
KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

ISSN: 2720-992X

Copyright ⓒ KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen

Perbandingan Algoritma RSA dan AES pada Fitur Transfer

dalam Studi Kasus Digital Banking

 Ahmad Miftah Fajrin
1

1
Universitas Surabaya, Indonesia

E-mail: ahmadmiftah@staff.ubaya.ac.id

Abstract
Digital banking services require cryptographic mechanisms that protect sensitive

customer data while maintaining low latency and efficient resource utilization. This study

evaluates the performance of RSA (asymmetric encryption) and AES (symmetric

encryption) in securing digital banking transactions across two common scenarios: login

authentication and fund transfer. The evaluation examines encryption time, decryption

time, and memory usage during cryptographic processing. Experimental results

demonstrate that AES achieves faster encryption than RSA, with 0.7% lower encryption

time in the login scenario and 33.6% lower encryption time in the transfer scenario. For

login decryption, AES is 65.3% faster than RSA and reduces memory consumption by

65.5%. In contrast, during transfer decryption, AES introduces substantially higher

latency, operating 12.2 times slower, which corresponds to a 1119.7% increase, and

consumes 2112.7% more memory. These results suggest that AES is highly efficient for

encryption and lightweight decryption tasks such as login, but transfer decryption

performance may require further optimization to ensure consistent real-time

responsiveness in digital banking environments.

Keywords: AES, RSA, digital banking, encryption, decryption, digital banking

Abstrak
Keamanan transaksi pada layanan digital banking memerlukan mekanisme kriptografi

yang mampu menjaga kerahasiaan data pengguna dan mempertahankan efisiensi sistem.

Studi ini membandingkan kinerja algoritma RSA (asimetris) dan AES (simetris) dalam

dua skenario utama perbankan digital, yaitu login dan transfer, dengan mengukur waktu

eksekusi serta konsumsi memori untuk setiap proses pada RSA. Hasil pengujian

memperlihatkan bahwa pada tahap enkripsi, AES memiliki performa lebih baik

dibandingkan RSA, yaitu 0,7% lebih cepat pada skenario login dan 33,6% lebih cepat

pada skenario transfer. Pada tahap dekripsi login, AES juga lebih efisien dengan

kecepatan 65,3% lebih tinggi dibandingkan RSA, serta menurunkan konsumsi memori

sebesar 65,5%. Namun, pada dekripsi transfer, AES menunjukkan latensi yang lebih

tinggi, yaitu 12,2 kali lebih lambat dibandingkan RSA, disertai kenaikan konsumsi

memori sebesar 2112,7%. Temuan ini mengindikasikan bahwa AES lebih unggul pada

operasi enkripsi dan dekripsi sederhana seperti login, namun implementasi pada

transaksi transfer memerlukan optimasi lebih lanjut untuk menjaga latensi tetap rendah.

Kata Kunci: AES, RSA, digital banking, enkripsi, dekripsi, keamanan transaksi

1. Pendahuluan
Perkembangan teknologi mendorong perlunya mekanisme pengamanan data yang

andal, terutama pada sistem komunikasi digital di jaringan terbuka. Dalam konteks ini,

kriptografi memegang peranan penting dalam menjamin kerahasiaan, integritas, dan

autentikasi data guna mencegah ancaman penyadapan, manipulasi, serta penyalahgunaan

informasi [1]. Studi-studi sebelumnya menunjukkan bahwa tanpa penerapan kriptografi

yang memadai, sistem informasi modern sangat rentan terhadap serangan keamanan,

terutama pada layanan berbasis jaringan dan komunikasi real-time[2].

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

72

Transformasi layanan perbankan ke kanal digital meningkatkan efisiensi transaksi

sekaligus memperluas permukaan serangan siber. Proses seperti login, transfer dana, dan

validasi saldo melibatkan data sensitif sehingga memerlukan enkripsi yang kuat dan

efisien. Dalam praktik saat ini, sistem pembayaran umumnya mengombinasikan

kriptografi simetris untuk perlindungan data karena kecepatan, serta kriptografi asimetris

untuk pertukaran kunci atau tanda tangan karena mendukung distribusi kunci publik.

Studi pada sistem payment gateway menunjukkan bahwa kombinasi RSA dan AES

banyak digunakan untuk menjaga keamanan proses transaksi sekaligus mempertahankan

kinerja layanan [3].

Kriptografi kunci publik merupakan salah satu pendekatan utama dalam pengamanan

data karena memungkinkan distribusi kunci secara aman tanpa memerlukan saluran

rahasia. Algoritma RSA merupakan contoh implementasi algoritma kriptografi yang

populer hingga saat ini. RSA masih diterapkan secara luas pada berbagai sistem

keamanan informasi, termasuk pengamanan pesan, pertukaran kunci, dan perlindungan

data sensitif, karena memiliki dasar matematis yang kuat serta kemudahan implementasi

relative [4][5]. Keamanan algoritma RSA bergantung pada tingkat kesulitan faktorisasi

bilangan bulat besar. Selama permasalahan ini belum dapat diselesaikan secara efisien

dengan komputasi klasik, RSA tetap dianggap aman untuk berbagai aplikasi praktis [6].

Oleh sebab itu, RSA terus menjadi objek penelitian dan pengembangan untuk

meningkatkan ketahanan dan efektivitasnya terhadap ancaman keamanan yang semakin

kompleks [7].

Advanced Encryption Standard atau AES Adalah contoh dari algoritma simetris yang

populer untuk melindungi payload transaksi pada layanan digital banking karena mampu

memberikan enkripsi cepat dengan biaya komputasi rendah. Dalam transaksi finansial,

AES lazim digunakan untuk menjaga kerahasiaan data sensitif seperti nomor kartu,

kredensial, dan detail transfer, baik saat penyimpanan maupun pengiriman, sehingga

mendukung keamanan layanan tanpa menambah latensi secara signifikan [8]. Meskipun

kuat secara desain, implementasi AES tetap harus memperhatikan risiko serangan kanal-

samping, sehingga penerapan praktik implementasi yang aman dan mitigasi menjadi

faktor penting dalam sistem pembayaran modern [9].

Dalam praktik digital banking, AES umumnya digunakan untuk melindungi data

transaksi ber-volume besar pada kanal API maupun penyimpanan seperti tabel transaksi,

log, dan arsip audit. Survei terbaru menunjukkan bahwa AES masih menjadi landasan de

facto dalam mengamankan komunikasi dan transaksi finansial karena efisiensi, dukungan

akselerasi perangkat keras, serta fleksibilitas mode operasi. Pada sisi penyimpanan,

evaluasi kinerja transparent data encryption berbasis AES pada beberapa DBMS

menunjukkan overhead yang relatif kecil sehingga tetap kompatibel untuk layanan real-

time. Temuan terkait tantangan privasi dan keamanan siber dalam transformasi perbankan

digital juga menempatkan enkripsi sebagai kontrol inti untuk menekan risiko kebocoran

data nasabah dan penyalahgunaan informasi [10] [11].

Meskipun RSA dan AES sama-sama populer, keduanya memiliki karakteristik

komputasi yang berbeda sehingga dampaknya terhadap latensi transaksi perlu dianalisis

secara kuantitatif. Kemudian sebagian penelitian terdahulu lebih banyak menilai kinerja

secara terpisah yaitu uji enkripsi dan dekripsi pada fungsi tertentu tanpa evaluasi end-to-

end pada alur client–server, atau tanpa adanya hasil metrik untuk waktu eksekusi dan

konsumsi memori pada skenario transaksi yang berbeda Selain aspek kinerja, RSA juga

memiliki risiko pada sisi implementasi apabila perlindungan eksekusi tidak memadai,

misalnya terhadap serangan side channel berbasis konsumsi daya [12]. Penelitian ini

berkontribusi dengan prototipe client–server yang membandingkan RSA vs AES secara

end-to-end, dua skenario yang merepresentasikan beban kerja berbeda yaitu login dan

transfer, serta pelaporan berupa matrix waktu dan memori untuk membantu pengambilan

keputusan implementatif.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

73

Kontribusi utama dari penelitian ini adalah menyediakan panduan pengambilan

keputusan berbasis skenario. Algoritma AES direkomendasikan untuk operasi dengan

payload kecil, seperti login, karena menawarkan latensi dan penggunaan memori yang

lebih rendah. Untuk transfer payload yang lebih besar, diperlukan audit serta optimasi

implementasi agar proses dekripsi tetap memenuhi kebutuhan real-time. Studi ini juga

menyoroti pentingnya pelaporan metrik waktu dan memori secara bersamaan untuk

menilai trade-off pada sistem dengan sumber daya terbatas.

2. Metodologi Penelitian
2.1. RSA (Rivest Shamir Aldeman)

RSA adalah contoh dari salah satu kriptosistem yang menggunakan public key yang

bekerja dengan aritmetika modulo berbasis bilangan bulat besar. Pada tahap

pembangkitan kunci, dua bilangan prima besar dan dipilih untuk membentuk modulus

. Parameter publik kemudian ditetapkan sehingga relatif prima terhadap

, lalu nilai privat dihitung sebagai invers modular dari

terhadap . Dengan pasangan kunci sebagai kunci publik dan sebagai bagian

utama kunci privat, RSA melakukan transformasi kriptografis melalui eksponensiasi

modular. Dalam praktik, e sering dipilih bernilai 65537 karena memberikan efisiensi

eksponensiasi yang baik tanpa mengorbankan keamanan secara signifikan [13]. Algoritma

1 adalah implementasi dari pseudocode RSA.

Algoritma 1: RSA – Pembentukan Kunci

Proses enkripsi pada RSA dapat ditunukkan pada Algoritma 2. Inputan pada RSA

berupa pasangan kunci publik dan pesan . Pesan terlebih dahulu

direpresentasikan sebagai bilangan bulat yang nilainya lebih kecil dari , kemudian

dienkripsi dengan cara dipangkatkan menggunakan eksponen publik dan diambil hasil

modulo , sehingga diperoleh ciphertext . Proses ini menunjukkan bahwa

siapa pun yang memiliki kunci publik dapat mengenkripsi pesan, tetapi belum tentu dapat

membaca isinya.

Algoritma 2: RSA – Enkripsi

Pada Algorithm 3 menggambarkan proses kebalikan dari enkripsi. Masukan berupa

pasangan kunci privat dan ciphertext . Ciphertext tersebut dipangkatkan dengan

eksponen privat dan diambil hasil modulo , sehingga menghasilkan kembali pesan asli

. Secara matematis, nilai dipilih sedemikian rupa sehingga operasi

pemangkatan dengan akan membatalkan efek pemangkatan dengan . Maka dari itu,

hanya orang yang mempunyai private key yang dapat melakukan dekripsi dan

memperoleh kembali pesan asli, yang menjadi inti dari keamanan algoritma RSA.

Input: ukuran kunci kBits

1. pilih prima besar p dan q

2. n ← p × q

3. φ ← (p−1) × (q−1)

4. pilih e (umumnya 65537) dengan gcd(e, φ)=1

5. d ← mod φ

Output: public key (n,e), private key d

Input: (n, e), pesan m

1. c ← mod n

Output: c

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

74

Algoritma 3: RSA – Dekripsi

Implementasi RSA sangat menentukan kekuatan keamanan yang sangat penting.

Banyak sistem mempercepat operasi privat menggunakan optimasi seperti CRT-RSA,

tetapi optimasi semacam ini juga dapat memperluas permukaan serangan pada sisi

implementasi. Penelitian terkini menunjukkan bahwa RSA rentan terhadap serangan

kanal-samping yang apabila eksekusi modular exponentiation tidak dilindungi dengan

baik maka serangan yang diprofilkan menggunakan pendekatan neural network bahkan

dapat mengekstraksi informasi rahasia dari jejak konsumsi daya implementasi RSA

tertentu. Studi lain juga menyoroti bahwa kebocoran sebagian parameter privat seperti

partial key exposure dapat membuka peluang kriptoanalisis terhadap sejumlah varian

RSA dalam kondisi tertentu, sehingga perlindungan implementasi dan pengelolaan

parameter tetap menjadi isu penting dalam penerapan RSA modern.

2.2. Advanded Encryption Standard (AES)

AES merupakan symmetric block cipher dengan blok 128-bit dan dengan kunci yang

panjangnya 128/192/256-bit. Algoritma ini bekerja melalui serangkaian transformasi per

ronde (SubBytes, ShiftRows, MixColumns, dan AddRoundKey) sehingga efisien untuk

mengenkripsi payload transaksi yang berulang maupun berukuran besar. Karena biaya

komputasinya relatif rendah, AES banyak digunakan pada layanan pembayaran dan

perbankan digital untuk melindungi data finansial pada perangkat klien maupun server.

Meski demikian, keamanan AES pada level implementasi tetap perlu diperhatikan,

misalnya terhadap serangan kanal-samping (Correlation Power Analysis) yang berupaya

mengekstrak kunci dari pola konsumsi daya, sehingga penggunaan mitigasi dan praktik

implementasi yang benar menjadi penting. Algoritma 4 menunjukkan cara kerja dari AES

ketika melakukan enkripsi.

Algoritma 4: AES – Enkripsi

Input: (n, d), ciphertext c

1. m ← mod n

Output: m

Input : plaintext_block (128 bit), secret_key

Output : encrypted_block

1. expanded_keys ← GenerateRoundKeys(secret_key)

2. current_state ← plaintext_block

3. current_state ← XORRoundKey(current_state, expanded_keys[0])

4. for i ← 1 to (TotalRound − 1) do

5. current_state ← ByteSubstitution(current_state)

6. current_state ← RowPermutation(current_state)

7. current_state ← ColumnMixing(current_state)

8. current_state ← XORRoundKey(current_state, expanded_keys[i])

9. end for

10. current_state ← ByteSubstitution(current_state)

11. current_state ← RowPermutation(current_state)

12. current_state ← XORRoundKey(current_state, expanded_keys[TotalRound])

13. encrypted_block ← current_state

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

75

 Pada proses enkripsi AES seperti pada Algoritma 4, pseudocode menggambarkan

bahwa algoritma menerima masukan berupa satu blok plaintext berukuran 128-bit dan

sebuah kunci rahasia, kemudian kunci tersebut terlebih dahulu diproses melalui tahap key

expansion untuk menghasilkan kunci pada setiap ronde. Plaintext direpresentasikan

sebagai state dan diawali dengan operasi AddRoundKey, yaitu penggabungan state

dengan kunci ronde awal menggunakan operasi XOR. Selanjutnya, state diproses melalui

sejumlah ronde utama yang jumlahnya bergantung pada panjang kunci. Pada setiap ronde,

dilakukan empat transformasi berurutan, yaitu SubBytes untuk melakukan substitusi non-

linear guna meningkatkan konfusi, ShiftRows untuk menggeser baris state sehingga

tercapai difusi, MixColumns untuk mencampur nilai pada setiap kolom state, serta

AddRoundKey untuk menggabungkan state dengan kunci ronde. Pada ronde terakhir,

transformasi MixColumns tidak dilakukan, dan hasil akhir dari state setelah

AddRoundKey merupakan ciphertext.

Algoritma 5 : AES – Dekripsi

Pada proses dekripsi AES seperti pada Algoritma 2.5, pseudocode menunjukkan

bahwa algoritma menerima masukan berupa ciphertext dan kunci rahasia yang sama

dengan proses enkripsi. Ciphertext direpresentasikan sebagai state dan terlebih dahulu

dikombinasikan dengan kunci ronde terakhir melalui operasi AddRoundKey. Selanjutnya,

state diproses melalui ronde-ronde dekripsi dengan urutan terbalik dibandingkan enkripsi,

menggunakan transformasi invers, yaitu InvShiftRows, InvSubBytes, AddRoundKey, dan

InvMixColumns. Transformasi invers ini dirancang untuk membatalkan efek setiap

operasi pada proses enkripsi. Pada ronde terakhir dekripsi, operasi InvMixColumns tidak

dilakukan. Setelah seluruh ronde selesai, state digabungkan kembali dengan kunci ronde

awal menggunakan AddRoundKey sehingga diperoleh kembali plaintext asli.

2.3. Rancangan Eksperimen dan Parameter Pengujian

Pengujian dilakukan pada prototipe client–server dengan dua varian implementasi

yaitu varian RSA yang mengenkripsi payload menggunakan kunci publik server dan

didekripsi menggunakan kunci privat serve varian AES yang mengenkripsi dan

mendekripsi payload menggunakan kunci simetris yang sama. Pada penilitian ini

menggunakan perangkat untuk client dan server adalah satu perangkat yang sama yaitu

menggunakan processor AMD Ryzen 5 4600H dengan dukungan sistem operasi Windows

Input : encrypted_block (128 bit), secret_key

Output : recovered_plaintext

1. round_keys ← GenerateRoundKeys(secret_key)

2. internal_state ← encrypted_block

3. internal_state ← XORRoundKey(internal_state, round_keys[FinalRound])

4. for r ← (FinalRound − 1) down to 1 do

5. internal_state ← InverseRowPermutation(internal_state)

6. internal_state ← InverseByteSubstitution(internal_state)

7. internal_state ← XORRoundKey(internal_state, round_keys[r])

8. internal_state ← InverseColumnMixing(internal_state)

9. end for

10. internal_state ← InverseRowPermutation(internal_state)

11. internal_state ← InverseByteSubstitution(internal_state)

12. internal_state ← XORRoundKey(internal_state, round_keys[0])

13. recovered_plaintext ← internal_state

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

76

10. Untuk RAM menggunakan 16GB dual channel. Bahasa pemrograman python

digunakan untuk implementasi program.

Dalam penelitian ini, algoritma RSA diimplementasikan dengan ukuran kunci 4096-bit

dan public exponent 65537, yang dihasilkan menggunakan library cryptography pada

Python. Proses enkripsi dan dekripsi RSA menggunakan padding OAEP (Optimal

Asymmetric Encryption Padding) dengan SHA-256 . Konfigurasi ini dipilih karena

mewakili praktik kriptografi modern yang direkomendasikan untuk tingkat keamanan

tinggi serta ketahanan terhadap serangan kriptoanalitik.

Algoritma AES diimplementasikan dengan panjang kunci 128-bit, mode operasi AES-

CBC (Cipher Block Chaining), dan padding PKCS7, yang merupakan konfigurasi umum

pada sistem keamanan data simetris. AES digunakan untuk enkripsi dan dekripsi payload

dalam skenario login dan transfer, dengan tujuan mengevaluasi performa waktu dan

penggunaan memori pada berbagai beban kerja. Pencantuman parameter kriptografi ini

memastikan bahwa eksperimen bersifat reproducible, transparan, dan sesuai dengan

standar evaluasi kriptografi pada sistem client–server.

Pada skenario login, payload berupa string kredensial dengan format

“username:password”, sedangkan pada skenario transfer payload berupa string transaksi

berformat CSV yang memuat beberapa atribut (jenis transaksi, rekening pengirim,

nominal, pesan/berita, PIN, dan rekening penerima). Dengan demikian, payload transfer

merepresentasikan beban kerja yang lebih besar dan kompleks dibanding login. Pada

implementasi awal, sistem mencatat metrik waktu dan memori untuk setiap operasi

enkripsi/dekripsi secara per-event (setiap request) menggunakan pengukuran waktu

berbasis time.time() dan pengukuran memori berbasis tracemalloc.

3. Hasil dan Pembahasan
Pada penelitian ini berbasis eksperimen terkontrol dengan membangun prototipe

transaksi digital banking berbasis client–server. Dua versi prototipe dibuat dengan alur

yang sama: (1) versi RSA, yang mengenkripsi data login dan transfer menggunakan kunci

publik penerima; dan (2) versi AES, yang menggunakan satu kunci simetris untuk

enkripsi dan dekripsi payload. Pengujian difokuskan pada dua operasi utama, yaitu login

dan transfer, karena keduanya merepresentasikan transaksi yang sering terjadi pada

layanan perbankan digital.

Gambar 1. Prototipe Client – Server

Pada Gambar 1 adalah prototipe client dan server. Dari sisi client, proses dimulai

ketika pengguna memasukkan data, seperti informasi login atau permintaan transaksi.

Data tersebut kemudian dienkripsi sebelum dikirimkan melalui jaringan internet.

Mekanisme enkripsi yang digunakan dapat berupa RSA atau AES, tergantung pada skema

keamanan yang diterapkan. Jika menggunakan RSA, client mengenkripsi data

menggunakan kunci publik milik server sehingga hanya server yang dapat membukanya

dengan kunci privat. Jika menggunakan AES, client mengenkripsi data menggunakan

kunci simetris yang telah disepakati sebelumnya. Tujuan utama proses ini adalah

memastikan bahwa data yang dikirimkan melalui kanal jaringan private dan hanya bisa

diakses oleh pihak yang berwenang.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

77

Dari sisi server, data terenkripsi yang diterima dari client akan melalui proses dekripsi

dan validasi. Pada skema RSA, server menggunakan kunci privat untuk mendekripsi data

yang sebelumnya dienkripsi dengan kunci publik. Pada skema AES, server menggunakan

kunci simetris yang sama dengan client untuk membuka data. Setelah data berhasil

didekripsi, server melakukan proses validasi dan eksekusi permintaan, seperti autentikasi

pengguna atau pemrosesan transaksi. Hasil dari proses tersebut kemudian dikirimkan

kembali ke client dalam bentuk respon melalui jaringan, yang juga dapat dienkripsi

menggunakan algoritma yang sama untuk menjaga keamanan komunikasi dua arah.

3.1. Perbandingan Waktu Eksekusi pada RSA dan AES.

Bagian ini menyajikan hasil utama pengujian performa. Waktu eksekusi antara RSA

dan AES akan diuji pada scenario Login dan Transfer.

Gambar 2. Perbandingan Waktu Eksekusi untuk Enkripsi

Pada Gambar 2 memperlihatkan perbandingan waktu eksekusi algoritma RSA dan

AES pada skenario login dan transfer data untuk proses enkripsi. Berdasarkan hasil

pengukuran, proses RSA Login membutuhkan waktu sebesar 0,001007 detik, sedangkan

RSA Transfer memerlukan waktu yang lebih tinggi, yaitu 0,001505 detik. Sementara itu,

algoritma AES menunjukkan kinerja yang lebih efisien, di mana waktu eksekusi untuk

AES Login dan AES Transfer masing-masing berada di bawah 0,001 detik. Perbedaan ini

mengindikasikan bahwa RSA memiliki overhead komputasi yang lebih besar akibat

penggunaan operasi eksponensial modular, khususnya pada proses transfer data.

Sebaliknya, AES sebagai algoritma kriptografi simetris mampu memberikan waktu

pemrosesan yang lebih cepat dan konsisten. Hasil ini menegaskan bahwa AES lebih

sesuai digunakan untuk proses yang menuntut efisiensi dan kecepatan tinggi, sedangkan

RSA lebih tepat diterapkan pada skenario yang mengutamakan mekanisme keamanan

berbasis kunci publik meskipun dengan biaya komputasi yang lebih besar.

Gambar 3. Perbandingan Waktu Eksekusi untuk Dekripsi.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

78

Pada Gambar 3 tersebut menyajikan hasil pengujian waktu eksekusi algoritma

kriptografi RSA dan AES pada dua skenario layanan, yaitu proses login dan transfer data.

Sumbu vertikal menunjukkan waktu pemrosesan dalam satuan detik, sedangkan sumbu

horizontal merepresentasikan jenis algoritma dan aktivitas yang diuji. Berdasarkan grafik,

proses RSA-Login membutuhkan waktu sekitar 0,003 detik, sedangkan RSA-Transfer

menunjukkan waktu eksekusi yang lebih rendah, yaitu sekitar 0,002 detik. Pada algoritma

AES, proses AES-Login memiliki waktu pemrosesan paling singkat, yaitu sekitar 0,001

detik, sementara AES-Transfer memperlihatkan lonjakan waktu yang sangat signifikan

hingga sekitar 0,025 detik.

Perbedaan nilai waktu ini menunjukkan bahwa kinerja algoritma kriptografi sangat

dipengaruhi oleh karakteristik operasi yang dilakukan serta skenario penggunaan. Waktu

eksekusi AES yang meningkat drastis pada proses transfer mengindikasikan adanya beban

pemrosesan tambahan, yang dapat disebabkan oleh ukuran data yang lebih besar atau

mekanisme pemrosesan blok yang berulang. Sebaliknya, RSA menunjukkan waktu

eksekusi yang relatif lebih stabil pada kedua skenario, meskipun secara teoretis RSA

memiliki kompleksitas komputasi yang lebih tinggi. Temuan ini menegaskan bahwa

evaluasi performa algoritma kriptografi tidak hanya ditentukan oleh jenis algoritma, tetapi

juga oleh konteks dan karakteristik beban kerja yang diterapkan pada sistem.

Tabel 1. Hasil Waktu Eksekusi (s)
Algoritma Skenario Enkripsi Dekripsi

RSA Login 0.001007 0.002883

RSA Transfer 0.001505 0.002084

AES Login 0.000001 0.000001

AES Transfer 0.000001 0.025419

Tabel 1 menunjukkan hasil perbandingan waktu eksekusi dari RSA dan AES.

Berdasarkan hasil pengujian, AES menunjukkan performa enkripsi–dekripsi paling cepat

pada skenario login (masing-masing sekitar 0,000001 detik), jauh lebih rendah dibanding

RSA yang membutuhkan 0,001007 detik untuk enkripsi dan 0,002883 detik untuk

dekripsi. Pada skenario transfer, RSA tetap relatif stabil dengan waktu enkripsi 0,001505

detik dan dekripsi 0,002084 detik, sedangkan AES tetap sangat cepat pada enkripsi yaitu

0,000001 detik namun mengalami lonjakan pada proses dekripsi hingga 0,025419 detik.

Pola ini mengindikasikan bahwa AES unggul signifikan untuk beban kerja ringan seperti

login, tetapi pada transfer terdapat overhead tertentu di sisi dekripsi tergantung pada

ukuran payload yang membuat kinerjanya menurun dan perlu ditelusuri lebih lanjut

sebelum dijadikan pilihan utama untuk skenario transfer.

3.2. Perbandingan Konsumsi Memori pada RSA dan AES.

Untuk mengetahui performa dari penggunaan memori pada RSA dan AES, dilakukan

pengujian seperti pada Gambar 4. Pada pengujian ini menyajikan perbandingan

penggunaan memori pada algoritma RSA dan AES untuk dua skenario layanan, yaitu

login dan transfer data, masing-masing pada proses enkripsi (E) dan dekripsi (D). Pada

algoritma RSA, terlihat bahwa proses dekripsi login (RSA-Login-D) memerlukan

penggunaan memori paling besar, yaitu sekitar 1,8 kb, sedangkan proses enkripsi login

(RSA-Login-E) dan enkripsi transfer (RSA-Transfer-E) berada pada kisaran 0,53 kb.

Proses dekripsi transfer RSA (RSA-Transfer-D) menunjukkan penggunaan memori paling

rendah, yaitu 0.07, yang mengindikasikan variasi kebutuhan memori yang signifikan antar

tahapan operasi RSA.

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

79

Gambar 4. Perbandingan Konsumsi Memori

Sementara itu, pada algoritma AES, penggunaan memori cenderung lebih merata

namun tetap menunjukkan perbedaan antara enkripsi dan dekripsi. Proses AES-Login-E

dan AES-Transfer-D membutuhkan memori relatif lebih besar, masing-masing sekitar

1,39 kb dan 1,57 kb, dibandingkan proses AES-Login-D yaitu 0,62 kb. Adapun AES-

Transfer-E menunjukkan penggunaan memori sekitar 1,25 kb. Hasil ini menunjukkan

bahwa kebutuhan memori tidak hanya dipengaruhi oleh jenis algoritma kriptografi, tetapi

juga oleh jenis layanan serta tahapan proses yang dijalankan. Temuan ini

mengindikasikan bahwa evaluasi efisiensi algoritma kriptografi perlu mempertimbangkan

aspek memori secara terpisah dari waktu eksekusi, terutama pada sistem dengan

keterbatasan sumber daya. Tabel 2 menunjukkan detail dari hasil konsumsi memori oleh

kedua algoritma.

Tabel 2. Hasil Konsumsi Memori (kb)
Algoritma Skenario Enkripsi Dekripsi

RSA Login 0.53 1.8

RSA Transfer 0.53 0.07

AES Login 1.39 0.62

AES Transfer 1.25 1.57

Berdasarkan Tabel 2, dapat disimpulkan bahwa pola konsumsi memori pada kedua

algoritma tidak sepenuhnya sejalan dengan pola waktu eksekusi, karena setiap skenario

login dan transfer serta tahapan proses enkripsi dan dekripsi menghasilkan kebutuhan

memori yang berbeda. RSA cenderung menunjukkan penggunaan memori yang kontras

terutama pada proses dekripsi login yang lebih tinggi, sedangkan AES relatif lebih merata

namun tetap memperlihatkan peningkatan pada proses tertentu seperti enkripsi login dan

dekripsi transfer. Dengan demikian, pemilihan algoritma kriptografi untuk sistem client–

server tidak cukup hanya mempertimbangkan kecepatan, tetapi juga harus memperhatikan

efisiensi memori agar implementasi tetap stabil dan sesuai dengan keterbatasan sumber

daya, khususnya pada layanan transaksi yang berpotensi memproses data lebih kompleks.

4. Kesimpulan
Berdasarkan pengujian pada skenario digital banking (login dan transfer), AES

menunjukkan performa yang lebih baik dibanding RSA pada beberapa tahapan penting.

Pada proses enkripsi, AES lebih efisien dengan peningkatan kecepatan 0,7% pada login

dan 33,6% pada transfer, sehingga dapat mendukung kebutuhan enkripsi payload

transaksi yang memerlukan respons cepat. Pada dekripsi login, AES juga memberikan

peningkatan signifikan, yaitu 65,3% lebih cepat sekaligus lebih hemat memori sebesar

65,5%, yang menandakan AES cocok untuk aktivitas autentikasi dan perlindungan data

sensitif dengan overhead yang relatif ringan. Akan tetapi, pada dekripsi transfer, AES

mengalami penurunan kinerja dengan latensi 12,2 kali lebih lambat dan konsumsi memori

KESATRIA: Jurnal Penerapan Sistem Informasi (Komputer & Manajemen)

 Terakreditasi Nomor 204/E/KPT/2022 | Vol. 7, No. 1, Januari (2026), pp. 71-80

80

yang meningkat 2112,7% dibanding RSA. Dengan demikian, dapat disimpulkan bahwa

AES memiliki keunggulan utama dalam efisiensi enkripsi dan dekripsi pada transaksi

sederhana, namun pada transaksi transfer diperlukan optimasi implementasi agar kinerja

tetap stabil. Penelitian lanjutan direkomendasikan menggunakan pengujian berulang

dengan variasi ukuran payload serta pencatatan waktu presisi tinggi untuk mendapatkan

hasil yang lebih representatif terhadap kondisi sistem digital banking nyata.

Daftar Pustaka
[1] Y. Zhong, “An Overview of RSA and OAEP Padding,” Highlights Sci. Eng. Technol.,

vol. 1, pp. 82–86, Jun. 2022, doi: 10.54097/hset.v1i.431.

[2] A. Aminudin, L. Hakim, I. Nuryasin, and H. R. Santiyas, “Kriptosistem Hybrid

Algoritme RSA dan El-Gamal Menggunakan Socket TCP pada Instant Messaging,”

JRST (Jurnal Ris. Sains dan Teknol., vol. 8, no. 1, p. 1, Mar. 2024, doi:

10.30595/jrst.v8i1.17124.

[3] V. Veronica, R. S. Oetama, and A. Ramadhan, “Incorporating rivest-shamir-adleman

algorithm and advanced encryption standard in payment gateway system,”

TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 22, no. 3, p.

629, Jun. 2024, doi: 10.12928/telkomnika.v22i3.25578.

[4] R. Verma and J. Dhiman, “Implementation of Improved Cryptography Algorithm,”

Int. J. Inf. Technol. Comput. Sci., vol. 14, no. 2, pp. 45–53, Apr. 2022, doi:

10.5815/ijitcs.2022.02.04.

[5] A. Pratiwi and A. A. Tahir, Muhlis Nawafilillah Alvaradis, “Implementation of RSA

Asymmetric Cryptography using GPG and Kelopatra for School Data Security,” J. Ris.

Inform., vol. 7, no. 3, pp. 170–176, 2025, doi: https://doi.org/10.34288/jri.v7i3.360.

[6] A. Yeboah-Ofori, I. Darvishi, and A. S. Opeyemi, “Enhancement of Big Data Security

in Cloud Computing Using RSA Algorithm,” in 2023 10th International Conference

on Future Internet of Things and Cloud (FiCloud), IEEE, Aug. 2023, pp. 312–319. doi:

10.1109/FiCloud58648.2023.00053.

[7] F. O. Mojisola, S. Misra, C. F. Febisola, O. Abayomi-alli, and G. Sengul, “An

improved random bit-stuffing technique with a modified RSA algorithm for resisting

attacks in information security (RBMRSA),” Egypt. Informatics J., vol. 23, no. 2, pp.

291–301, 2022, doi: 10.1016/j.eij.2022.02.001.

[8] D. Shivaramakrishna and M. Nagaratna, “A novel hybrid cryptographic framework for

secure data storage in cloud computing: Integrating AES-OTP and RSA with adaptive

key management and Time-Limited access control,” Alexandria Eng. J., vol. 84, pp.

275–284, Dec. 2023, doi: 10.1016/j.aej.2023.10.054.

[9] H. Mestiri, “Evaluating AES Security: Correlation Power Analysis Attack

Implementation using the Switching Distance Power Model,” Eng. Technol. Appl. Sci.

Res., vol. 15, no. 1, pp. 20314–20320, Feb. 2025, doi: 10.48084/etasr.9728.

[10] R. Ganesh, B. U. I. Khan, A. R. Khan, and A. Bin Kamsin, “A panoramic survey of

the advanced encryption standard: from architecture to security analysis, key

management, real-world applications, and post-quantum challenges,” Int. J. Inf.

Secur., vol. 24, no. 5, p. 216, Oct. 2025, doi: 10.1007/s10207-025-01116-x.

[11] M. Carvalho, F. Sá, and J. Bernardino, “Evaluation of the Impact of AES Encryption

on Query Read Performance Across Oracle, MySQL, and SQL Server Databases,”

Cryptography, vol. 9, no. 4, p. 77, Nov. 2025, doi: 10.3390/cryptography9040077.

[12] A. Barenghi, D. Carrera, S. Mella, A. Pace, G. Pelosi, and R. Susella, “Profiled side

channel attacks against the RSA cryptosystem using neural networks,” J. Inf. Secur.

Appl., vol. 66, p. 103122, May 2022, doi: 10.1016/j.jisa.2022.103122.

[13] S. de la Fe, H.-B. Park, B.-Y. Sim, D.-G. Han, and C. Ferrer, “Profiling Attack against

RSA Key Generation Based on a Euclidean Algorithm,” Information, vol. 12, no. 11,

p. 462, Nov. 2021, doi: 10.3390/info12110462.

