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Abstract 
Digital banking services require cryptographic mechanisms that protect sensitive 

customer data while maintaining low latency and efficient resource utilization. This study 

evaluates the performance of RSA (asymmetric encryption) and AES (symmetric 

encryption) in securing digital banking transactions across two common scenarios: login 

authentication and fund transfer. The evaluation examines encryption time, decryption 

time, and memory usage during cryptographic processing. Experimental results 

demonstrate that AES achieves faster encryption than RSA, with 0.7% lower encryption 

time in the login scenario and 33.6% lower encryption time in the transfer scenario. For 

login decryption, AES is 65.3% faster than RSA and reduces memory consumption by 

65.5%. In contrast, during transfer decryption, AES introduces substantially higher 

latency, operating 12.2 times slower, which corresponds to a 1119.7% increase, and 

consumes 2112.7% more memory. These results suggest that AES is highly efficient for 

encryption and lightweight decryption tasks such as login, but transfer decryption 

performance may require further optimization to ensure consistent real-time 

responsiveness in digital banking environments. 
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Abstrak 
Keamanan transaksi pada layanan digital banking memerlukan mekanisme kriptografi 

yang mampu menjaga kerahasiaan data pengguna dan mempertahankan efisiensi sistem. 

Studi ini membandingkan kinerja algoritma RSA (asimetris) dan AES (simetris) dalam 

dua skenario utama perbankan digital, yaitu login dan transfer, dengan mengukur waktu 

eksekusi serta konsumsi memori untuk setiap proses pada RSA. Hasil pengujian 

memperlihatkan bahwa pada tahap enkripsi, AES memiliki performa lebih baik 

dibandingkan RSA, yaitu 0,7% lebih cepat pada skenario login dan 33,6% lebih cepat 

pada skenario transfer. Pada tahap dekripsi login, AES juga lebih efisien dengan 

kecepatan 65,3% lebih tinggi dibandingkan RSA, serta menurunkan konsumsi memori 

sebesar 65,5%. Namun, pada dekripsi transfer, AES menunjukkan latensi yang lebih 

tinggi, yaitu 12,2 kali lebih lambat dibandingkan RSA, disertai kenaikan konsumsi 

memori sebesar 2112,7%. Temuan ini mengindikasikan bahwa AES lebih unggul pada 

operasi enkripsi dan dekripsi sederhana seperti login, namun implementasi pada 

transaksi transfer memerlukan optimasi lebih lanjut untuk menjaga latensi tetap rendah. 

 

Kata Kunci: AES, RSA, digital banking, enkripsi, dekripsi, keamanan transaksi 

 

1. Pendahuluan 
Perkembangan teknologi mendorong perlunya mekanisme pengamanan data yang 

andal, terutama pada sistem komunikasi digital di jaringan terbuka. Dalam konteks ini, 

kriptografi memegang peranan penting dalam menjamin kerahasiaan, integritas, dan 

autentikasi data guna mencegah ancaman penyadapan, manipulasi, serta penyalahgunaan 

informasi [1]. Studi-studi sebelumnya menunjukkan bahwa tanpa penerapan kriptografi 

yang memadai, sistem informasi modern sangat rentan terhadap serangan keamanan, 

terutama pada layanan berbasis jaringan dan komunikasi real-time[2]. 
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Transformasi layanan perbankan ke kanal digital meningkatkan efisiensi transaksi 

sekaligus memperluas permukaan serangan siber. Proses seperti login, transfer dana, dan 

validasi saldo melibatkan data sensitif sehingga memerlukan enkripsi yang kuat dan 

efisien. Dalam praktik saat ini, sistem pembayaran umumnya mengombinasikan 

kriptografi simetris untuk perlindungan data karena kecepatan, serta kriptografi asimetris 

untuk pertukaran kunci atau tanda tangan karena mendukung distribusi kunci publik. 

Studi pada sistem payment gateway menunjukkan bahwa kombinasi RSA dan AES 

banyak digunakan untuk menjaga keamanan proses transaksi sekaligus mempertahankan 

kinerja layanan [3]. 

Kriptografi kunci publik merupakan salah satu pendekatan utama dalam pengamanan 

data karena memungkinkan distribusi kunci secara aman tanpa memerlukan saluran 

rahasia. Algoritma RSA merupakan contoh implementasi algoritma kriptografi yang 

populer hingga saat ini. RSA masih diterapkan secara luas pada berbagai sistem 

keamanan informasi, termasuk pengamanan pesan, pertukaran kunci, dan perlindungan 

data sensitif, karena memiliki dasar matematis yang kuat serta kemudahan implementasi 

relative [4][5]. Keamanan algoritma RSA bergantung pada tingkat kesulitan faktorisasi 

bilangan bulat besar. Selama permasalahan ini belum dapat diselesaikan secara efisien 

dengan komputasi klasik, RSA tetap dianggap aman untuk berbagai aplikasi praktis [6]. 

Oleh sebab itu, RSA terus menjadi objek penelitian dan pengembangan untuk 

meningkatkan ketahanan dan efektivitasnya terhadap ancaman keamanan yang semakin 

kompleks [7]. 

Advanced Encryption Standard atau AES Adalah contoh dari algoritma simetris yang 

populer untuk melindungi payload transaksi pada layanan digital banking karena mampu 

memberikan enkripsi cepat dengan biaya komputasi rendah. Dalam transaksi finansial, 

AES lazim digunakan untuk menjaga kerahasiaan data sensitif seperti nomor kartu, 

kredensial, dan detail transfer, baik saat penyimpanan maupun pengiriman, sehingga 

mendukung keamanan layanan tanpa menambah latensi secara signifikan [8]. Meskipun 

kuat secara desain, implementasi AES tetap harus memperhatikan risiko serangan kanal-

samping, sehingga penerapan praktik implementasi yang aman dan mitigasi menjadi 

faktor penting dalam sistem pembayaran modern [9]. 

Dalam praktik digital banking, AES umumnya digunakan untuk melindungi data 

transaksi ber-volume besar pada kanal API maupun penyimpanan seperti tabel transaksi, 

log, dan arsip audit. Survei terbaru menunjukkan bahwa AES masih menjadi landasan de 

facto dalam mengamankan komunikasi dan transaksi finansial karena efisiensi, dukungan 

akselerasi perangkat keras, serta fleksibilitas mode operasi. Pada sisi penyimpanan, 

evaluasi kinerja transparent data encryption berbasis AES pada beberapa DBMS 

menunjukkan overhead yang relatif kecil sehingga tetap kompatibel untuk layanan real-

time. Temuan terkait tantangan privasi dan keamanan siber dalam transformasi perbankan 

digital juga menempatkan enkripsi sebagai kontrol inti untuk menekan risiko kebocoran 

data nasabah dan penyalahgunaan informasi [10] [11]. 

Meskipun RSA dan AES sama-sama populer, keduanya memiliki karakteristik 

komputasi yang berbeda sehingga dampaknya terhadap latensi transaksi perlu dianalisis 

secara kuantitatif. Kemudian sebagian penelitian terdahulu lebih banyak menilai kinerja 

secara terpisah yaitu uji enkripsi dan dekripsi pada fungsi tertentu tanpa evaluasi end-to-

end pada alur client–server, atau tanpa adanya hasil metrik untuk waktu eksekusi dan 

konsumsi memori pada skenario transaksi yang berbeda Selain aspek kinerja, RSA juga 

memiliki risiko pada sisi implementasi apabila perlindungan eksekusi tidak memadai, 

misalnya terhadap serangan side channel berbasis konsumsi daya [12]. Penelitian ini 

berkontribusi dengan prototipe client–server yang membandingkan RSA vs AES secara 

end-to-end, dua skenario yang merepresentasikan beban kerja berbeda yaitu login dan 

transfer, serta pelaporan berupa matrix waktu dan memori untuk membantu pengambilan 

keputusan implementatif. 
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Kontribusi utama dari penelitian ini adalah menyediakan panduan pengambilan 

keputusan berbasis skenario. Algoritma AES direkomendasikan untuk operasi dengan 

payload kecil, seperti login, karena menawarkan latensi dan penggunaan memori yang 

lebih rendah. Untuk transfer payload yang lebih besar, diperlukan audit serta optimasi 

implementasi agar proses dekripsi tetap memenuhi kebutuhan real-time. Studi ini juga 

menyoroti pentingnya pelaporan metrik waktu dan memori secara bersamaan untuk 

menilai trade-off pada sistem dengan sumber daya terbatas. 

 

2. Metodologi Penelitian 
2.1. RSA (Rivest Shamir Aldeman) 

RSA adalah contoh dari salah satu kriptosistem yang menggunakan public key yang 

bekerja dengan aritmetika modulo berbasis bilangan bulat besar. Pada tahap 

pembangkitan kunci, dua bilangan prima besar  dan  dipilih untuk membentuk modulus 

. Parameter publik kemudian ditetapkan sehingga relatif prima terhadap 

, lalu nilai privat  dihitung sebagai invers modular dari 

terhadap . Dengan pasangan kunci sebagai kunci publik dan sebagai bagian 

utama kunci privat, RSA melakukan transformasi kriptografis melalui eksponensiasi 

modular. Dalam praktik, e sering dipilih bernilai 65537 karena memberikan efisiensi 

eksponensiasi yang baik tanpa mengorbankan keamanan secara signifikan [13]. Algoritma 

1 adalah implementasi dari pseudocode RSA.  

 

Algoritma 1: RSA – Pembentukan Kunci 

 

Proses enkripsi pada RSA dapat ditunukkan pada Algoritma 2. Inputan pada RSA 

berupa pasangan kunci publik dan pesan . Pesan terlebih dahulu 

direpresentasikan sebagai bilangan bulat yang nilainya lebih kecil dari , kemudian 

dienkripsi dengan cara dipangkatkan menggunakan eksponen publik dan diambil hasil 

modulo , sehingga diperoleh ciphertext . Proses ini menunjukkan bahwa 

siapa pun yang memiliki kunci publik dapat mengenkripsi pesan, tetapi belum tentu dapat 

membaca isinya. 

 

Algoritma 2: RSA – Enkripsi 

 

Pada Algorithm 3 menggambarkan proses kebalikan dari enkripsi. Masukan berupa 

pasangan kunci privat  dan ciphertext . Ciphertext tersebut dipangkatkan dengan 

eksponen privat dan diambil hasil modulo , sehingga menghasilkan kembali pesan asli 

. Secara matematis, nilai dipilih sedemikian rupa sehingga operasi 

pemangkatan dengan akan membatalkan efek pemangkatan dengan . Maka dari itu, 

hanya orang yang mempunyai private key yang dapat melakukan dekripsi dan 

memperoleh kembali pesan asli, yang menjadi inti dari keamanan algoritma RSA. 

Input: ukuran kunci kBits 

1. pilih prima besar p dan q 

2. n ← p × q 

3. φ ← (p−1) × (q−1) 

4. pilih e (umumnya 65537) dengan gcd(e, φ)=1 

5. d ←  mod φ 

Output: public key (n,e), private key d 

Input: (n, e), pesan m 

1. c ←  mod n 

Output: c 
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Algoritma 3: RSA – Dekripsi 

 

Implementasi RSA sangat menentukan kekuatan keamanan yang sangat penting. 

Banyak sistem mempercepat operasi privat menggunakan optimasi seperti CRT-RSA, 

tetapi optimasi semacam ini juga dapat memperluas permukaan serangan pada sisi 

implementasi. Penelitian terkini menunjukkan bahwa RSA rentan terhadap serangan 

kanal-samping yang apabila eksekusi modular exponentiation tidak dilindungi dengan 

baik maka serangan yang diprofilkan menggunakan pendekatan neural network bahkan 

dapat mengekstraksi informasi rahasia dari jejak konsumsi daya implementasi RSA 

tertentu. Studi lain juga menyoroti bahwa kebocoran sebagian parameter privat seperti 

partial key exposure dapat membuka peluang kriptoanalisis terhadap sejumlah varian 

RSA dalam kondisi tertentu, sehingga perlindungan implementasi dan pengelolaan 

parameter tetap menjadi isu penting dalam penerapan RSA modern. 

 

2.2. Advanded Encryption Standard (AES) 

AES merupakan symmetric block cipher dengan blok 128-bit dan dengan kunci yang 

panjangnya 128/192/256-bit. Algoritma ini bekerja melalui serangkaian transformasi per 

ronde (SubBytes, ShiftRows, MixColumns, dan AddRoundKey) sehingga efisien untuk 

mengenkripsi payload transaksi yang berulang maupun berukuran besar. Karena biaya 

komputasinya relatif rendah, AES banyak digunakan pada layanan pembayaran dan 

perbankan digital untuk melindungi data finansial pada perangkat klien maupun server. 

Meski demikian, keamanan AES pada level implementasi tetap perlu diperhatikan, 

misalnya terhadap serangan kanal-samping (Correlation Power Analysis) yang berupaya 

mengekstrak kunci dari pola konsumsi daya, sehingga penggunaan mitigasi dan praktik 

implementasi yang benar menjadi penting. Algoritma 4 menunjukkan cara kerja dari AES 

ketika melakukan enkripsi. 

 

Algoritma 4: AES – Enkripsi 

Input: (n, d), ciphertext c 

1. m ←  mod n 

Output: m 

 

Input  : plaintext_block (128 bit), secret_key 

Output : encrypted_block 

1.  expanded_keys ←  GenerateRoundKeys(secret_key) 

2.  current_state ←  plaintext_block 

3.  current_state ←  XORRoundKey(current_state, expanded_keys[0]) 

4.  for i ←  1 to (TotalRound − 1) do 

5.      current_state ←  ByteSubstitution(current_state) 

6.      current_state ←  RowPermutation(current_state) 

7.      current_state ←  ColumnMixing(current_state) 

8.      current_state ←  XORRoundKey(current_state, expanded_keys[i]) 

9.  end for 

10. current_state ←  ByteSubstitution(current_state) 

11. current_state ←  RowPermutation(current_state) 

12. current_state ←  XORRoundKey(current_state, expanded_keys[TotalRound]) 

13. encrypted_block ←  current_state 
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  Pada proses enkripsi AES seperti pada Algoritma 4, pseudocode menggambarkan 

bahwa algoritma menerima masukan berupa satu blok plaintext berukuran 128-bit dan 

sebuah kunci rahasia, kemudian kunci tersebut terlebih dahulu diproses melalui tahap key 

expansion untuk menghasilkan kunci pada setiap ronde. Plaintext direpresentasikan 

sebagai state dan diawali dengan operasi AddRoundKey, yaitu penggabungan state 

dengan kunci ronde awal menggunakan operasi XOR. Selanjutnya, state diproses melalui 

sejumlah ronde utama yang jumlahnya bergantung pada panjang kunci. Pada setiap ronde, 

dilakukan empat transformasi berurutan, yaitu SubBytes untuk melakukan substitusi non-

linear guna meningkatkan konfusi, ShiftRows untuk menggeser baris state sehingga 

tercapai difusi, MixColumns untuk mencampur nilai pada setiap kolom state, serta 

AddRoundKey untuk menggabungkan state dengan kunci ronde. Pada ronde terakhir, 

transformasi MixColumns tidak dilakukan, dan hasil akhir dari state setelah 

AddRoundKey merupakan ciphertext. 

 

Algoritma 5 : AES – Dekripsi 

 

Pada proses dekripsi AES seperti pada Algoritma 2.5, pseudocode menunjukkan 

bahwa algoritma menerima masukan berupa ciphertext dan kunci rahasia yang sama 

dengan proses enkripsi. Ciphertext direpresentasikan sebagai state dan terlebih dahulu 

dikombinasikan dengan kunci ronde terakhir melalui operasi AddRoundKey. Selanjutnya, 

state diproses melalui ronde-ronde dekripsi dengan urutan terbalik dibandingkan enkripsi, 

menggunakan transformasi invers, yaitu InvShiftRows, InvSubBytes, AddRoundKey, dan 

InvMixColumns. Transformasi invers ini dirancang untuk membatalkan efek setiap 

operasi pada proses enkripsi. Pada ronde terakhir dekripsi, operasi InvMixColumns tidak 

dilakukan. Setelah seluruh ronde selesai, state digabungkan kembali dengan kunci ronde 

awal menggunakan AddRoundKey sehingga diperoleh kembali plaintext asli. 

 

2.3. Rancangan Eksperimen dan Parameter Pengujian 

Pengujian dilakukan pada prototipe client–server dengan dua varian implementasi 

yaitu varian RSA yang mengenkripsi payload menggunakan kunci publik server dan 

didekripsi menggunakan kunci privat serve varian AES yang mengenkripsi dan 

mendekripsi payload menggunakan kunci simetris yang sama. Pada penilitian ini 

menggunakan perangkat untuk client dan server adalah satu perangkat yang sama yaitu 

menggunakan processor AMD Ryzen 5 4600H dengan dukungan sistem operasi Windows 

Input  : encrypted_block (128 bit), secret_key 

Output : recovered_plaintext 

1.  round_keys ←  GenerateRoundKeys(secret_key) 

2.  internal_state ←  encrypted_block 

3.  internal_state ←  XORRoundKey(internal_state, round_keys[FinalRound]) 

4.  for r ←  (FinalRound − 1) down to 1 do 

5.      internal_state ←  InverseRowPermutation(internal_state) 

6.      internal_state ←  InverseByteSubstitution(internal_state) 

7.      internal_state ←  XORRoundKey(internal_state, round_keys[r]) 

8.      internal_state ←  InverseColumnMixing(internal_state) 

9.  end for 

10. internal_state ←  InverseRowPermutation(internal_state) 

11. internal_state ←  InverseByteSubstitution(internal_state) 

12. internal_state ←  XORRoundKey(internal_state, round_keys[0]) 

13. recovered_plaintext ←  internal_state 
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10. Untuk RAM menggunakan 16GB dual channel. Bahasa pemrograman python 

digunakan untuk implementasi program. 

Dalam penelitian ini, algoritma RSA diimplementasikan dengan ukuran kunci 4096-bit 

dan public exponent 65537, yang dihasilkan menggunakan library cryptography pada 

Python. Proses enkripsi dan dekripsi RSA menggunakan padding OAEP (Optimal 

Asymmetric Encryption Padding) dengan SHA-256 . Konfigurasi ini dipilih karena 

mewakili praktik kriptografi modern yang direkomendasikan untuk tingkat keamanan 

tinggi serta ketahanan terhadap serangan kriptoanalitik. 

Algoritma AES diimplementasikan dengan panjang kunci 128-bit, mode operasi AES-

CBC (Cipher Block Chaining), dan padding PKCS7, yang merupakan konfigurasi umum 

pada sistem keamanan data simetris. AES digunakan untuk enkripsi dan dekripsi payload 

dalam skenario login dan transfer, dengan tujuan mengevaluasi performa waktu dan 

penggunaan memori pada berbagai beban kerja. Pencantuman parameter kriptografi ini 

memastikan bahwa eksperimen bersifat reproducible, transparan, dan sesuai dengan 

standar evaluasi kriptografi pada sistem client–server. 

Pada skenario login, payload berupa string kredensial dengan format 

“username:password”, sedangkan pada skenario transfer payload berupa string transaksi 

berformat CSV yang memuat beberapa atribut (jenis transaksi, rekening pengirim, 

nominal, pesan/berita, PIN, dan rekening penerima). Dengan demikian, payload transfer 

merepresentasikan beban kerja yang lebih besar dan kompleks dibanding login. Pada 

implementasi awal, sistem mencatat metrik waktu dan memori untuk setiap operasi 

enkripsi/dekripsi secara per-event (setiap request) menggunakan pengukuran waktu 

berbasis time.time() dan pengukuran memori berbasis tracemalloc. 

 

3. Hasil dan Pembahasan 
Pada penelitian ini berbasis eksperimen terkontrol dengan membangun prototipe 

transaksi digital banking berbasis client–server. Dua versi prototipe dibuat dengan alur 

yang sama: (1) versi RSA, yang mengenkripsi data login dan transfer menggunakan kunci 

publik penerima; dan (2) versi AES, yang menggunakan satu kunci simetris untuk 

enkripsi dan dekripsi payload. Pengujian difokuskan pada dua operasi utama, yaitu login 

dan transfer, karena keduanya merepresentasikan transaksi yang sering terjadi pada 

layanan perbankan digital. 

 
Gambar 1. Prototipe Client – Server 

 

Pada Gambar 1 adalah prototipe client dan server. Dari sisi client, proses dimulai 

ketika pengguna memasukkan data, seperti informasi login atau permintaan transaksi. 

Data tersebut kemudian dienkripsi sebelum dikirimkan melalui jaringan internet. 

Mekanisme enkripsi yang digunakan dapat berupa RSA atau AES, tergantung pada skema 

keamanan yang diterapkan. Jika menggunakan RSA, client mengenkripsi data 

menggunakan kunci publik milik server sehingga hanya server yang dapat membukanya 

dengan kunci privat. Jika menggunakan AES, client mengenkripsi data menggunakan 

kunci simetris yang telah disepakati sebelumnya. Tujuan utama proses ini adalah 

memastikan bahwa data yang dikirimkan melalui kanal jaringan private dan hanya bisa 

diakses oleh pihak yang berwenang. 
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Dari sisi server, data terenkripsi yang diterima dari client akan melalui proses dekripsi 

dan validasi. Pada skema RSA, server menggunakan kunci privat untuk mendekripsi data 

yang sebelumnya dienkripsi dengan kunci publik. Pada skema AES, server menggunakan 

kunci simetris yang sama dengan client untuk membuka data. Setelah data berhasil 

didekripsi, server melakukan proses validasi dan eksekusi permintaan, seperti autentikasi 

pengguna atau pemrosesan transaksi. Hasil dari proses tersebut kemudian dikirimkan 

kembali ke client dalam bentuk respon melalui jaringan, yang juga dapat dienkripsi 

menggunakan algoritma yang sama untuk menjaga keamanan komunikasi dua arah. 

 

3.1. Perbandingan Waktu Eksekusi pada RSA dan AES. 

Bagian ini menyajikan hasil utama pengujian performa. Waktu eksekusi antara RSA 

dan AES akan diuji pada scenario Login dan Transfer. 

 
Gambar 2. Perbandingan Waktu Eksekusi untuk Enkripsi  

 

Pada Gambar 2 memperlihatkan perbandingan waktu eksekusi algoritma RSA dan 

AES pada skenario login dan transfer data untuk proses enkripsi. Berdasarkan hasil 

pengukuran, proses RSA Login membutuhkan waktu sebesar 0,001007 detik, sedangkan 

RSA Transfer memerlukan waktu yang lebih tinggi, yaitu 0,001505 detik. Sementara itu, 

algoritma AES menunjukkan kinerja yang lebih efisien, di mana waktu eksekusi untuk 

AES Login dan AES Transfer masing-masing berada di bawah 0,001 detik. Perbedaan ini 

mengindikasikan bahwa RSA memiliki overhead komputasi yang lebih besar akibat 

penggunaan operasi eksponensial modular, khususnya pada proses transfer data. 

Sebaliknya, AES sebagai algoritma kriptografi simetris mampu memberikan waktu 

pemrosesan yang lebih cepat dan konsisten. Hasil ini menegaskan bahwa AES lebih 

sesuai digunakan untuk proses yang menuntut efisiensi dan kecepatan tinggi, sedangkan 

RSA lebih tepat diterapkan pada skenario yang mengutamakan mekanisme keamanan 

berbasis kunci publik meskipun dengan biaya komputasi yang lebih besar. 

 
Gambar 3. Perbandingan Waktu Eksekusi untuk Dekripsi. 
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Pada Gambar 3 tersebut menyajikan hasil pengujian waktu eksekusi algoritma 

kriptografi RSA dan AES pada dua skenario layanan, yaitu proses login dan transfer data. 

Sumbu vertikal menunjukkan waktu pemrosesan dalam satuan detik, sedangkan sumbu 

horizontal merepresentasikan jenis algoritma dan aktivitas yang diuji. Berdasarkan grafik, 

proses RSA-Login membutuhkan waktu sekitar 0,003 detik, sedangkan RSA-Transfer 

menunjukkan waktu eksekusi yang lebih rendah, yaitu sekitar 0,002 detik. Pada algoritma 

AES, proses AES-Login memiliki waktu pemrosesan paling singkat, yaitu sekitar 0,001 

detik, sementara AES-Transfer memperlihatkan lonjakan waktu yang sangat signifikan 

hingga sekitar 0,025 detik. 

Perbedaan nilai waktu ini menunjukkan bahwa kinerja algoritma kriptografi sangat 

dipengaruhi oleh karakteristik operasi yang dilakukan serta skenario penggunaan. Waktu 

eksekusi AES yang meningkat drastis pada proses transfer mengindikasikan adanya beban 

pemrosesan tambahan, yang dapat disebabkan oleh ukuran data yang lebih besar atau 

mekanisme pemrosesan blok yang berulang. Sebaliknya, RSA menunjukkan waktu 

eksekusi yang relatif lebih stabil pada kedua skenario, meskipun secara teoretis RSA 

memiliki kompleksitas komputasi yang lebih tinggi. Temuan ini menegaskan bahwa 

evaluasi performa algoritma kriptografi tidak hanya ditentukan oleh jenis algoritma, tetapi 

juga oleh konteks dan karakteristik beban kerja yang diterapkan pada sistem. 

 

Tabel 1. Hasil Waktu Eksekusi (s) 
Algoritma Skenario Enkripsi Dekripsi 

RSA Login 0.001007 0.002883 

RSA Transfer 0.001505 0.002084 

AES Login 0.000001 0.000001 

AES Transfer 0.000001 0.025419 

 

Tabel 1 menunjukkan hasil perbandingan waktu eksekusi dari RSA dan AES. 

Berdasarkan hasil pengujian, AES menunjukkan performa enkripsi–dekripsi paling cepat 

pada skenario login (masing-masing sekitar 0,000001 detik), jauh lebih rendah dibanding 

RSA yang membutuhkan 0,001007 detik untuk enkripsi dan 0,002883 detik untuk 

dekripsi. Pada skenario transfer, RSA tetap relatif stabil dengan waktu enkripsi 0,001505 

detik dan dekripsi 0,002084 detik, sedangkan AES tetap sangat cepat pada enkripsi yaitu 

0,000001 detik namun mengalami lonjakan pada proses dekripsi hingga 0,025419 detik. 

Pola ini mengindikasikan bahwa AES unggul signifikan untuk beban kerja ringan seperti 

login, tetapi pada transfer terdapat overhead tertentu di sisi dekripsi tergantung pada 

ukuran payload yang membuat kinerjanya menurun dan perlu ditelusuri lebih lanjut 

sebelum dijadikan pilihan utama untuk skenario transfer. 

 

3.2. Perbandingan Konsumsi Memori pada RSA dan AES. 

Untuk mengetahui performa dari penggunaan memori pada RSA dan AES, dilakukan 

pengujian seperti pada Gambar 4. Pada pengujian ini menyajikan perbandingan 

penggunaan memori pada algoritma RSA dan AES untuk dua skenario layanan, yaitu 

login dan transfer data, masing-masing pada proses enkripsi (E) dan dekripsi (D). Pada 

algoritma RSA, terlihat bahwa proses dekripsi login (RSA-Login-D) memerlukan 

penggunaan memori paling besar, yaitu sekitar 1,8 kb, sedangkan proses enkripsi login 

(RSA-Login-E) dan enkripsi transfer (RSA-Transfer-E) berada pada kisaran 0,53 kb. 

Proses dekripsi transfer RSA (RSA-Transfer-D) menunjukkan penggunaan memori paling 

rendah, yaitu 0.07, yang mengindikasikan variasi kebutuhan memori yang signifikan antar 

tahapan operasi RSA. 

 

 



KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen) 

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80 
    

 

79 

 
Gambar 4. Perbandingan Konsumsi Memori 

 

Sementara itu, pada algoritma AES, penggunaan memori cenderung lebih merata 

namun tetap menunjukkan perbedaan antara enkripsi dan dekripsi. Proses AES-Login-E 

dan AES-Transfer-D membutuhkan memori relatif lebih besar, masing-masing sekitar 

1,39 kb dan 1,57 kb, dibandingkan proses AES-Login-D yaitu 0,62 kb. Adapun AES-

Transfer-E menunjukkan penggunaan memori sekitar 1,25 kb. Hasil ini menunjukkan 

bahwa kebutuhan memori tidak hanya dipengaruhi oleh jenis algoritma kriptografi, tetapi 

juga oleh jenis layanan serta tahapan proses yang dijalankan. Temuan ini 

mengindikasikan bahwa evaluasi efisiensi algoritma kriptografi perlu mempertimbangkan 

aspek memori secara terpisah dari waktu eksekusi, terutama pada sistem dengan 

keterbatasan sumber daya. Tabel 2 menunjukkan detail dari hasil konsumsi memori oleh 

kedua algoritma. 

Tabel 2. Hasil Konsumsi Memori (kb) 
Algoritma Skenario Enkripsi Dekripsi 

RSA Login 0.53 1.8 

RSA Transfer 0.53 0.07 

AES Login 1.39 0.62 

AES Transfer 1.25 1.57 

 

Berdasarkan Tabel 2, dapat disimpulkan bahwa pola konsumsi memori pada kedua 

algoritma tidak sepenuhnya sejalan dengan pola waktu eksekusi, karena setiap skenario 

login dan transfer serta tahapan proses enkripsi dan dekripsi menghasilkan kebutuhan 

memori yang berbeda. RSA cenderung menunjukkan penggunaan memori yang kontras 

terutama pada proses dekripsi login yang lebih tinggi, sedangkan AES relatif lebih merata 

namun tetap memperlihatkan peningkatan pada proses tertentu seperti enkripsi login dan 

dekripsi transfer. Dengan demikian, pemilihan algoritma kriptografi untuk sistem client–

server tidak cukup hanya mempertimbangkan kecepatan, tetapi juga harus memperhatikan 

efisiensi memori agar implementasi tetap stabil dan sesuai dengan keterbatasan sumber 

daya, khususnya pada layanan transaksi yang berpotensi memproses data lebih kompleks. 

 

4. Kesimpulan 
Berdasarkan pengujian pada skenario digital banking (login dan transfer), AES 

menunjukkan performa yang lebih baik dibanding RSA pada beberapa tahapan penting. 

Pada proses enkripsi, AES lebih efisien dengan peningkatan kecepatan 0,7% pada login 

dan 33,6% pada transfer, sehingga dapat mendukung kebutuhan enkripsi payload 

transaksi yang memerlukan respons cepat. Pada dekripsi login, AES juga memberikan 

peningkatan signifikan, yaitu 65,3% lebih cepat sekaligus lebih hemat memori sebesar 

65,5%, yang menandakan AES cocok untuk aktivitas autentikasi dan perlindungan data 

sensitif dengan overhead yang relatif ringan. Akan tetapi, pada dekripsi transfer, AES 

mengalami penurunan kinerja dengan latensi 12,2 kali lebih lambat dan konsumsi memori 
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yang meningkat 2112,7% dibanding RSA. Dengan demikian, dapat disimpulkan bahwa 

AES memiliki keunggulan utama dalam efisiensi enkripsi dan dekripsi pada transaksi 

sederhana, namun pada transaksi transfer diperlukan optimasi implementasi agar kinerja 

tetap stabil. Penelitian lanjutan direkomendasikan menggunakan pengujian berulang 

dengan variasi ukuran payload serta pencatatan waktu presisi tinggi untuk mendapatkan 

hasil yang lebih representatif terhadap kondisi sistem digital banking nyata.  
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