--“KESATRA urnal Penerapan Sistem Informasi (Komputer & Manajemen)
2{522 | Vol. 7, No. 1, Januari (2026), pp. 71-80

E- ma|I ahmadmlftah@staff ubaya ac.id

Abstract

Digital banking services require cryptographic mechanisms that protect sensitive
customer data while maintaining low latency and efficient resource utilization. This study
evaluates the performance of RSA (asymmetric encryption) and AES (symmetric
encryption) in securing digital banking transactions across two common scenarios: login
authentication and fund transfer. The evaluation examines encryption time, decryption
time, and memory usage during cryptographic processing. Experimental results
demonstrate that AES achieves faster encryption than RSA, with 0.7% lower encryption
time in the login scenario and 33.6% lower encryption time in the transfer scenario. For
login decryption, AES is 65.3% faster than RSA and reduces memory consumption by
65.5%. In contrast, during transfer decryption, AES introduces substantially higher
latency, operating 12.2 times slower, which corresponds to a 1119.7% increase, and
consumes 2112.7% more memory. These results suggest that AES is highly efficient for
encryption and lightweight decryption tasks such as login, but transfer decryption
performance may require further optimization to ensure consistent real-time
responsiveness in digital banking environments.

Keywords: AES, RSA, digital banking, encryption, decryption, digital banking

Abstrak

Keamanan transaksi pada layanan digital banking memerlukan mekanisme kriptografi
yang mampu menjaga kerahasiaan data pengguna dan mempertahankan efisiensi sistem.
Studi ini membandingkan kinerja algoritma RSA (asimetris) dan AES (simetris) dalam
dua skenario utama perbankan digital, yaitu login dan transfer, dengan mengukur waktu
eksekusi serta konsumsi memori untuk setiap proses pada RSA. Hasil pengujian
memperlihatkan bahwa pada tahap enkripsi, AES memiliki performa lebih baik
dibandingkan RSA, yaitu 0,7% lebih cepat pada skenario login dan 33,6% lebih cepat
pada skenario transfer. Pada tahap dekripsi login, AES juga lebih efisien dengan
kecepatan 65,3% lebih tinggi dibandingkan RSA, serta menurunkan konsumsi memori
sebesar 65,5%. Namun, pada dekripsi transfer, AES menunjukkan latensi yang lebih
tinggi, yaitu 12,2 kali lebih lambat dibandingkan RSA, disertai kenaikan konsumsi
memori sebesar 2112,7%. Temuan ini mengindikasikan bahwa AES lebih unggul pada
operasi enkripsi dan dekripsi sederhana seperti login, namun implementasi pada
transaksi transfer memerlukan optimasi lebih lanjut untuk menjaga latensi tetap rendah.

Kata Kunci: AES, RSA, digital banking, enkripsi, dekripsi, keamanan transaksi

1. Pendahuluan

Perkembangan teknologi mendorong perlunya mekanisme pengamanan data yang
andal, terutama pada sistem komunikasi digital di jaringan terbuka. Dalam konteks ini,
kriptografi memegang peranan penting dalam menjamin kerahasiaan, integritas, dan
autentikasi data guna mencegah ancaman penyadapan, manipulasi, serta penyalahgunaan
informasi [1]. Studi-studi sebelumnya menunjukkan bahwa tanpa penerapan kriptografi
yang memadai, sistem informasi modern sangat rentan terhadap serangan keamanan,
terutama pada layanan berbasis jaringan dan komunikasi real-time[2].

ISSN: 2720-992X
Copyright © KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen

--“KESATRA urnal Penerapan Sistem Informasi (Komputer & Manajemen)
2{522 | Vol. 7, No. 1, Januari (2026), pp. 71-80

il digital menlngkatkan efisiensi transaksi

nsmf sehlngga memerlukan enkr|p3| yang kuat dan
ydran umumnya mengombinasikan
cepatan, serta kriptografi asimetris
endukung distribusi kunci publik.
Studi pada s_i_stem payment gateway menunjukkan-bahwa kombinasi RSA dan AES
banyak digunakan untuk menjaga keamanan proses transaksi sekaligus mempertahankan
kinerja layanan [3].

Kriptografi kunci publik merupakan salah satu pendekatan utama dalam pengamanan
data karena memungkinkan distribusi kunci secara aman tanpa memerlukan saluran
rahasia. Algoritma RSA merupakan contoh implementasi algoritma kriptografi yang
populer hingga saat ini. RSA masih diterapkan secara luas pada berbagai sistem
keamanan informasi, termasuk pengamanan pesan, pertukaran kunci, dan perlindungan
data sensitif, karena memiliki dasar matematis yang kuat serta kemudahan implementasi
relative [4][5]. Keamanan algoritma RSA bergantung pada tingkat kesulitan faktorisasi
bilangan bulat besar. Selama permasalahan ini belum dapat diselesaikan secara efisien
dengan komputasi klasik, RSA tetap dianggap aman untuk berbagai aplikasi praktis [6].
Oleh sebab itu, RSA terus menjadi objek penelitian dan pengembangan untuk
meningkatkan ketahanan dan efektivitasnya terhadap ancaman keamanan yang semakin
kompleks [7].

Advanced Encryption Standard atau AES Adalah contoh dari algoritma simetris yang
populer untuk melindungi payload transaksi pada layanan digital banking karena mampu
memberikan enkripsi cepat dengan biaya komputasi rendah. Dalam transaksi finansial,
AES lazim digunakan untuk menjaga kerahasiaan data sensitif seperti nomor kartu,
kredensial, dan detail transfer, baik saat penyimpanan maupun pengiriman, sehingga
mendukung keamanan layanan tanpa menambah latensi secara signifikan [8]. Meskipun
kuat secara desain, implementasi AES tetap harus memperhatikan risiko serangan kanal-
samping, sehingga penerapan praktik implementasi yang aman dan mitigasi menjadi
faktor penting dalam sistem pembayaran modern [9].

Dalam praktik digital banking, AES umumnya digunakan untuk melindungi data
transaksi ber-volume besar pada kanal APl maupun penyimpanan seperti tabel transaksi,
log, dan arsip audit. Survei terbaru menunjukkan bahwa AES masih menjadi landasan de
facto dalam mengamankan komunikasi dan transaksi finansial karena efisiensi, dukungan
akselerasi perangkat keras, serta fleksibilitas mode operasi. Pada sisi penyimpanan,
evaluasi kinerja transparent data encryption berbasis AES pada beberapa DBMS
menunjukkan overhead yang relatif kecil sehingga tetap kompatibel untuk layanan real-
time. Temuan terkait tantangan privasi dan keamanan siber dalam transformasi perbankan
digital juga menempatkan enkripsi sebagai kontrol inti untuk menekan risiko kebocoran
data nasabah dan penyalahgunaan informasi [10] [11].

Meskipun RSA dan AES sama-sama populer, keduanya memiliki karakteristik
komputasi yang berbeda sehingga dampaknya terhadap latensi transaksi perlu dianalisis
secara kuantitatif. Kemudian sebagian penelitian terdahulu lebih banyak menilai kinerja
secara terpisah yaitu uji enkripsi dan dekripsi pada fungsi tertentu tanpa evaluasi end-to-
end pada alur client-server, atau tanpa adanya hasil metrik untuk waktu eksekusi dan
konsumsi memori pada skenario transaksi yang berbeda Selain aspek kinerja, RSA juga
memiliki risiko pada sisi implementasi apabila perlindungan eksekusi tidak memadai,
misalnya terhadap serangan side channel berbasis konsumsi daya [12]. Penelitian ini
berkontribusi dengan prototipe client-server yang membandingkan RSA vs AES secara
end-to-end, dua skenario yang merepresentasikan beban kerja berbeda yaitu login dan
transfer, serta pelaporan berupa matrix waktu dan memori untuk membantu pengambilan
keputusan implementatif.

72

f na menawarkan latensi dan penggunaan memori yang
:yload yang lebih..bgsar, dlperlukan audlt serta optlmaS|

menyorot| tmgnya pela’pdlran metrik wakt dan memori secara bersamaan untuk
menilai trade_—__o_ff pada sistem dengan sumber daya terbatas.

2. Metodologi Penelitian
2.1. RSA (Rivest Shamir Aldeman)

RSA adalah contoh dari salah satu kriptosistem yang menggunakan public key yang
bekerja dengan aritmetika modulo berbasis bilangan bulat besar. Pada tahap
pembangkitan kunci, dua bilangan prima besar p dan g dipilih untuk membentuk modulus
n = pg . Parameter publik e kemudian ditetapkan sehingga relatif prima terhadap
en)=(p—1(qg—1), lalu nilai privat d dihitung sebagai invers modular dari
eterhadap @(n). Dengan pasangan kunci (n-e)sebagai kunci publik dan dsebagai bagian
utama kunci privat, RSA melakukan transformasi kriptografis melalui eksponensiasi
modular. Dalam praktik, e sering dipilih bernilai 65537 karena memberikan efisiensi
eksponensiasi yang baik tanpa mengorbankan keamanan secara signifikan [13]. Algoritma
1 adalah implementasi dari pseudocode RSA.

Algoritma 1: RSA — Pembentukan Kunci

Input: ukuran kunci kBits

1. pilih prima besar p dan g

2.n«<—pxq

3.0 = (1) x(q-1

4. pilih e (umumnya 65537) dengan ged(e, ¢)=1
5.d — e 1 mod ¢

Output: public key (n,e), private key d

Proses enkripsi pada RSA dapat ditunukkan pada Algoritma 2. Inputan pada RSA
berupa pasangan kunci publik (n-e) dan pesan m . Pesan m terlebih dahulu
direpresentasikan sebagai bilangan bulat yang nilainya lebih kecil dari n, kemudian
dienkripsi dengan cara dipangkatkan menggunakan eksponen publik edan diambil hasil
modulo n, sehingga diperoleh ciphertext ¢ = m®modn. Proses ini menunjukkan bahwa
siapa pun yang memiliki kunci publik dapat mengenkripsi pesan, tetapi belum tentu dapat
membaca isinya.

Algoritma 2: RSA — Enkripsi

Input: (n, €), pesan m
l.c«—m® modn
Output: ¢

Pada Algorithm 3 menggambarkan proses kebalikan dari enkripsi. Masukan berupa
pasangan kunci privat (nrd) dan ciphertext c. Ciphertext tersebut dipangkatkan dengan
eksponen privat ddan diambil hasil modulo n, sehingga menghasilkan kembali pesan asli
m = c®modn . Secara matematis, nilai d dipilih sedemikian rupa sehingga operasi
pemangkatan dengan dakan membatalkan efek pemangkatan dengan e. Maka dari itu,
hanya orang yang mempunyai private key yang dapat melakukan dekripsi dan
memperoleh kembali pesan asli, yang menjadi inti dari keamanan algoritma RSA.

73

“*KESATRIA:Humal Penerapan Sistem Informasi (Komputer & Manajemen)
iB) 2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

Input: (n, d), ciphertext ¢
1.m« c%modn
Output: m

Implementasi RSA sangat menentukan kekuatan keamanan yang sangat penting.
Banyak sistem mempercepat operasi privat menggunakan optimasi seperti CRT-RSA,
tetapi optimasi semacam ini juga dapat memperluas permukaan serangan pada Sisi
implementasi. Penelitian terkini menunjukkan bahwa RSA rentan terhadap serangan
kanal-samping yang apabila eksekusi modular exponentiation tidak dilindungi dengan
baik maka serangan yang diprofilkan menggunakan pendekatan neural network bahkan
dapat mengekstraksi informasi rahasia dari jejak konsumsi daya implementasi RSA
tertentu. Studi lain juga menyoroti bahwa kebocoran sebagian parameter privat seperti
partial key exposure dapat membuka peluang kriptoanalisis terhadap sejumlah varian
RSA dalam kondisi tertentu, sehingga perlindungan implementasi dan pengelolaan
parameter tetap menjadi isu penting dalam penerapan RSA modern.

2.2. Advanded Encryption Standard (AES)

AES merupakan symmetric block cipher dengan blok 128-bit dan dengan kunci yang
panjangnya 128/192/256-bit. Algoritma ini bekerja melalui serangkaian transformasi per
ronde (SubBytes, ShiftRows, MixColumns, dan AddRoundKey) sehingga efisien untuk
mengenkripsi payload transaksi yang berulang maupun berukuran besar. Karena biaya
komputasinya relatif rendah, AES banyak digunakan pada layanan pembayaran dan
perbankan digital untuk melindungi data finansial pada perangkat klien maupun server.
Meski demikian, keamanan AES pada level implementasi tetap perlu diperhatikan,
misalnya terhadap serangan kanal-samping (Correlation Power Analysis) yang berupaya
mengekstrak kunci dari pola konsumsi daya, sehingga penggunaan mitigasi dan praktik
implementasi yang benar menjadi penting. Algoritma 4 menunjukkan cara kerja dari AES
ketika melakukan enkripsi.

Algoritma 4: AES — Enkripsi

Input : plaintext_block (128 bit), secret_key
Output : encrypted_block

1. expanded_keys < GenerateRoundKeys(secret_key)

2. current_state < plaintext_block

3. current_state « XORRoundKey(current_state, expanded_keys[0])
4. fori+« 1 to (TotalRound — 1) do

5. current_state < ByteSubstitution(current_state)

6. current_state <« RowPermutation(current_state)

7. current_state « ColumnMixing(current_state)

8. current_state « XORRoundKey(current_state, expanded_keys[i])
9. end for

10. current_state < ByteSubstitution(current_state)

74

--“KESATRA urnal Penerapan Sistem Informasi (Komputer & Manajemen)
2{522 | Vol. 7, No. 1, Januari (2026), pp. 71-80

_:._Igorltma 4, pseudocode menggambarkan

sejumlah ronde utama yang jumlahnya bergantung pada panjang kunC| Pada setiap ronde,
dilakukan empat transformasi berurutan, yaitu SubBytes untuk melakukan substitusi non-
linear guna meningkatkan konfusi, ShiftRows untuk menggeser baris state sehingga
tercapai difusi, MixColumns untuk mencampur nilai pada setiap kolom state, serta
AddRoundKey untuk menggabungkan state dengan kunci ronde. Pada ronde terakhir,
transformasi MixColumns tidak dilakukan, dan hasil akhir dari state setelah
AddRoundKey merupakan ciphertext.

Algoritma 5 : AES — Dekripsi

Input : encrypted_block (128 bit), secret_key
Output : recovered_plaintext

1. round_keys « GenerateRoundKeys(secret_key)
. internal_state < encrypted_block
. internal_state < XORRoundKey(internal_state, round_keys[FinalRound])
. forr < (FinalRound — 1) down to 1 do

internal_state < InverseByteSubstitution(internal_state)
internal_state « XORRoundKey(internal_state, round_keys|[r])

. internal_state « InverseColumnMixing(internal_state)
. end for

10. internal_state < InverseRowPermutation(internal_state)

2
3
4
5. internal_state « InverseRowPermutation(internal_state)
6
7
8
9

Pada proses dekripsi AES seperti pada Algoritma 2.5, pseudocode menunjukkan
bahwa algoritma menerima masukan berupa ciphertext dan kunci rahasia yang sama
dengan proses enkripsi. Ciphertext direpresentasikan sebagai state dan terlebih dahulu
dikombinasikan dengan kunci ronde terakhir melalui operasi AddRoundKey. Selanjutnya,
state diproses melalui ronde-ronde dekripsi dengan urutan terbalik dibandingkan enkripsi,
menggunakan transformasi invers, yaitu InvShiftRows, InvSubBytes, AddRoundKey, dan
InvMixColumns. Transformasi invers ini dirancang untuk membatalkan efek setiap
operasi pada proses enkripsi. Pada ronde terakhir dekripsi, operasi InvMixColumns tidak
dilakukan. Setelah seluruh ronde selesai, state digabungkan kembali dengan kunci ronde
awal menggunakan AddRoundKey sehingga diperoleh kembali plaintext asli.

2.3. Rancangan Eksperimen dan Parameter Pengujian

Pengujian dilakukan pada prototipe client-server dengan dua varian implementasi
yaitu varian RSA yang mengenkripsi payload menggunakan kunci publik server dan
didekripsi menggunakan kunci privat serve varian AES yang mengenkripsi dan
mendekripsi payload menggunakan kunci simetris yang sama. Pada penilitian ini
menggunakan perangkat untuk client dan server adalah satu perangkat yang sama yaitu
menggunakan processor AMD Ryzen 5 4600H dengan dukungan sistem operasi Windows

75

--“KESATRA urnal Penerapan Sistem Informasi (Komputer & Manajemen)
2{522 | Vol. 7, No. 1, Januari (2026), pp. 71-80

} channel. Bahasa pemrograman python

RSA diimplementasikan dengan ukuran kunci 4096-bit
ng d|ha3|lkan nggunakan library cryptography pada
jgunakan padding OAEP (Optimal
6 . Konfigurasi ini dipilih karena
mewakili pl‘&K’[Ik kriptografi modern yang dlrekomenda5|kan untuk tingkat keamanan
tinggi serta ketahanan terhadap serangan kriptoanalitik.

Algoritma AES diimplementasikan dengan panjang kunci 128-bit, mode operasi AES-
CBC (Cipher Block Chaining), dan padding PKCS7, yang merupakan konfigurasi umum
pada sistem keamanan data simetris. AES digunakan untuk enkripsi dan dekripsi payload
dalam skenario login dan transfer, dengan tujuan mengevaluasi performa waktu dan
penggunaan memori pada berbagai beban kerja. Pencantuman parameter kriptografi ini
memastikan bahwa eksperimen bersifat reproducible, transparan, dan sesuai dengan
standar evaluasi kriptografi pada sistem client—server.

Pada skenario login, payload berupa string kredensial dengan format
“username:password”, sedangkan pada skenario transfer payload berupa string transaksi
berformat CSV yang memuat beberapa atribut (jenis transaksi, rekening pengirim,
nominal, pesan/berita, PIN, dan rekening penerima). Dengan demikian, payload transfer
merepresentasikan beban kerja yang lebih besar dan kompleks dibanding login. Pada
implementasi awal, sistem mencatat metrik waktu dan memori untuk setiap operasi
enkripsi/dekripsi secara per-event (setiap request) menggunakan pengukuran waktu
berbasis time.time() dan pengukuran memori berbasis tracemalloc.

3. Hasil dan Pembahasan

Pada penelitian ini berbasis eksperimen terkontrol dengan membangun prototipe
transaksi digital banking berbasis client—server. Dua versi prototipe dibuat dengan alur
yang sama: (1) versi RSA, yang mengenkripsi data login dan transfer menggunakan kunci
publik penerima; dan (2) versi AES, yang menggunakan satu kunci simetris untuk
enkripsi dan dekripsi payload. Pengujian difokuskan pada dua operasi utama, yaitu login
dan transfer, karena keduanya merepresentasikan transaksi yang sering terjadi pada
layanan perbankan digital.

Client Server
Input: login / transfer Kanal jaringan Dekripsi & validasi
(Internet)
Enkripsi: RSA atau AES Respon transaksi
R respon .

Manajemen kunci:
RSA public key / AES key sesi

Gambar 1. Prototipe Client — Server

Pada Gambar 1 adalah prototipe client dan server. Dari sisi client, proses dimulai
ketika pengguna memasukkan data, seperti informasi login atau permintaan transaksi.
Data tersebut kemudian dienkripsi sebelum dikirimkan melalui jaringan internet.
Mekanisme enkripsi yang digunakan dapat berupa RSA atau AES, tergantung pada skema
keamanan yang diterapkan. Jika menggunakan RSA, client mengenkripsi data
menggunakan kunci publik milik server sehingga hanya server yang dapat membukanya
dengan kunci privat. Jika menggunakan AES, client mengenkripsi data menggunakan
kunci simetris yang telah disepakati sebelumnya. Tujuan utama proses ini adalah
memastikan bahwa data yang dikirimkan melalui kanal jaringan private dan hanya bisa
diakses oleh pihak yang berwenang.

76

““KESATRA urnal Penerapan Sistem Informasi (Komputer & Manajemen)
%22 | Vol. 7, No. 1, Januari (2026), pp. 71-80

.............

n kunC| publik. Pada skema AES, server menggunakan
'embuka data Setelah data berhasn

didekripsi,
pengguna i
kembali ke-cljent dalam bentuk respon melalui’ Jarmgan yang juga dapat dienkripsi
menggunakan algoritma yang sama untuk menjaga keamanan komunikasi dua arah.

3.1. Perbandingan Waktu Eksekusi pada RSA dan AES.
Bagian ini menyajikan hasil utama pengujian performa. Waktu eksekusi antara RSA
dan AES akan diuji pada scenario Login dan Transfer.

0.0014 -
0.0012 -
% 0.0010 -
3
= 0.0008 -
2
% 0.0006
=
0.0004 -
0.0002 -
0.0000 -

Gambar 2. Perbandingan Waktu Eksekusi untuk Enkripsi

Pada Gambar 2 memperlihatkan perbandingan waktu eksekusi algoritma RSA dan
AES pada skenario login dan transfer data untuk proses enkripsi. Berdasarkan hasil
pengukuran, proses RSA Login membutuhkan waktu sebesar 0,001007 detik, sedangkan
RSA Transfer memerlukan waktu yang lebih tinggi, yaitu 0,001505 detik. Sementara itu,
algoritma AES menunjukkan kinerja yang lebih efisien, di mana waktu eksekusi untuk
AES Login dan AES Transfer masing-masing berada di bawah 0,001 detik. Perbedaan ini
mengindikasikan bahwa RSA memiliki overhead komputasi yang lebih besar akibat
penggunaan operasi eksponensial modular, khususnya pada proses transfer data.
Sebaliknya, AES sebagai algoritma kriptografi simetris mampu memberikan waktu
pemrosesan yang lebih cepat dan konsisten. Hasil ini menegaskan bahwa AES lebih
sesuai digunakan untuk proses yang menuntut efisiensi dan kecepatan tinggi, sedangkan
RSA lebih tepat diterapkan pada skenario yang mengutamakan mekanisme keamanan
berbasis kunci publik meskipun dengan biaya komputasi yang lebih besar.

0.025 1

0.020 |

0.015 A

0.010

Waktu (detik)

0.005 A

0.000 -

Gambar 3. Perbandingan Waktu Eksekusi untuk Dekripsi.

7

aktu pemrosesan dalam satuan detik, sedangkan sumbu
ais algoritma dan aktivitas yang diuji. Berdasarkan grafik,

menunjukk‘: ivaktu eksekusi'yang lebih rendahi, yaitu sekitar 0 002 detik. Pada algorltma
AES, proses: AES Login memiliki waktu pemrosesan paling singkat, yaitu sekitar 0,001
detik, sementara AES-Transfer memperlihatkan lonjakan waktu yang sangat signifikan
hingga sekitar 0,025 detik.

Perbedaan nilai waktu ini menunjukkan bahwa kinerja algoritma kriptografi sangat
dipengaruhi oleh karakteristik operasi yang dilakukan serta skenario penggunaan. Waktu
eksekusi AES yang meningkat drastis pada proses transfer mengindikasikan adanya beban
pemrosesan tambahan, yang dapat disebabkan oleh ukuran data yang lebih besar atau
mekanisme pemrosesan blok yang berulang. Sebaliknya, RSA menunjukkan waktu
eksekusi yang relatif lebih stabil pada kedua skenario, meskipun secara teoretis RSA
memiliki kompleksitas komputasi yang lebih tinggi. Temuan ini menegaskan bahwa
evaluasi performa algoritma kriptografi tidak hanya ditentukan oleh jenis algoritma, tetapi
juga oleh konteks dan karakteristik beban kerja yang diterapkan pada sistem.

Tabel 1. Hasil Waktu Eksekusi (s)

Algoritma Skenario Enkripsi Dekripsi
RSA Login 0.001007 0.002883
RSA Transfer 0.001505 0.002084
AES Login 0.000001 0.000001
AES Transfer 0.000001 0.025419

Tabel 1 menunjukkan hasil perbandingan waktu eksekusi dari RSA dan AES.
Berdasarkan hasil pengujian, AES menunjukkan performa enkripsi—dekripsi paling cepat
pada skenario login (masing-masing sekitar 0,000001 detik), jauh lebih rendah dibanding
RSA yang membutuhkan 0,001007 detik untuk enkripsi dan 0,002883 detik untuk
dekripsi. Pada skenario transfer, RSA tetap relatif stabil dengan waktu enkripsi 0,001505
detik dan dekripsi 0,002084 detik, sedangkan AES tetap sangat cepat pada enkripsi yaitu
0,000001 detik namun mengalami lonjakan pada proses dekripsi hingga 0,025419 detik.
Pola ini mengindikasikan bahwa AES unggul signifikan untuk beban kerja ringan seperti
login, tetapi pada transfer terdapat overhead tertentu di sisi dekripsi tergantung pada
ukuran payload yang membuat Kinerjanya menurun dan perlu ditelusuri lebih lanjut
sebelum dijadikan pilihan utama untuk skenario transfer.

3.2. Perbandingan Konsumsi Memori pada RSA dan AES.

Untuk mengetahui performa dari penggunaan memori pada RSA dan AES, dilakukan
pengujian seperti pada Gambar 4. Pada pengujian ini menyajikan perbandingan
penggunaan memori pada algoritma RSA dan AES untuk dua skenario layanan, yaitu
login dan transfer data, masing-masing pada proses enkripsi (E) dan dekripsi (D). Pada
algoritma RSA, terlihat bahwa proses dekripsi login (RSA-Login-D) memerlukan
penggunaan memori paling besar, yaitu sekitar 1,8 kb, sedangkan proses enkripsi login
(RSA-Login-E) dan enkripsi transfer (RSA-Transfer-E) berada pada kisaran 0,53 kb.
Proses dekripsi transfer RSA (RSA-Transfer-D) menunjukkan penggunaan memori paling
rendah, yaitu 0.07, yang mengindikasikan variasi kebutuhan memori yang signifikan antar
tahapan operasi RSA.

78

“*KESATRIA:Humal Penerapan Sistem Informasi (Komputer & Manajemen)
iB) 2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

<
o
N b e e &
c}" oF & & \ ((re
- R Q\(OV“ Q‘r_)?‘ v ks \,S, v‘.{z

Q <
o 3
005‘0 &

Gambar 4. Perbandingan Konsumsi Memori

Sementara itu, pada algoritma AES, penggunaan memori cenderung lebih merata
namun tetap menunjukkan perbedaan antara enkripsi dan dekripsi. Proses AES-Login-E
dan AES-Transfer-D membutuhkan memori relatif lebih besar, masing-masing sekitar
1,39 kb dan 1,57 kb, dibandingkan proses AES-Login-D yaitu 0,62 kb. Adapun AES-
Transfer-E menunjukkan penggunaan memori sekitar 1,25 kb. Hasil ini menunjukkan
bahwa kebutuhan memori tidak hanya dipengaruhi oleh jenis algoritma kriptografi, tetapi
juga oleh jenis layanan serta tahapan proses yang dijalankan. Temuan ini
mengindikasikan bahwa evaluasi efisiensi algoritma kriptografi perlu mempertimbangkan
aspek memori secara terpisah dari waktu eksekusi, terutama pada sistem dengan
keterbatasan sumber daya. Tabel 2 menunjukkan detail dari hasil konsumsi memori oleh
kedua algoritma.

Tabel 2. Hasil Konsumsi Memori (kb)

Algoritma Skenario Enkripsi Dekripsi
RSA Login 0.53 1.8
RSA Transfer 0.53 0.07
AES Login 1.39 0.62
AES Transfer 1.25 1.57

Berdasarkan Tabel 2, dapat disimpulkan bahwa pola konsumsi memori pada kedua
algoritma tidak sepenuhnya sejalan dengan pola waktu eksekusi, karena setiap skenario
login dan transfer serta tahapan proses enkripsi dan dekripsi menghasilkan kebutuhan
memori yang berbeda. RSA cenderung menunjukkan penggunaan memori yang kontras
terutama pada proses dekripsi login yang lebih tinggi, sedangkan AES relatif lebih merata
namun tetap memperlihatkan peningkatan pada proses tertentu seperti enkripsi login dan
dekripsi transfer. Dengan demikian, pemilihan algoritma kriptografi untuk sistem client—
server tidak cukup hanya mempertimbangkan kecepatan, tetapi juga harus memperhatikan
efisiensi memori agar implementasi tetap stabil dan sesuai dengan keterbatasan sumber
daya, khususnya pada layanan transaksi yang berpotensi memproses data lebih kompleks.

4. Kesimpulan

Berdasarkan pengujian pada skenario digital banking (login dan transfer), AES
menunjukkan performa yang lebih baik dibanding RSA pada beberapa tahapan penting.
Pada proses enkripsi, AES lebih efisien dengan peningkatan kecepatan 0,7% pada login
dan 33,6% pada transfer, sehingga dapat mendukung kebutuhan enkripsi payload
transaksi yang memerlukan respons cepat. Pada dekripsi login, AES juga memberikan
peningkatan signifikan, yaitu 65,3% lebih cepat sekaligus lebih hemat memori sebesar
65,5%, yang menandakan AES cocok untuk aktivitas autentikasi dan perlindungan data
sensitif dengan overhead yang relatif ringan. Akan tetapi, pada dekripsi transfer, AES
mengalami penurunan kinerja dengan latensi 12,2 kali lebih lambat dan konsumsi memori

79

tetap stal
dengan va
hasil yang

Daftar Pustaka

[1]
[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

Y. Zhong, “An Overview of RSA and OAEP Padding,” Highlights Sci. Eng. Technol.,
vol. 1, pp. 82-86, Jun. 2022, doi: 10.54097/hset.v1i.431.

A. Aminudin, L. Hakim, I. Nuryasin, and H. R. Santiyas, “Kriptosistem Hybrid
Algoritme RSA dan El-Gamal Menggunakan Socket TCP pada Instant Messaging,”
JRST (Jurnal Ris. Sains dan Teknol., vol. 8, no. 1, p. 1, Mar. 2024, doi:
10.30595/jrst.v8i1.17124.

V. Veronica, R. S. Octama, and A. Ramadhan, “Incorporating rivest-shamir-adleman
algorithm and advanced encryption standard in payment gateway system,”
TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 22, no. 3, p.
629, Jun. 2024, doi: 10.12928/telkomnika.v22i3.25578.

R. Verma and J. Dhiman, “Implementation of Improved Cryptography Algorithm,”
Int. J. Inf. Technol. Comput. Sci., vol. 14, no. 2, pp. 45-53, Apr. 2022, doi:
10.5815/ijitcs.2022.02.04.

A. Pratiwi and A. A. Tahir, Muhlis Nawafilillah Alvaradis, “Implementation of RSA
Asymmetric Cryptography using GPG and Kelopatra for School Data Security,” J. Ris.
Inform., vol. 7, no. 3, pp. 170-176, 2025, doi: https://doi.org/10.34288/jri.v7i3.360.

A. Yeboah-Ofori, I. Darvishi, and A. S. Opeyemi, “Enhancement of Big Data Security
in Cloud Computing Using RSA Algorithm,” in 2023 10th International Conference
on Future Internet of Things and Cloud (FiCloud), IEEE, Aug. 2023, pp. 312-319. doi:
10.1109/FiCloud58648.2023.00053.

F. O. Mojisola, S. Misra, C. F. Febisola, O. Abayomi-alli, and G. Sengul, “An
improved random bit-stuffing technique with a modified RSA algorithm for resisting
attacks in information security (RBMRSA),” Egypt. Informatics J., vol. 23, no. 2, pp.
291-301, 2022, doi: 10.1016/j.eij.2022.02.001.

D. Shivaramakrishna and M. Nagaratna, “A novel hybrid cryptographic framework for
secure data storage in cloud computing: Integrating AES-OTP and RSA with adaptive
key management and Time-Limited access control,” Alexandria Eng. J., vol. 84, pp.
275-284, Dec. 2023, doi: 10.1016/j.aej.2023.10.054.

H. Mestiri, “Evaluating AES Security: Correlation Power Analysis Attack
Implementation using the Switching Distance Power Model,” Eng. Technol. Appl. Sci.
Res., vol. 15, no. 1, pp. 20314-20320, Feb. 2025, doi: 10.48084/etasr.9728.

R. Ganesh, B. U. I. Khan, A. R. Khan, and A. Bin Kamsin, “A panoramic survey of
the advanced encryption standard: from architecture to security analysis, key
management, real-world applications, and post-quantum challenges,” Int. J. Inf.
Secur., vol. 24, no. 5, p. 216, Oct. 2025, doi: 10.1007/s10207-025-01116-X.

M. Carvalho, F. S4, and J. Bernardino, “Evaluation of the Impact of AES Encryption
on Query Read Performance Across Oracle, MySQL, and SQL Server Databases,”
Cryptography, vol. 9, no. 4, p. 77, Nov. 2025, doi: 10.3390/cryptography9040077.

A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, and R. Susella, “Profiled side
channel attacks against the RSA cryptosystem using neural networks,” J. Inf. Secur.
Appl., vol. 66, p. 103122, May 2022, doi: 10.1016/j.jisa.2022.103122.

S. de la Fe, H.-B. Park, B.-Y. Sim, D.-G. Han, and C. Ferrer, “Profiling Attack against
RSA Key Generation Based on a Euclidean Algorithm,” Information, vol. 12, no. 11,
p. 462, Nov. 2021, doi: 10.3390/info12110462.

80

