies were found, screened and excluded along with the reasons, thus
ensuring reproducibility in future research.

Initially, records were identified by applying the predefined search strategy in five elec-
tronic databases, as mentioned in the Information Sources section. All retrieved citations
were imported into a reference management system, and duplicates were systematically
removed in the identification phase. In the selection phase, the titles and abstracts of the
remaining records were reviewed to assess their relevance with the inclusion and exclusion
criteria. Studies that did not meet the criteria were excluded. The Full-text versions of the
articles that met the criteria were then retrieved for eligibility assessment. Each article was
evaluated to determine whether it met all inclusion criteria, was relevant to the research
question, applied DL approaches on 2D dental radiographs, and provided quantitative
diagnostic performance outcomes. Finally, studies that met all all criteria were included
in the qualitative synthesis. The entire selection process was documented and presented
using a PRISMA flow diagram in the Results section.

Table 2: Search queries (April 2025)

Database Queries (April 2025) n

Scopus (“Deep Learning” OR “Deep Neural Network” OR “Con-
volutional Neural Network” OR “Recurrent Neural Net-
work” OR “CNN” OR “RNN” OR “YOLO”) AND (“Den-
tal Radiography” OR “Dental Image” OR “Dental X-Ray”
OR “Panoramic” OR “Periapical” OR “Bitewing”) AND
(“Periodontitis” OR “Periodontal Disease” OR “Periodon-
tal Bone Loss” OR “Alveolar Bone Loss”) AND (“Detec-
tion” OR “Classification” OR “Recognition” OR “Segmen-
tation”)

100
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Database Queries (April 2025) n

PubMed (“Deep Learning” OR “Deep Neural Network” OR “Con-
volutional Neural Network” OR “Recurrent Neural Net-
work” OR “CNN” OR “RNN” OR “YOLO”) AND (“Den-
tal Radiography” OR “Dental Image” OR “Dental X-Ray”
OR “Panoramic” OR “Periapical” OR “Bitewing”) AND
(“Periodontitis” OR “Periodontal Disease” OR “Periodon-
tal Bone Loss” OR “Alveolar Bone Loss”) AND (“Detec-
tion” OR “Classification” OR “Recognition” OR “Segmen-
tation”)

58

Semantic Scholar (“Deep Learning” OR “Deep Neural Network” OR “Con-
volutional Neural Network” OR “Recurrent Neural Net-
work” OR “CNN” OR “RNN” OR “YOLO”) AND (“Den-
tal Radiography” OR “Dental Image” OR “Dental X-Ray”
OR “Panoramic” OR “Periapical” OR “Bitewing”) AND
(“Periodontitis” OR “Periodontal Disease” OR “Periodon-
tal Bone Loss” OR “Alveolar Bone Loss”) AND (“Detec-
tion” OR “Classification” OR “Recognition” OR “Segmen-
tation”)

73

Web of Science (“Deep Learning” OR “Deep Neural Network” OR “Con-
volutional Neural Network” OR “Recurrent Neural Net-
work” OR “CNN” OR “RNN” OR “YOLO”) AND (“Den-
tal Radiography” OR “Dental Image” OR “Dental X-Ray”
OR “Panoramic” OR “Periapical” OR “Bitewing”) AND
(“Periodontitis” OR “Periodontal Disease” OR “Periodon-
tal Bone Loss” OR “Alveolar Bone Loss”) AND (“Detec-
tion” OR “Classification” OR “Recognition” OR “Segmen-
tation”)

92

Science Direct (“Deep Learning” OR “Neural Network”) AND
(“Panoramic” OR “Periapical” OR “Bitewing”) AND
(“Periodontitis” OR “Bone Loss”) AND (“Detection” OR
“Classification”)

108

2.6 Data Extraction

Data extraction was conducted systematically using a predefined extraction framework to
ensure consistency and reproducibility in all included studies. The template was developed
based on systematic reviews involving artificial intelligence (AI) applications in medical
imaging.

Bibliographical data captured included the study ID (including citation and author-
ship), year of publication, and the country in which the research was conducted. To evalu-
ate data provenance, data availability and data quality, data sources were noted and clas-
sified by origin, such as universities, hospitals, university hospitals, clinics, dental schools,
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public datasets, or if no mention was made at all. For imaging modalities, the type of im-
age was recorded as panoramic, periapical, or bitewing radiographs. The sample size of
the data set was also extracted to assess the scale and robustness of the experiments, along
with the data split ratio used to separate the datasets into training, validation, and testing
subsets. Additionally, data augmentation techniques, such as image rotation, flipping, con-
trast adjustment, or noise injection, were also noted to understand each study’s strategy in
addressing data availability limitations.

Detailed information on each study’s DL model architecture was also recorded, such
as CNN, ResNet, U-Net, and other custom-designed frameworks. Associated computer
vision tasks for diagnosis, whether classification, object detection, or segmentation, were
identified to capture the purpose of the DL application. Comparisons were made between
the output of the DL model and the evaluations of the clinicians, where applicable, to as-
sess the clinical relevance of the real-world. In addition, information on model validation
methods, such as k-fold cross-validation, hold-out split, or external validation, was also
extracted to assess the reproducibility of the research. Finally, the performance metrics of
each study were extracted, such as accuracy, sensitivity, specificity, precision, recall, F1-
score, and area under the receiver operating characteristic curve (AUC-ROC), depending
on the type of task.

The data collected were then analyzed and organized into summary tables. This allows
for comparisons and identifications of trends, patterns, usages, and approaches across in-
cluded studies.

2.7 Performance Evaluation Metrics

The models’ performance in DL-related studies commonly evaluated using standard quan-
titative metrics such as accuracy (1), precision (or positive predictive value, PPV) (2), recall
(or sensitivity) (3), specificity (4), negative predictive value (NPV) (5), and F1-Score (6).
These metrics are calculated using the derivative form of the confusion matrix. Four com-
ponents in performance metrics, true positive (TP), false positive (FP), true negative (TN),
and false negative (FN), are used as a basis for more meaningful metrics. A prediction
is considered a TP when the model correctly identifies a positive case as being positive,
whereas FP occurs when the actual value is negative, resulting in a false positive predic-
tion. Similarly, TN and FN follow the same logic as their positive counterparts but apply
when the actual value is negative.

Accuracy measures how close the overall predictions of the model are to being correct.
Precision measures the proportion of correctly identified positives, which is useful when
the cost of false positive is high (e.g., falsely predicting a healthy tooth as having periodon-
titis introduces unnecessary cost of further treatments). While recall compares correctly
predicted positives to all actual positives, specificity compares correctly predicted nega-
tives to all actual negatives. Prioritizing recall in early screening tasks can be advantageous
as missed positive cases could lead to more severe consequences (e.g. missing a decay-
ing tooth may allow disease progression leading to other complications, so it is favorable
to treat uncertain cases as potential positives). In confirmatory cases, where false alarms
could be costly (e.g., false diagnosis of oral cancer causes unnecessary stress to the patient),
specificity plays an important role. NPV calculates correctly predicted negatives in pro-
portion to all predicted negatives, and high NPV indicates strong confidence in negative
predictions. To help balance between maximizing true detection (recall) and minimizing
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overcalling positives (precision) in cases where missed diagnosis and overtreatment can be
expensive, the F1-Score is a valuable metric worth considering.

Accuracy =
TP+ TN

TP+ TN+ FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Specificity =
TN

TN+ FP
(4)

NPV =
TN

TN+ FN
(5)

F1-Score = 2× Precision × Recall
Precision + Recall

(6)

For segmentation tasks, the quality of the delineation can also be measured using the
dice similarity coefficient (DSC) (7), the Jaccard similarity index (or intersection over union,
IoU) (8) and the pixel accuracy (PA) (9). The DSC can be used as a metric to indicate how
strong the agreement between the predicted annotation and the ground truth is. With cor-
rectly detected areas receiving more weight, DSC can be sensitive to small irregular struc-
tures, which can be a valuable metric for cases such as subtle lesions detection. Unlike DSC,
which favors only the correct predictions, IoU also applies strict penalty for extra areas that
do not actually belong to the original object of interest. IoU is often preferred when the pre-
cise localization is crucial because both under- and over-segmentation contributes to lower
value. However, PA, like the name itself, measures the proportion of correctly classified
pixels to all pixels in an image. Although PA can be a reflection of the overall segmentation
correctness of the model, it can be biased when the image contains large background areas,
which are easy to classify. Therefore, PA is usually interpreted alongside other metrics like
DSC or IoU.

DSC = 2× |Prediction ∩ Ground Truth|
|Prediction|+ |Ground Truth|

(7)

IoU =
|Prediction ∩ Ground Truth|
|Prediction ∪ Ground Truth|

(8)

PA =
Correctly predicted pixels

Total pixels
(9)

3 Results

3.1 Study Selection

A total of 431 records were initially identified through comprehensive searches in five aca-
demic databases: Scopus (100), PubMed (58), Semantic Scholar (73), Web of Science (92) and
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Figure 1: PRISMA flow diagram.

ScienceDirect (108). After the removal of 207 duplicates, 224 unique records remained for
screening. During the screening phase, 188 records were excluded based on the evaluation
of the title and abstract because they did not meet the predefined inclusion criteria.

Subsequently, the full texts of 36 articles were assessed for eligibility. 3 full-text articles
could not be retrieved despite attempts to contact the corresponding authors. Of the re-
trieved studies, 4 were excluded during eligibility assessment, 2 studies focused only on
comparative analysis between deep learning (DL) algorithms without addressing diagnos-
tic feasibility, 1 study was excluded due to poor methodological quality with the dataset
consisting only of 40 images, and 1 study used a very customized hourglass network archi-
tecture without adequate generalizability.

As a result, 27 studies reported across 29 reports were included in the final synthesis.
Two studies were reported in multiple publications and were excluded, hence the differ-
ence between the number of studies and reports (Table 4). The detailed process of identifi-
cation, screening, eligibility, and inclusion is presented in the PRISMA 2020 flow diagram
Figure 1.
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3.2 General Characteristics

The selected studies were published between 2016 and 2025, with an increase in studies
published after 2020, indicating a growing interest in combining medical imaging and arti-
ficial intelligence (AI). Geographically, studies were conducted in different countries. Most
originated from East Asia, like South Korea and China, followed by the United States, Euro-
pean regions such as Spain and the United Kingdom, and Middle Eastern regions, includ-
ing Saudi Arabia (Table 4). This distribution highlights a global recognition of the potential
for AI integration in dental diagnostics, although variations in imaging standards, clinical
practices, and data accessibility may affect study outcomes.

3.3 Imaging Modalities

The studies included in this review utilized a variety of 2D dental radiographic modalities,
with panoramic radiographs the most widely used, followed by periapical and bitewing
radiographs. Several studies focused only on one type of image, while a few combined
multiple modalities (Table 4). The choice of radiograph type was based on the diagnos-
tic objective. Each modality has different advantages in the visualization of periodontal
structures and contributes differently to the development and performance of diagnostic
algorithms.

Panoramic radiographs (Figure 2 (c)) provide a broad overview of the entire jaw in a
single image. They are commonly used in early screening because of their wide field of
view, allowing the detection of bone changes throughout the mouth. However, they are
prone to certain limitations, such as image distortion, overlapping anatomical features,
and lower resolution, thus compromising their precision. Periapical radiographs (Figure 2
(b)), on the other hand, offer focused, high-resolution views of individual teeth and sur-
rounding bone structures. They are often used in studies focusing more on the precise
detection of periodontal defects such as vertical bone loss and FI. The clarity and precision
make them suitable for segmentation tasks in DL, where accurate identifications of small
changes are essential. Bitewing radiographs (Figure 2(a)), although less frequently used
in the reviewed studies, also serve as an important modality for early detection of bone
loss and interproximal defects. They are commonly used in routine dental checks and are
typically tasked with classifications focused on posterior regions. Although their coverage
is limited compared to panoramic or periapical views, bitewings provide high-resolution
images in interproximal spaces, making them valuable for focused assessments and, thus,
could complement other modalities when integrated into multimodal diagnostic models.

3.4 Dataset Attributes

The sample sizes between studies varied greatly, ranging from fewer than 500 to over sev-
eral thousand image samples, demonstrating the difference in data resources and acces-
sibility. Many studies addressed limitations in dataset size by adding data to improve
generalizability and prevent overfitting. Dataset sources were acquired primarily from
university hospitals, dental schools, and clinical institutions (Table 4). Some studies used
publicly available datasets, while some studies did not clearly specify their data source,
which may affect the reproducibility and comparability of results found in the literature.
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Figure 2: (a) Bitewing, (b) Periapical, (c) Panoramic Radiograph [23].

3.5 Deep Learning Models

The studies included in this review utilized a variety of DL architectures, as summarized
in Table 3, to perform diagnostic tasks on 2D dental radiographs. Across the 27 studies, the
most frequently applied model was from the CNN (Convolutional Neural Network) family,
appearing in 8 out of 27 reviewed studies, either in the base form or in more specialized ar-
chitectures such as VGG (Visual Geometry Group), ResNet (Residual Network), Inception,
and customized CNN variants. With the appearance in also 8 studies, YOLO (You Only
Look Once) architectures (v4-v9) were also equally popular in studies involving periodon-
titis cases because of their evolving capabilities from pure object detection to include also
segmentation since YOLOv5. For segmentations, U-Net was the most used model, appear-
ing in 7 studies. Another segmentation architecture, Mask R-CNN, belongs to the R-CNN
(Region-based CNN) family, was reported in 5 studies, while Faster R-CNN and Keypoint
R-CNN, both for object detection, were found in 3 studies. Emerging transformer-based
models, such as SegFormer and Vision Transformer (ViT), were only used in 2 studies.
Additionally, hybrid or ensemble approaches combining CNN with traditional machine
learning (ML) classifiers or multi-model pipelines appeared in 4 studies.

CNN consists of components including convolutional layers, pooling layers, and fully
connected layers (Figure 3). Convolutional layers apply filters to extract features, pooling
layers reduce spatial dimensions, and fully connected layer interpret the extracted features.
These models were used primarily for classification tasks, including binary and multiclass
classifications. CNN-based classifiers have been reported to have reliable performance
with accuracy scores around 80% [24, 25].
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Table 3: Model appearance in studies
Model Category Models Number of Studies

CNN-based CNN, VGG-16, ResNet-18, AlexNet, GoogLeNet,
Inception v3, VGG19, HYNETS, PDCNN, PAR-
CNN

8

YOLO YOLOv4, YOLOv5, YOLOv8, YOLOv9 8
U-Net U-Net 7
Object Segmentation Mask R-CNN 5
Object Detection Faster R-CNN, Keypoint R-CNN 3
Transformer-based SegFormer, ViT 2
Hybrid / Ensemble CNN + traditional classifiers

(RF/SVM/NB/LR/KNN), Mask R-CNN +
XGBoost, Mask R-CNN + U-Net

4

Figure 3: CNN architecture visualization [24].

VGG-16 (Visual Geometry Group with 16 layers), one of the variants of CNN, was fre-
quently implemented for both classification and detection. It consists of 16 layers, includ-
ing 13 convolutional layers and 3 fully connected layers, with small 3×3 filters to capture
complex patterns while still maintaining a manageable number of parameters (Figure 4).
In studies in which the main task was binary classification (differentiating between healthy
and diseased teeth), VGG-16 was reported to have a satisfactory precision of approximately
73%, supported with moderate agreement with periodontists. However, performance de-
clined to around 59% when dealing with multiclass classifications such as periodontitis
severity classification (normal, mild, moderate, severe) [1].

ResNet (Residual Network) is another specialized architecture of CNN that supports
deeper network stacks through residual connections, some commonly used versions being
ResNet-18, ResNet-50 (Figure 5), and ResNet-101. Introduce skip connections that allow
the input to bypass layers and be added directly to the output (Figure 6), which helps pre-
serve gradients during backpropagation, making it possible to train networks with hun-
dreds of layers. These models performed very well in classification tasks, with trade-offs
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Figure 4: VGG-16 architecture visualization [26].

Figure 5: ResNet-50 architecture visualization [28].

between computational efficiency and accuracy. ResNet-18, pre-trained on ImageNet, has
been reported to have yielded an accuracy, sensitivity, and specificity of more than 95% and
achieved AUC values greater than 0.98 in binary classification tasks [27]. These numbers
show that even the shallower ResNet model demonstrates high accuracy in detecting and
staging periodontitis when combined and fine-tuned with transfer learning.

For segmentation tasks, U-Net has been featured in numerous studies that focus on
the pixel-level localization of periodontal structures. It is made of a symmetric encoder-
decoder structure (Figure 7), in which the encoder captures the context through series of
convolution and pooling layers, while the decoder enables localization using up sampling
and convolution layers. The U-Net-based models were able to outperform other archi-
tectures in segmentation tasks, achieving Dice similarity coefficients above 0.91 and the
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Figure 6: Skip connection in ResNet.

Jaccard index above 0.87 [29, 30], making them ideal for highlighting bone contours at the
pixel-level.

YOLO (You Only Look Once) was another commonly used architecture in studies with
object detection as its primary task. YOLO differs from traditional two-stage architectures,
like R-CNN (Region-based CNN) or Faster R-CNN, by treating detection as a single re-
gression problem, which allows it to process an entire image in one pass. Divide the input
image into grids and simultaneously predict multiple bounding boxes and class proba-
bilities for each grid cell. Like ResNet, YOLO also has different versions developed over
time, some commonly used versions found in the studies were YOLOv5 and YOLOv8 (Fig-
ure 8). With segmentation ability supported since YOLOv5, models that incorporate the
architecture were able to demonstrate high localization precision, reflected by the mean
mean average precision (mAP) values between 0.85 and 0.95 [5,30]. However, these models
also have trade-offs between speed and accuracy, thus generally less effective in multiclass
classification tasks compared to a two-stage detector like ResNet or VGG but suitable for
studies that emphasize clinical applicability and speed.
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Figure 7: U-Net architecture visualization [31].

Some studies also implemented Mask R-CNN, another advanced two-stage framework
that combines object detection with pixel-level segmentation. It builds on Faster R-CNN
with the addition of a parallel branch to predict segmentation masks (Figure 9). The ar-
chitecture uses a CNN backbone, such as ResNet, to extract features, a region proposal
network (RPN) to generate object proposals, and a RoIAlign, which extracts features from
each region of interest (RoI). In the reviewed studies, Mask R-CNN achieved strong seg-
mentation performance, with reported Dice scores of up to 0.88 [32]. Its ability to perform
instance segmentation makes it particularly well-suited for applications where multiple
anatomical structures must be independently assessed.

Several studies developed custom or hybrid architectures, sometimes integrating mul-
tiple subnets or combining CNN backbones with attention mechanisms or custom heads.
Despite the high performance, exceeding 80% in accuracy [33], they frequently lacked
transparent implementation details, which makes it harder to reproduce.

Transfer learning was a strategy commonly used across various models, especially
when working with relatively small datasets. This approach is also often found in studies
that leveraged pre-trained models such as ResNet and VGG. By using pre-trained weights,
such as ImageNet, studies were able to enhance performance, particularly in cases involv-
ing limited training data or class imbalance.

Which model to be used should consider diagnostic task requirements: CNN and
ResNet for classification, U-Net and Mask R-CNN for segmentation, YOLO and Faster R-
CNN for detection, and VGG-16 for hybrid use cases. Despite the capabilities and growing
applications of DL in dental radiology, standardized benchmarks and open-source valida-
tions are still needed to ensure comparability between studies.
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Figure 8: YOLOv8 architecture visualization.

Figure 9: Mask R-CNN architecture visualization [33].
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3.6 Diagnostic Tasks

Diagnostic objectives in all studies were categorized into three computer vision tasks,
namely classification, segmentation, and object detection (Table 4). Classification tasks,
which are the most frequently observed, focused on identifying the presence or severity of
periodontitis. These models typically reported performance using metrics such as accuracy,
precision (or positive predictive value, PPV), recall (or sensitivity), specificity, negative pre-
dictive value (NPV), F1-score, area under the receiver operating characteristic curve (AUC)
and occasionally cross-entropy loss. Segmentation tasks focused mainly on defining patho-
logical features, such as loss of alveolar bone. Studies performing segmentation frequently
reported the Dice similarity coefficient (DSC), Jaccard index (or intersection over union,
IoU), and pixel accuracy (PA) as key performance indicators. A smaller subset of studies
implemented object detection models, such as YOLO variants, to localize specific regions of
interest, such as periodontal pockets or vertical bone defects, within radiographic images.
These models often used metrics such as average precision (AP), mean average precision
(mAP), average recall (AR), mean average recall (mAR) and frame per second (FPS) for
evaluation. Although several studies focused on a single vision task, others combined
multiple approaches, such as segmentation followed by classification, to improve diagnos-
tic performance.

3.7 Clinician Comparisons

Some studies compared the performance of DL models with the clinician-based diagnosis
to assess the clinical applicability of the suggested systems. The diagnostic outputs of the
models were evaluated against interpretations provided by general dentists or periodon-
tists using the same radiographic datasets. The results generally indicated that the DL
models were comparable and even superior to human experts in some cases related to the
detection of periodontitis. Some studies used accuracy, sensitivity, and specificity compar-
isons, while others applied inter-agreement analyzes. However, comparative evaluations
were not universally conducted, which therefore limits the generalizability of the findings.

Table 4: Selected studies

First
Author
(Country,
Year)

Datasets DL
Model

Task Clinician
Com-
pare

Validation
Method

Performance
Metrics

Alotaibi
(Saudi
Arabia,
2022) [1]

University
Dataset (1724
periapical
images; aug-
mented; 70-20-
10)

VGG-
16

Detection Yes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score
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First
Author
(Country,
Year)

Datasets DL
Model

Task Compare Validation
Method

Performance
Metrics

Ameli
(Italy,
2024) [34]

Private Clinical
Dataset &
Dental School
(1000 periapi-
cal images;
augmented;
80-10-10 for BL
segmentation
& 70-20-10 for
Apex detection;
additional 1582
images for test)

U-
Net &
YOLOv9

Segmentation
& Classifi-
cation

Yes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
Jaccard,
mAP

Chang
(Korea,
2020) [2]

University Hos-
pital Dataset
(340 panoramic
images; aug-
mented; 90-10)

Mask
R-CNN
& con-
ven-
tional
CAD

Detection Yes Train-test
split

Jaccard,
Dice, PA

Chen (Tai-
wan, 2024)
[35]

University Hos-
pital Dataset
(336 periapi-
cal images;
augmented)

Mask
R-CNN
&
U-Net

Detection Yes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
Specificity,
NPV, AUC

Dai (China,
2024) [36]

University Hos-
pital Dataset
(11120 peri-
apical images;
60-15-25)

Alexnet
/
VGG16
/
ResNet18
with
RF /
SVM /
NB /
LR /
KNN

ClassificationYes Hold-out
valida-
tion

Accuracy,
Recall /
Sensitivity,
Specificity,
AUC

Erturk
(Turkey,
2025) [13]

University
Dataset (1752
bitewing im-
ages; aug-
mented; 80-20)

YOLOv8 ClassificationYes 5-fold
cross-
validation

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score
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First
Author
(Country,
Year)

Datasets DL
Model

Task Compare Validation
Method

Performance
Metrics

Jiang
(China,
2022) [4]

University Hos-
pital Dataset
(640 panoramic
images; aug-
mented; 80-20)

UNet &
YOLO-
v4

ClassificationYes Train-test
split

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
Specificity,
AP

Jundaeng,
J. (Thai-
land,
2024) [5]

Hospital
Dataset (2000
panoramic im-
ages; 70-10-20)

YOLOv8 ClassificationYes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
Specificity,
mAP

Kabir
(USA,
2021) [29]

700 periapi-
cal images;
augmented;
70-10-20

HYNETS ClassificationYes Hold-out
valida-
tion

AUC, Jac-
card, Dice,
PA

Kong
(China,
2023) [8]

University
Hospital
Dataset (1747
panoramic
images; aug-
mented; 70-10-
20)

PDCNN Detection No Hold-out
valida-
tion

Accuracy,
mAP, FPS

Kurt-
Bayrakdar
(Turkey,
2024) [31]

University
Dataset (1121
panoramic im-
ages; 80-10-10)

U-Net Detection Yes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
AUC

Lee (USA,
2022) [30]

693 periapical
images; 70-10-
20; additional
644 images for
evaluation

U-Net ClassificationYes External
dataset

Accuracy,
Recall /
Sensitivity,
Specificity,
AUC, Jac-
card, Dice,
PA
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First
Author
(Country,
Year)

Datasets DL
Model

Task Compare Validation
Method

Performance
Metrics

Li (China,
2020) [32]

Hospital
Dataset &
University Hos-
pital Dataset
(298 panoramic
images; addi-
tional 62 images
for test)

Mask
R-CNN
& XG-
Boost

ClassificationYes 3-Fold
random
cross-
validation

Accuracy,
F1 Score,
Dice, mAP

Lin (Tai-
wan,
2024) [37]

Hospital
Dataset (281
periapical
images for
YOLOv8 &
194 periapical
images for
Mask R-CNN;
augmented)

YOLOv8
& Mask
R-CNN

Detection Yes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
mAP

Q. Liu
(China,
2023) [24]

University
Hospital
Dataset (1924
panoramic im-
ages; 66-20-14)

PAR-
CNN

Detection Yes Hold-out
valida-
tion

Accuracy,
Recall /
Sensitivity,
Specificity

Y. Liu
(China,
2025) [33]

University
Dataset (238
panoramic
images; Not
specified)

Mask
R-CNN
&
U-Net

Segmentation
& Classifi-
cation

No External
dataset

Accuracy,
AP, AR

Mao (Tai-
wan,
2023) [38]

368 periapi-
cal images;
augmented;
70-30

CNN
with
GoogLeNet/AlexNet/Inception
v3/VGG19

Detection No Train-test
split

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score

Ryu
(Korea,
2023) [39]

University
Hospital
Dataset (4083
panoramic
images; aug-
mented)

Faster
R-CNN

Detection Yes 5-fold
cross-
validation

Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
AUC
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First
Author
(Country,
Year)

Datasets DL
Model

Task Compare Validation
Method

Performance
Metrics

Shon
(Korea,
2022) [40]

University
Hospital
Dataset (4097
panoramic
images; aug-
mented)

U-
Net &
YOLOv5

ClassificationYes Not spec-
ified

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score

Thana-
thornwong
(Thailand,
2020) [41]

Hospital
Dataset (100
panoramic im-
ages; 70-10-20)

Faster
R-CNN

Detection Yes 5-fold
cross-
validation

Recall /
Sensitivity,
F1 Score,
Specificity

Tsoromokos
(The
Nether-
lands,
2022) [25]

University
Dataset (446 pe-
riapical images;
augmented)

CNN Detection No Hold-out
valida-
tion

Accuracy,
Recall /
Sensitivity,
Specificity

Uzun
Saylan
(Turkey,
2023) [3]

University
Dataset (685
panoramic im-
ages; 80-10-10)

YOLO-
v5

Detection Yes Cross
valida-
tion

Precision
/ PPV,
Recall /
Sensitivity,
F1 Score

Vilkomir
(USA,
2024) [27]

University
Dataset (1078
periapical
images; aug-
mented)

ResNet-
18

ClassificationYes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
Specificity,
NPV, AUC

Vollmer
(Germany,
2023) [42]

Public Dataset
& Hospital
Dataset (1414
panoramic
images; aug-
mented)

Keypoint
R-CNN

Detection No External
dataset

mAP, mAR

Yavuz
(Turkey,
2024) [14]

University
Dataset (1120
periapical &
1498 bitewing
images; 80-10-
10)

YOLOv8-
cls

ClassificationYes Hold-out
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
Specificity

Yu (China,
2024) [43]

705 panoramic
images; aug-
mented; 80-10-
10

SegFormerSegmentation
& Classifi-
cation

No Hold-out
valida-
tion

F1 Score,
Jaccard
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First
Author
(Country,
Year)

Datasets DL
Model

Task Compare Validation
Method

Performance
Metrics

Zhang
(China,
2025) [9]

Hospital
Dataset (506
panoramic
images; aug-
mented)

Vision
Trans-
former
(ViT)

ClassificationYes Cross
valida-
tion

Accuracy,
Precision
/ PPV,
Recall /
Sensitivity,
F1 Score,
Cross
Entropy

3.8 Validation Approaches

Validation strategies also varied among the reviewed studies. Most used internal val-
idation techniques, with common approaches including train-test splits (e.g. 70:20:10
or 80:10:10) and k-fold cross-validation to ensure more reliable performance on limited
datasets. Studies conducted validation using independent datasets from different sources
are rare, even though they are more relevant to real-world settings. Additionally, no stud-
ies actually implemented real-time deployment or workflow integration (Table 4). This
highlights a gap between algorithm development and practical implementation. External
validation and real-time integration are essential for transitioning the system using the DL
approach from experimental settings to everyday clinical practice.

3.9 Quality Assessment

The quality of the reviewed studies was evaluated using the QUADAS-AI tool (Quality
Assessment of Diagnostic Accuracy Studies-Artificial Intelligence), which evaluates four
domains, including Patient Selection, Index Test (AI model), Reference Standard, and Flow
and Timing. Each domain was rated as Low (L), Moderate (M), High (H), or Unclear (U)
risk of bias according to the following criteria mentioned in Table 5. The QUADAS-AI is
adapted from the widely used QUADAS-2 framework. It is designed to assess the risk
of bias and methodological quality with additional considerations for studies that involve
AI-based systems.

Based on these criteria, 11 studies demonstrated an overall low risk of bias, 15 studies
showed a moderate risk, 1 study was rated as unclear, and no study had a high risk of bias
(Table 6). Common sources of bias were caused by incomplete reporting of the characteris-
tics of the dataset, small sample sizes, and limited details of model validation. The single
unclear case also further reflects the importance of using a standardized procedure for the
annotation process.
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Table 5: Domain risk criteria
Domain Rate Criteria

Patient Selection Low (L) Clear dataset, appropriate inclusion/exclusion, no
data leakage.

Moderate (M) Minor sampling bias, such as limited dataset size.
High (H) Clear selection bias, train-test overlap.
Unclear (U) Dataset source or split not described.

Index Test (AI
Model)

Low (L) Clear explanation of model architecture, prepro-
cessing, and evaluation method with independent
test set.

Moderate (M) Minor details missing.
High (H) Model tuned or re-trained on test data, unclear

evaluation.
Unclear (U) Model or methods not explained clearly.

Reference Standard Low (L) Expert labelling, clear and standardized criteria,
independent of AI results.

Moderate (M) Experts involved but with unclear criteria or con-
sistency.

High (H) Non-expert labelling, reference affected by AI.
Unclear (U) Expertise or labeling processes not reported.

Flow & Timing Low (L) Justified exclusions, proper validation.
Moderate (M) Minor issues, such as small test set or limited vali-

dation.
High (H) Major issues, such as reused patients, unexplained

exclusions, and no validation.
Unclear (U) Data flow or validation process not described.

Overall Risk Low (L) Most domains rated Low.
Moderate (M) Mix of Low and Moderate rates.
High (H) More than 1 domain rated High.
Unclear (U) More than 1 unclear domain.

4 Discussion

This systematic review synthesized recent research on the application of deep learning
(DL) models to diagnose periodontitis using 2D dental radiographic images. The analysis
revealed that DL models, particularly CNN-based architectures, demonstrate strong diag-
nostic potential in tasks such as classification, segmentation, and object detection. Most
models reported high performance in binary classification tasks, with accuracy frequently
exceeding 85%, and segmentation models, particularly U-Net and Mask R-CNN, achieved
Dice coefficients above 0.85. These findings suggest that DL systems can effectively support
the assessment of periodontal disease.

A key strength of the current research is the diversity of the DL architecture used. The
Convolutional Neural Network (CNN) served as a foundational model in many studies,
while more advanced networks such as ResNet captured more detailed image features for
severity classification. U-Net and Mask R-CNN proved effective in segmentation tasks, and
YOLO and Faster R-CNN were advantageous for real-time detection, which is practical for

JURNAL INFOTEL, VOL. 17, NO. 4, NOVEMBER 2025, PP. 892–919.



914 LOMANTO et al.

Table 6: Quality assessment
First Author (Country, Year) Patient

Selection
Index
Test (AI
Model)

Reference
Standard

Flow&
Timing

Overall
Risk

Alotaibi (Saudi Arabia, 2022)
[1]

L L L L L

Ameli (Italy, 2024) [34] L L L U L
Chang (Korea, 2020) [2] M L M M M
Chen (Taiwan, 2024) [35] M L L M M
Dai (China, 2024) [36] L M L L M
Erturk (Turkey, 2025) [13] L M L L L
Jiang (China, 2022) [4] L L H U L
Jundaeng (Thailand, 2024)
[5]

L L L L L

Kabir (USA, 2021) [29] L L U M M
Kong (China, 2023) [8] M M L M M
Kurt-Bayrakdar (Turkey,
2024) [31]

L L L M L

Lee (USA, 2022) [30] U L L M M
Li (China, 2020) [32] M L L M M
Lin (Taiwan, 2024) [37] M M L M M
Q. Liu (China, 2023) [24] L L L L L
Y. Liu (China, 2025) [33] M L L M M
Mao (Taiwan, 2023) [38] U L L H M
Ryu (Korea, 2023) [39] H M L M M
Shon (Korea, 2022) [40] H M L M M
Thanathornwong (Thailand,
2020) [41]

M L L M M

Tsoromokos (The Nether-
lands, 2022) [25]

M L L M M

Uzun Saylan (Turkey, 2023)
[3]

L L L M L

Vilkomir (USA, 2024) [27] L L L M L
Vollmer (Germany,
2023) [42]

L L L M L

Yavuz (Turkey, 2024) [14] L M L M M
Yu (China, 2024) [43] L L L M M
Zhang (China, 2025) [9] L L L M M

clinical workflow integrations. However, due to variations in the size, types of images,
evaluation metrics, and validation protocols of the data set, comparisons between studies
remain a very challenging issue.

Although many studies reported internal validation through train-test splits or k-fold
cross-validation, only a small number conducted external validation using independent
datasets. This limits the generalizability of the findings. Additionally, although some stud-
ies compared model output with clinician performance, they were inconsistent and lacked
standardization. The limited use of prospective validation and real-time deployment as-
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sessments further highlights the early experimental stage of DL integration in dental diag-
nostics.

Although transfer learning was widely utilized to overcome dataset limitations, many
studies did not clearly report model implementation details, training parameters, and an-
notation quality, therefore hindering reproducibility. Only a few studies discussed the use
of explainability or interpretability tools, a key component in building trust in healthcare
settings.

In Indonesia, the deployment of AI-based diagnostic systems must comply with the
national medical device framework governed by the Ministry of Health. Under “Undang-
undang Nomor 17 Tahun 2023 tentang Kesehatan” (Law No. 17 of 2023 on Health), soft-
ware with a medical purpose is recognized as a medical device, or Perangkat Lunak sebagai
Alat Kesehatan (Software as a Medical Device, SaMD). Such tools must undergo product
registration through the Regalkes system in accordance with “Peraturan Menteri Kesehatan
Nomor 62 Tahun 2017 tentang Izin Edar Alat Kesehatan” (Minister of Health Regulation
No. 62 of 2017 on Product Licensing of Medical Devices), which classifies devices by risk
(Class A-D). In addition to that, any diagnostic software that claims clinical utility is sub-
ject to “Peraturan Menteri Kesehatan Nomor 63 Tahun 2017 tentang Cara Uji Klinik Alat
Kesehatan yang Baik” (Minister of Health Regulation No. 63 of 2017 concerning Good
Clinical Evaluation Methods for Medical Devices), which require evidence of safety, effec-
tiveness, and clinical validation prior to approval. At present, Indonesia has no AI-specific
regulatory framework, but existing laws for AI in healthcare have the ability to provide
complementary regulation.

To advance this field, especially in Indonesia, future research should prioritize stan-
dardized benchmarking, robust multicenter external validation, transparent reporting of
model architectures, training methods, and annotation processes, as well as post-market
performance monitoring consistent with the regulations. Integration of explainable AI
techniques and deployment-focused studies will also be essential to transition from tech-
nical feasibility to clinical utility.

5 Conclusion

This review confirms the growing capability of deep learning (DL) models in diagnosing
periodontitis from 2D dental radiographs. In 27 studies, various architectures demon-
strated consistency in performance for classification, segmentation, and detection tasks.
CNN, ResNet, U-Net, YOLO, and Mask R-CNN are some of the most widely used and
effective models, each suited for specific diagnostic purposes. The use of transfer learning
further improved model performance in data-limited settings. Despite favorable outcomes,
the quality and diversity of the datasets, the bias of subjective labeling annotations, and the
variation of the evaluation methods hinder reproducibility and fair performance compari-
son. These factors limit the generalizability of the findings and their integration into real-
world practice. In addition, insufficient model explainability caused by lack of validation
under real patient conditions can reduce clinician’ trust and pose challenges to regulatory
approval.

For dentists, these findings indicate that AI-assisted (Artificial Intelligence) periodontal
assessment can improve efficiency and consistency, while also emphasizing the need for
careful validation before clinical application. For researchers and developers, the creation
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of standardized datasets, unbiased labeling, and interpretable computer-aided diagnostic
(CAD) systems are essential for robust and clinically relevant implementation. In conclu-
sion, while DL can effectively support periodontal diagnosis from radiographic images, its
successful adoption will depend on clear reporting standards, cross-disciplinary collabora-
tion, and a greater focus on clinical validation and interpretability. Future studies should
employ standardized and reproducible methods, as well as clinically relevant evaluation
frameworks.
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